1
|
Cui M, Jiao H, Yuan S, Dong B, Xu Z. Develop Reusable Carbon Sub-Micrometer Composites with Record-High Cd(II) Removal Capacity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408295. [PMID: 39575508 PMCID: PMC11744635 DOI: 10.1002/advs.202408295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Indexed: 01/21/2025]
Abstract
Cd(II)-induced pollution across diverse water bodies severely threatens ecosystems and human health. Nevertheless, achieving ultra-efficient and cost-effective treatment of trace amounts of heavy metals remains a major challenge. Herein, the novel carbon sub-micrometer composites (CSMCs) supported Fe0@γ-Fe2O3 core-shell clusters nanostructures are designed and synthesized through a series of universally applicable methods. Research data on adsorption behavior clearly revealed that resorcinol/formaldehyde 1.25-basic ferric acetate (RF-1.25BFA) and RF-1.25BFA-540 have surprising adsorption capacities. Employing the adsorbent dosage of 0.025 g L-1, the adsorption capacities for 10 mg L-1 Cd(II) reached 400.00 mg g-1 with ultrafast adsorption kinetics, alongside theoretical maximum adsorption capacities for Cd(II) of 1108.87 and 1065.06 mg g-1 using 0.025 g L-1 adsorbent, respectively, setting a new record-high level. Additionally, they demonstrated exceptional stability and reusability, maintaining Cd(II) removal efficiency above 95% even after 15 adsorption-desorption cycles. Importantly, this study is the first to unveil a new ultrafast successive two-step enrichment-hydrolysis adsorption mechanism for Cd(II) removal, emphasizing the critical role played by iron clusters nanostructures in constructing a high-alkalinity adsorption microenvironment on the surface of the materials. The findings reported pioneered a new avenue for the rational design of high-performance environmental remediation materials, aiming to overcome the limitations of traditional mine drainage treatment.
Collapse
Affiliation(s)
- Mengke Cui
- State Key Laboratory of Pollution Control and Resource ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
| | - Huiting Jiao
- State Key Laboratory of Pollution Control and Resource ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
- Shanghai Institute of Pollution Control and Ecological SecurityTongji UniversityShanghai200092P. R. China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
- Shanghai Institute of Pollution Control and Ecological SecurityTongji UniversityShanghai200092P. R. China
- College of Environmental Science and EngineeringGuilin University of TechnologyGuilin541006P. R. China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
- Shanghai Institute of Pollution Control and Ecological SecurityTongji UniversityShanghai200092P. R. China
| |
Collapse
|
2
|
Niu J, Wan Y, Ma Z, Dong W, Su X, Zhai Y, Shen X, Yi X. Comparative impact analysis of nitrate reduction by typical components of natural organic compounds in magnetite-bearing riparian zones. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117298. [PMID: 39536558 DOI: 10.1016/j.ecoenv.2024.117298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
As the key interface, the nitrate removal capacity of riparian zones is receiving close attention. Although naturally occurring organic compounds in this environment play a pivotal role in shaping microbial communities and influencing the nitrate removal capacity, the relevant research is inadequate. Given the complexity of riparian environments, in this study, we added representative natural organic matter (fulvic acid, butyric acid, naphthalene, starch, and sodium bicarbonate) as carbon conditions and incorporated magnetite to simulate riparian zone components. The study investigated the nitrate degradation efficiency and microbial responses under different natural carbon conditions in real iron-containing environments. Butyric acid exhibited the most efficient nitrate reduction, followed in descending order by naphthalene, starch, sodium bicarbonate, and humic acid. However, this did not imply that butyric acid efficiently removed nitrogen; instead, the nitrogen would circulate in the environment in the form of ammonium. Denitrification and DNRA were the primary drivers of nitrate reduction in each system, while naphthalene and humic acid systems also exhibited nitrification and mineralization. Nitrogen-fixing bacteria represent a unique microbial community in the butyrate system. Further, the synergistic degradation of naphthalene and nitrate demonstrated significant potential applications. High-throughput sequencing revealed that carbon conditions exerted selective pressure on microorganisms, driving Fe (Ⅱ)/Fe (Ⅲ) transformation by shaping the microbial community structure and influencing the nitrogen cycling process.
