1
|
He Y, Wang C, Sun Q, Liu R, Wang C, Zhou R, Freitas R, Zhang Y. Are environmental levels of gabapentin (GBP) a cause for concern? Chronic reproductive effects of GBP in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138173. [PMID: 40188539 DOI: 10.1016/j.jhazmat.2025.138173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/24/2025] [Accepted: 04/02/2025] [Indexed: 04/08/2025]
Abstract
GBP, a widely used antiepileptic drug, is frequently detected in aquatic environments due to inefficient removal in wastewater treatment. This study investigates the chronic reproductive toxicity of GBP in zebrafish (Danio rerio), a model species for endocrine disruption. Exposure began at 20 days post-fertilization (dpf), coinciding with sex differentiation, and continued for 130 days at environmentally relevant concentrations (1, 10, and 100 μg/L). Our results demonstrated that chronic GBP exposure, even at 1 μg/L, significantly impaired reproductive health in zebrafish, including gonadal development, reduced fecundity, and even the developmental success in the F1 generation. Gene expression analysis revealed alterations in key genes of the hypothalamic-pituitary-gonadal (HPG) axis, resulting in sex-dependent hormonal dysregulation. These findings highlight the potential ecological risks of GBP contamination, where even low concentrations can profoundly affect fish reproduction. The study emphasizes the need for further research on pharmaceutical pollutants and their long-term impacts, as well as improved wastewater treatment processes to mitigate pharmaceutical contamination in aquatic ecosystems.
Collapse
Affiliation(s)
- Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu Province 211816, China.
| | - Chen Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu Province 211816, China
| | - Qiang Sun
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu Province 211816, China
| | - Ruihao Liu
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu Province 211816, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu Province 211816, China
| | - Ranran Zhou
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu Province 211816, China
| | - Rosa Freitas
- Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal; Department of Biology & CESAM, University of Aveiro, Aveiro 3810193, Portugal
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu Province 211816, China.
| |
Collapse
|
2
|
Adedipe DT, Chen C, Lai RWS, Xu S, Luo Q, Zhou GJ, Boxall A, Brooks BW, Doblin MA, Wang X, Wang J, Leung KMY. Occurrence and potential risks of pharmaceutical contamination in global Estuaries: A critical review and analysis. ENVIRONMENT INTERNATIONAL 2024; 192:109031. [PMID: 39321536 DOI: 10.1016/j.envint.2024.109031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Input of pollutants to estuaries is one of the major threats to marine biodiversity and fishery resources, and pharmaceuticals are one of the most important contaminants of emerging concern in aquatic ecosystems. To synthesize pharmaceutical pollution levels in estuaries over the past 20 years from a global perspective, this review identified 3229 individual environmental occurrence data for 239 pharmaceuticals across 91 global estuaries distributed in 26 countries. The highest cumulative weighted average concentration level (WACL) of all detected pharmaceuticals in estuarine water was observed in Africa (145,461.86 ng/L), with 30 pharmaceuticals reported. North America (24,316.39 ng/L) was ranked second in terms of WACL, followed by South America (20,784.13 ng/L), Asia (5958.38 ng/L), Europe (4691.23 ng/L), and Oceania (2916.32 ng/L). Carbamazepine, diclofenac, and paracetamol were detected in all continents. A total of 41 functional categories of pharmaceuticals were identified, and analgesics, antibiotics, and stimulants were amongst the most ubiquitous groups in estuaries worldwide. Although many pharmaceuticals were observed to present lower than or equal to moderate ecological risk, 34 pharmaceuticals were identified with high or very high ecological risks in at least one continent. Pharmaceutical pollution in estuaries was positively correlated with regional unemployment and poverty ratios, but negatively correlated with life expectancy and GDP per capita. There are some limitations that may affect this synthesis, such as comparability of the sampling and pretreatment methodology, differences in the target pharmaceuticals for monitoring, and potentially limited number and diversity of estuaries covered, which prompt us to standardize methods for monitoring these pharmaceutical contaminants in future global studies.