Collapse
Affiliation(s)
- Jia Niu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yuyu Wan
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China.
| | - Zhe Ma
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Weihong Dong
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Xiaosi Su
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaofang Shen
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Xiaokun Yi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
3
|
Xiaofang S, Xiaosi S, Yuyu W, Guigui X, Hang L, Tiejun S, Weihong D. Influence mechanisms of dissolved organic matter and iron minerals on naphthalene attenuation during river infiltration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177410. [PMID: 39510276 DOI: 10.1016/j.scitotenv.2024.177410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Natural attenuation of naphthalene (NAP) in riverbank filtration zones is vital for maintaining water quality and is affected by dissolved organic matter (DOM) and iron minerals. However, the effects of DOM and iron minerals on the attenuation of NAP remain unclear. In this study, the attenuation mechanisms of NAP under the influence of DOM and iron minerals were explored in a riverside source area. Field dynamic monitoring data revealed that the NAP concentration in groundwater is mainly influenced by DOM, effective bound‑iron, and the intensity of river water infiltration recharge. Column experiments indicated that DOM with α-Fe2O3 or α-FeO(OH) reduced medium permeability by 8.16 % or 6.85 %, respectively, increasing water retention time. However, they had different effects on the attenuation of NAP. The coexistence of α-Fe2O3 and DOM enhanced NAP attenuation capacity by 9.13 %-45.91 %, while α-FeO(OH) and DOM reduced it by -13.25 % to -24.13 %. These effects were attributed to changes in the medium permeability, particle size, secondary mineral formation, and microbial community structure. Specifically, α-Fe2O3 and DOM reduced medium permeability, increasing the adsorption and biodegradation reaction time of NAP, and promoted secondary mineral (FeCO3) formation, increasing the adsorption capacity of medium for NAP, while α-FeO(OH) and DOM underwent cementation, resulting in larger particles and reduced adsorption capacity for NAP. Additionally, α-FeO(OH) and DOM promoted Shewanlla growth, inhibiting NAP attenuation by competing with NAP-degrading bacteria. These findings improve the understanding of the natural attenuation of polycyclic aromatic hydrocarbons (PAHs) in riverbank filtration, offering a basis for evaluating and controlling PAH pollution risks.
Collapse
Affiliation(s)
- Shen Xiaofang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin, 130021, China
| | - Su Xiaosi
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin, 130021, China
| | - Wan Yuyu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin, 130021, China
| | - Xu Guigui
- ChangGuang Satellite Technology co.,LTD,ChangChun, Jilin, 130021, China
| | - Lyu Hang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin, 130021, China
| | - Song Tiejun
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin, 130021, China
| | - Dong Weihong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
4
|
Niu J, Wan Y, Ma Z, Wang Z, Dong W, Su X, Shen X, Zhai Y. Driving mechanism of different nutrient conditions on microbial mediated nitrate reduction in magnetite-present river infiltration zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171963. [PMID: 38537835 DOI: 10.1016/j.scitotenv.2024.171963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/07/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024]
Abstract
Significant research is focused on the ability of riparian zones to reduce groundwater nitrate contamination. Owing to the extremely high redox activity of nitrate, naturally existing electron donors, such as organic matter and iron minerals, are crucial in facilitating nitrate reduction in the riparian zone. Here, we examined the coexistence of magnetite, an iron mineral, and nitrate, a frequently observed coexisting system in sediments, to investigate nitrate reduction features at various C/N ratios and evaluate the response of microbial communities to these settings. Additionally, we aimed to use this information as a foundation for examining the effect of nutritional conditions on the nitrate reduction process in magnetite-present environments. These results emphasise the significance of organic matter in enabling dissimilatory nitrate reduction to ammonium (DNRA) and enhancing the connection between nitrate reduction and iron in sedimentary environments. In the later phases of nitrate reduction, nitrogen fixation was the prevailing process in low-carbon environments, whereas high-carbon environments tended to facilitate the breakdown of organic nitrogen. High-throughput sequencing analysis revealed a robust association between C/N ratios and alterations in microbial community composition, providing insights into notable modifications in essential functioning microorganisms. The nitrogen-fixing bacterium Ralstonia is more abundant in ecosystems with scarce organic matter. In contrast, in settings rich in organic matter, microorganisms, such as Acinetobacter and Clostridia, which may produce ammonia, play crucial roles. Moreover, the population of iron bacteria grows in such an environment. Hence, this study proposes that C/N ratios can influence Fe(II)/Fe(III) conversions and simultaneously affect the process of nitrate reduction by shaping the composition of specific microbial communities.