Collapse
Affiliation(s)
- Demilade T Adedipe
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Chong Chen
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Racliffe Weng Seng Lai
- Department of Ocean Science and Technology, Faculty of Science and Technology, The University of Macau, Macau, China
| | - Shaopeng Xu
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qiong Luo
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Guang-Jie Zhou
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Alistair Boxall
- Department of Environment and Geography, University of York, York YO10 5DD, United Kingdom
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Martina A Doblin
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia; Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen, China
| | - Juying Wang
- National Marine Environment Monitoring Center, Liaoning, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China; School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
3
|
Manjarrés-López DP, Vitale D, Callejas-Martos S, Usuriaga M, Picó Y, Pérez S, Montemurro N. An effective method for the simultaneous extraction of 173 contaminants of emerging concern in freshwater invasive species and its application. Anal Bioanal Chem 2023; 415:7085-7101. [PMID: 37776351 PMCID: PMC10684701 DOI: 10.1007/s00216-023-04974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
A robust and efficient extraction method was developed to detect a broad range of pollutants of emerging interest in three freshwater invasive species: American red crab (Prokambarus clarkii), Asian clam (Corbicula fluminea), and pumpkinseed fish (Lepomis gibbosus). One native species, "petxinot" clam (Anodonta cygnea), was also evaluated. Invasive species are often more resistant to contamination and could be used in biomonitoring studies to assess the effect of contaminants of emerging concern on aquatic ecosystems while preserving potentially threatened native species. So far, most extraction methods developed for this purpose have focused on analyzing fish and generally focus on a limited number of compounds, especially analyzing compounds from the same family. In this sense, we set out to optimize a method that would allow the simultaneous extraction of 87 PhACs, 11 flame retardants, 21 per- and poly-fluoroalkyl substances, and 54 pesticides. The optimized method is based on ultrasound-assisted solvent extraction. Two tests were performed during method development, one to choose the extraction solvent with the best recovery efficiencies and one to select the best clean-up. The analysis was performed by high-performance liquid chromatography coupled to high-resolution mass spectrometry. The method obtained recoveries between 40 and 120% and relative standard deviations of less than 25% for 85% of the analytes in the four validated matrices. Limits of quantification between 0.01 ng g-1 and 22 ng g-1 were obtained. Application of the method on real samples from the Albufera Natural Park of Valencia (Spain) confirmed the presence of contaminants of emerging concern in all samples, such as acetaminophen, hydrochlorothiazide, tramadol, PFOS, carbendazim, and fenthion. PFAS were the group of compounds with the highest mean concentrations. C. fluminea was the species with the highest detection frequency, and P. clarkii had the highest average concentrations, so its use is prioritized for biomonitoring studies.
Collapse
Affiliation(s)
- Diana P Manjarrés-López
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Dyana Vitale
- Desertification Research Centre (CIDE) (CSIC-UV-GV), University of Valencia, Road CV-315 Km 10.7, Moncada, 46113, Valencia, Spain
| | - Sandra Callejas-Martos
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Martí Usuriaga
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Yolanda Picó
- Desertification Research Centre (CIDE) (CSIC-UV-GV), University of Valencia, Road CV-315 Km 10.7, Moncada, 46113, Valencia, Spain
| | - Sandra Pérez
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Nicola Montemurro
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
4
|
Krawczyk B, Zięba N, Kaźmierczak A, Czarny-Krzymińska K, Szczukocki D. Growth inhibition, oxidative stress and characterisation of mortality in green algae under the influence of beta-blockers and non-steroidal anti-inflammatory drugs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165019. [PMID: 37353012 DOI: 10.1016/j.scitotenv.2023.165019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/31/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023]
Abstract
Bisoprolol and ketoprofen are widely used pharmaceuticals in medical treatment hence these substances are occurring in wastewaters and in water environment. This research investigated the toxic effects of bisoprolol and ketoprofen on two microalgae taxa, Chlorella vulgaris and Desmodesmus armatus. The results showed that both drugs inhibited the growth of the species tested and induced a decrease in chlorophyll a content compared to controls. Ketoprofen turned out to be harmful to algae as the half maximal effective concentration (EC50) values (14 days) were 37.69 mg L-1 for C. vulgaris and 40.93 mg L-1 for D. armatus. On the other hand, for bisoprolol, the EC50 values were greater than the established NOEC, 100 mg L-1. Bisoprolol and ketoprofen induced oxidative stress in the tested microorganisms, as indicated by changes in the activities of antioxidant enzymes. Exposure to 100 mg L-1 of drugs significantly increased the activity of catalase, peroxidase and superoxide dismutase. Fluorescence microscopy showed that both medicaments changed the cells' morphology. There was atrophy of chlorophyll in the cells, moreover, dying multinuclear cells and cells without nuclei were observed. In addition, there were atrophic cells, namely cells that lacked nuclei and chlorophyll. Profile area analyses showed that bisoprolol and ketoprofen treated C. vulgaris cells were approximately 4 and 2 times greater compared to control ones. Our experimental findings highlight the ecotoxicological threats for aquatic primary producers from bisoprolol and ketoprofen and provide insight into the characteristics of their death.