Collapse
Affiliation(s)
- Jia Niu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yuyu Wan
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China.
| | - Zhe Ma
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Zhen Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Weihong Dong
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Xiaosi Su
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Xiaofang Shen
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
5
|
Sun H, Yao J, Ma B, Knudsen TS, Yuan C. Siderite's green revolution: From tailings to an eco-friendly material for the green economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169922. [PMID: 38199373 DOI: 10.1016/j.scitotenv.2024.169922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Siderite, extensively mined as a natural iron mineral, is often discarded as tailings due to the low grade of the ore and due to the high cost of current sorting technologies. Yet, this mineral has demonstrated significant potential in several pivotal areas of the environmental remediation. Siderite not only possesses exceptional adsorption, catalytic, and microbial carrier capabilities but also offers an eco-friendly and cost-effective solution for the environmental pollution management. This article consolidates research advancements and achievements over the past few decades concerning siderite's role in pollution control, delving deeply into its various remediation pathways. Initially, the paper contrasts the performance differences between natural and synthetic siderite, followed by a comprehensive overview of siderite's adsorption mechanisms for various inorganic pollutants. Furthermore, this paper analyzes the unique physicochemical attributes of siderite as both, a reductant and the catalyst, with a special emphasis on its use in the preparation of SCR catalysts and in the catalytic advanced oxidation processes for organic pollutants' degradation. This paper also enumerates and discusses the myriad advantages of siderite as a microbial carrier, thereby enhancing our understanding of biogeochemical cycles and pollutant transformations. In essence, this review systematically elucidates the mechanisms and intrinsic physicochemical properties of siderite in pollution control, paving the way for novel strategies to augment siderite's environmental remediation performance.
Collapse
Affiliation(s)
- Haoxiang Sun
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China.
| | - Bo Ma
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Tatjana Solevic Knudsen
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11 000, Belgrade, Serbia
| | - Chenyi Yuan
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| |
Collapse
|
6
|
Liu Y, Wan Y, Ma Z, Dong W, Su X, Shen X, Yi X, Chen Y. Effects of magnetite on microbially driven nitrate reduction processes in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158956. [PMID: 36150598 DOI: 10.1016/j.scitotenv.2022.158956] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/30/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Nitrate is a common pollutant in the aquatic environment. Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are the main reduction processes of nitrate. In the relatively closed sediment environment, the competitive interaction of these two nitrate reduction determines whether the ecosystem removes or retains nitrogen. In the process of NO3--N bioreduction, Magnetite, which is a common mineral present in soil and other sediments can play a crucial role. However, it is still not clear whether magnetite promotes or inhibits NO3--N bioreduction. In this paper, the effect of magnetite on NO3--N bioreduction was studied by batch experiments. The results show that magnetite can increase the NO3--N reduction rate by 1.48 %, and can inhibit the DNRA process at the beginning of the reaction and then promote the DNRA process. Magnetite changed the microbial community structure in our experiment systems. The relative abundance of Sphingomonas, which mainly exists in a high carbon and low nitrogen environment, increased under sufficient carbon source conditions. The relative abundance of Fe-oxidizing and NO3--N reducing bacteria, such as Flavobacterium, increased in the absence of carbon sources but in the presence of magnetite. In addition, magnetite can significantly increase activity of the microbial electron transport system (ETS). the added microbial electronic activity of magnetite increased nearly two-fold under the same experiment conditions. The acid produced by the metabolisms of Pseudomonas and Acinetobacter further promotes the dissolution of magnetite, thus increasing the concentration of Fe (II) in the system, which is beneficial to autotrophic denitrifying bacteria and promote the reduction of NO3--N. These findings can enhance our understanding of the interaction mechanism between iron minerals and nitrate reducing bacteria during nitrate reduction under natural conditions.
Collapse
Affiliation(s)
- Yu Liu
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Yuyu Wan
- Key Laboratory of Groundwater Resources and Environments, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Zhe Ma
- Key Laboratory of Groundwater Resources and Environments, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Weihong Dong
- Key Laboratory of Groundwater Resources and Environments, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China.