Collapse
Affiliation(s)
- Barbara Krawczyk
- Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403 Lodz, Tamka 12, Poland.
| | - Natalia Zięba
- Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403 Lodz, Tamka 12, Poland
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Pomorska 141/143, Poland
| | - Karolina Czarny-Krzymińska
- Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403 Lodz, Tamka 12, Poland
| | - Dominik Szczukocki
- Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403 Lodz, Tamka 12, Poland
| |
Collapse
|
5
|
Holm R, Söderhäll K, Söderhäll I. Accumulation of antibiotics and antibiotic resistance genes in freshwater crayfish - Effects of antibiotics as a pollutant. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108836. [PMID: 37244317 DOI: 10.1016/j.fsi.2023.108836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Affiliation(s)
- Rebecca Holm
- Department of Organismal Biology, Uppsala University, Norbyvägen. 18A, 752 36, Uppsala, Sweden
| | - Kenneth Söderhäll
- Department of Organismal Biology, Uppsala University, Norbyvägen. 18A, 752 36, Uppsala, Sweden
| | - Irene Söderhäll
- Department of Organismal Biology, Uppsala University, Norbyvägen. 18A, 752 36, Uppsala, Sweden.
| |
Collapse
|
6
|
Fajardo-Puerto E, Elmouwahidi A, Bailón-García E, Pérez-Cadenas AF, Carrasco-Marín F. From Fenton and ORR 2e−-Type Catalysts to Bifunctional Electrodes for Environmental Remediation Using the Electro-Fenton Process. Catalysts 2023. [DOI: 10.3390/catal13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Currently, the presence of emerging contaminants in water sources has raised concerns worldwide due to low rates of mineralization, and in some cases, zero levels of degradation through conventional treatment methods. For these reasons, researchers in the field are focused on the use of advanced oxidation processes (AOPs) as a powerful tool for the degradation of persistent pollutants. These AOPs are based mainly on the in-situ production of hydroxyl radicals (OH•) generated from an oxidizing agent (H2O2 or O2) in the presence of a catalyst. Among the most studied AOPs, the Fenton reaction stands out due to its operational simplicity and good levels of degradation for a wide range of emerging contaminants. However, it has some limitations such as the storage and handling of H2O2. Therefore, the use of the electro-Fenton (EF) process has been proposed in which H2O2 is generated in situ by the action of the oxygen reduction reaction (ORR). However, it is important to mention that the ORR is given by two routes, by two or four electrons, which results in the products of H2O2 and H2O, respectively. For this reason, current efforts seek to increase the selectivity of ORR catalysts toward the 2e− route and thus improve the performance of the EF process. This work reviews catalysts for the Fenton reaction, ORR 2e− catalysts, and presents a short review of some proposed catalysts with bifunctional activity for ORR 2e− and Fenton processes. Finally, the most important factors for electro-Fenton dual catalysts to obtain high catalytic activity in both Fenton and ORR 2e− processes are summarized.
Collapse
|
7
|
Liu Y, Ai X, Sun R, Yang Y, Zhou S, Dong J, Yang Q. Residue, biotransformation, risk assessment and withdrawal time of enrofloxacin in red swamp crayfish (Procambarus clarkii). CHEMOSPHERE 2022; 307:135657. [PMID: 35820477 DOI: 10.1016/j.chemosphere.2022.135657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Crayfish is a very popular aquatic food in many countries, and enrofloxacin (ENR) and ciprofloxacin (CIP) was the most frequently detected in aquatic products. However, limited information is available on the residue characterization, biotransformation rate and withdrawal period (WT) of ENR and CIP in crayfish and health risk via consumption of ENR and CIP remained crayfish. Herein, a comprehensive investigation was conducted to study residue depletion, biotransformation, ingestion risk, and WT of ENR and its predominate metabolite CIP in crayfish following different routes with repeated doses. The results showed that the elimination half-life (T1/2) of target compounds in crayfish were all in order of hepatopancreas > muscle > gill, and the order of T1/2 in different crayfish tissues were intramuscular (IM) route > oral (PO) treatment > immersion (IMMR) administration. The biotransformation rates from ENR to CIP varied from 0.75% to 3.45% in crayfish tissues following different exposure routes. The high dietary risk (RQ > 1) consuming muscle and hepatopancreas of ENR and CIP remained crayfish occurred at early after different administrations. WT is the key to control the drug residue risk, and the longest WT of marker residue of ENR in crayfish was calculated to be 51 d (1275 °C-day).
Collapse
Affiliation(s)
- Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, 430223, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, 100141, China.
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, 430223, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, 100141, China.
| | - Ruyu Sun
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, 430223, China
| |
Collapse
|
8
|
Hano T, Ito K, Ito M, Takashima K, Somiya R, Takai Y, Oshima Y, Ohkubo N. Molting enhances internal concentrations of fipronil and thereby decreases survival of two estuarine resident marine crustaceans. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 247:106172. [PMID: 35468410 DOI: 10.1016/j.aquatox.2022.106172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
In aquatic arthropods, molting is a pivotal physiological process for normal development, but it may also expose them to higher risks from xenobiotics, because the organism may take up additional water during that time. This study aimed to assess the effects of molting on bioconcentration and survival after 96-h exposure to insecticide fipronil with or without oxygenase (CYP450s) inhibitor piperonyl butoxide (PBO) of two estuarine resident marine crustacean species: the sand shrimp Crangon uritai and the kuruma prawn Penaeus japonicus, with 96-h LC50 value of fipronil = 2.0 µg/L and 0.2 µg/L, respectively. Two graded concentrations included group high (H) (equivalent to the 96-h LC50 values) and low (L) (one-tenth of the H group concentration). Molting and survival were individually checked, and internal concentrations of fipronil and its metabolites (fipronil desulfinyl, fipronil sulfide, fipronil sulfone) were measured. The results showed that, only fipronil and fipronil sulfone were detected from organism, and that internal concentrations of these insecticides in molted specimens were higher than those of unmolted ones but comparable with those of dead ones. Accordingly, mortality was more frequent in molted specimens than those that were unmolted. Furthermore, involvement of oxygenase and higher lethal body burden threshold may confer higher tolerance to fipronil in sand shrimp than in the kuruma prawn. This study is the first to demonstrate that the body-residue-based approach is useful for deciphering the causal factors underlying fipronil toxicity, but highlights the need to consider physiological factors in arthropods, which influence and lie beyond body burden, molting and drug metabolism.
Collapse
Affiliation(s)
- Takeshi Hano
- Environment Conservation Division, Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan.
| | - Katsutoshi Ito
- Environment Conservation Division, Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Mana Ito
- Environment Conservation Division, Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Kei Takashima
- Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, 1611 Tanbara-chou Ikeda, Saijyo, Ehime 791-0508, Japan
| | - Rei Somiya
- Environment Conservation Division, Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Yuki Takai
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuyuki Ohkubo
- Environment Conservation Division, Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| |
Collapse
|