| | - Xiaosi Su
- Key Laboratory of Groundwater Resources and Environments, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Xiaofang Shen
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Xiaokun Yi
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Yaoxuan Chen
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
7
|
Görmez Ö, Saçlı B, Çağlayan U, Kalderis D, Gözmen B. Hydrothermal Synthesis of Siderite and Application as Catalyst in the Electro-Fenton Oxidation of p-Benzoquinone. Molecules 2022; 27:8056. [PMID: 36432157 PMCID: PMC9695892 DOI: 10.3390/molecules27228056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
A weak aspect of the electro-Fenton (EF) oxidation of contaminants is the dependence of the Fenton reaction on acidic pH values. Therefore, the rationale of this work was to develop a novel catalyst capable of promoting the EF oxidation process at near-neutral and basic pH values. In this framework, rhombohedral FeCO3 was synthesized hydrothermally and used as a catalyst in the EF oxidation of p-benzoquinone (BQ). The catalyst was characterized using various surface and spectroscopic methods. Moreover, the effects of applied current (100-500 mA), time (1-9 h), catalyst dosage (0.25-1.00 g L-1), and initial concentration of BQ (0.50-1.00 mM) on the total organic carbon removal efficiency were determined. The results indicated that a 400 mA current was sufficient for a 95% total organic carbon removal and that the increase in catalyst dosage had a positive effect on the mineralization of BQ. It was determined that at pH 3, FeCO3 behaved like a homogeneous catalyst by releasing Fe3+ ions; whereas, at the pH range of 5-7, it shifted to a homogeneous/heterogeneous catalyst. At pH 9, it worked solely as a heterogeneous catalyst due to the decrease of Fe ions passing into the solution. Finally, the spent catalyst did not undergo structural deformations after the EF treatment at higher pH values and could be regenerated and used several times.
Collapse
Affiliation(s)
- Özkan Görmez
- Department of Chemistry, Arts and Science Faculty, Mersin University, 33343 Mersin, Turkey
| | - Barış Saçlı
- Central Research Laboratory of Çukurova University (CUMERLAB), Çukurova University, 01330 Adana, Turkey
| | - Uğur Çağlayan
- Department of Chemistry, Arts and Science Faculty, Mersin University, 33343 Mersin, Turkey
- Central Research Laboratory of Çukurova University (CUMERLAB), Çukurova University, 01330 Adana, Turkey
| | - Dimitrios Kalderis
- Department of Electronic Engineering, Hellenic Mediterranean University, 73133 Chania, Greece
| | - Belgin Gözmen
- Department of Chemistry, Arts and Science Faculty, Mersin University, 33343 Mersin, Turkey
| |
Collapse
|
8
|
Su X, Zheng Z, Chen Y, Wan Y, Lyu H, Dong W. Effects of carbon load on nitrate reduction during riverbank filtration: Field monitoring and batch experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157198. [PMID: 35810902 DOI: 10.1016/j.scitotenv.2022.157198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Riverbank filtration (RBF) is a well-established technique worldwide, and is critical for the maintenance of groundwater quality and production of clean drinking water. Evaluation of the decay of exogenous nitrate (NO3-) in river water and the enrichment of ammonium (NH4+) in groundwater during RBF is important; these two processes are mainly influenced by denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) controlled by the groundwater carbon load. In this study, the effects of carbon load (organic carbon [OC]: NO3-) on the competing nitrate reduction (DNRA and DNF) were assessed during RBF using field monitoring and a laboratory batch experiment. Results show the groundwater OC: NO3- ratio did not directly affect the reaction rate of DNRA and DNF, however, it could control the competitive partitioning between the two. In the near-shore zone, the groundwater OC: NO3- ratio shows significant seasonal variations along the filtration path owing to the changing conditions of redox, OC-rich, and NO3--limited. A greater proportion of NO3- would be available for DNRA in the wet season with higher OC: NO3- ratio (> 10), resulting in a significantly NH4+-N enrichment rate (from 1.43 × 10-3 to 9.54 × 10-4 mmol L-1 d-1) in the near-shore zone where the zone of Mn (IV) oxide reduction. However, the activity of DNRA was suppressed with lower OC: NO3- ratio (< 10) in the dry season, resulting in a stable NH4+-N enrichment rate (from 3.12 × 10-4 to 1.30 × 10-4 mmol L-1 d-1). Benefiting from seasonal variation of OC-rich and NO3--limited conditions, DNRA bacteria outcompeted denitrifiers, which eventually led to seasonal differences in NO3- reduction in the near-shore zone. Overall, under the effect of DNRA induced by continuous high carbon load in RBF systems, nitrogen input is not permanently removed but rather retained in groundwater during RBF.
Collapse
Affiliation(s)
- Xiaosi Su
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; Institute of Water Resources and Environment, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China
| | - Zhuyan Zheng
- College of Construction Engineering, Jilin University, Changchun 130021, China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; Institute of Water Resources and Environment, Jilin University, Changchun 130026, China
| | - Yaoxuan Chen
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; Institute of Water Resources and Environment, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China.
| | - Yuyu Wan
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China
| | - Hang Lyu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China
| | - Weihong Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; Institute of Water Resources and Environment, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China
| |
Collapse
|