1
|
Giakoumi S, Hogg K, Di Lorenzo M, Compain N, Scianna C, Milisenda G, Claudet J, Damalas D, Carbonara P, Colloca F, Evangelopoulos A, Isajlović I, Karampetsis D, Ligas A, Marčeta B, Nenciu M, Nita V, Panayotova M, Sabatella R, Sartor P, Sgardeli V, Thasitis I, Todorova V, Vrgoč N, Scannella D, Vitale S, Di Franco A. Deficiencies in monitoring practices of marine protected areas in southern European seas. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120476. [PMID: 38442657 DOI: 10.1016/j.jenvman.2024.120476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Worldwide, states are gazetting new Marine Protected Areas (MPAs) to meet the international commitment of protecting 30% of the seas by 2030. Yet, protection benefits only come into effect when an MPA is implemented with activated regulations and actively managed through continuous monitoring and adaptive management. To assess if actively managed MPAs are the rule or the exception, we used the Mediterranean and Black Seas as a case study, and retrieved information on monitoring activities for 878 designated MPAs in ten European Union (EU) countries. We searched for scientific and grey literature that provides information on the following aspects of MPA assessment and monitoring: ecological (e.g., biomass of commercially exploited fish), social (e.g., perceptions of fishers in an MPA), economic (e.g., revenue of fishers) and governance (e.g., type of governance scheme). We also queried MPA authorities on their past and current monitoring activities using a web-based survey through which we collected 123 responses. Combining the literature review and survey results, we found that approximately 16% of the MPA designations (N = 878) have baseline and/or monitoring studies. Most monitoring programs evaluated MPAs based solely on biological/ecological variables and fewer included social, economic and/or governance variables, failing to capture and assess the social-ecological dimension of marine conservation. To increase the capacity of MPAs to design and implement effective social-ecological monitoring programs, we recommend strategies revolving around three pillars: funding, collaboration, and technology. Following the actionable recommendations presented herein, MPA authorities and EU Member States could improve the low level of MPA monitoring to more effectively reach the 30% protection target delivering benefits for biodiversity conservation.
Collapse
Affiliation(s)
- Sylvaine Giakoumi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149 Palermo, Italy.
| | - Katie Hogg
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149 Palermo, Italy
| | - Manfredi Di Lorenzo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149 Palermo, Italy
| | - Nicolas Compain
- National Center for Scientific Research, PSL Université Paris, CRIOBE, CNRS-EPHE-UPVD, Maison de l'Océan, 195 rue Saint-Jacques, 75005, Paris, France
| | - Claudia Scianna
- Calabria Marine Centre, Stazione Zoologica Anton Dohrn, 87071, Amendolara, Italy
| | - Giacomo Milisenda
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149 Palermo, Italy
| | - Joachim Claudet
- National Center for Scientific Research, PSL Université Paris, CRIOBE, CNRS-EPHE-UPVD, Maison de l'Océan, 195 rue Saint-Jacques, 75005, Paris, France
| | - Dimitrios Damalas
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, P.O. Box 2214, 71003, Heraklion, Greece
| | - Pierluigi Carbonara
- Fondazione COISPA, Stazione Sperimentale per lo Studio del Mare, via dei Trulli 18-20, 70126, Bari, Italy
| | - Francesco Colloca
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 00198, Rome, Italy
| | | | - Igor Isajlović
- Institute of Oceanography and Fisheries, Set. I. Mestrovica 63, 21000, Split, Croatia
| | | | - Alessandro Ligas
- Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), viale Nazario Sauro 4, 57128, Livorno, Italy
| | - Bojan Marčeta
- Fisheries Research Institute of Slovenia, Spodnje Gameljne 61 a 1211 Ljubljana, 1211, Ljubljana, Slovenia
| | - Magda Nenciu
- National Institute for Marine Research and Development "Grigore Antipa", 300 Mamaia Blvd., Constanta, 900581, Romania
| | - Victor Nita
- National Institute for Marine Research and Development "Grigore Antipa", 300 Mamaia Blvd., Constanta, 900581, Romania
| | - Marina Panayotova
- Institute of Oceanology - Bulgarian Academy of Sciences, P.O.Box 152, 9000, Varna, Bulgaria
| | | | - Paolo Sartor
- Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), viale Nazario Sauro 4, 57128, Livorno, Italy
| | - Vasiliki Sgardeli
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, P.O. Box 2214, 71003, Heraklion, Greece
| | - Ioannis Thasitis
- Department of Fisheries and Marine Research, 2033, Nicosia, Cyprus
| | - Valentina Todorova
- Institute of Oceanology - Bulgarian Academy of Sciences, P.O.Box 152, 9000, Varna, Bulgaria
| | - Nedo Vrgoč
- Institute of Oceanography and Fisheries, Set. I. Mestrovica 63, 21000, Split, Croatia
| | - Danilo Scannella
- National Research Council (CNR) - Institute for Marine Biological Resources and Biotechnology (IRBIM), 91026, Mazara del Vallo (TP), Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Sergio Vitale
- National Research Council (CNR) - Institute for Marine Biological Resources and Biotechnology (IRBIM), 91026, Mazara del Vallo (TP), Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Antonio Di Franco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149 Palermo, Italy
| |
Collapse
|
2
|
Massei K, Souza MCS, Silva RMD, Costa DDA, Vianna PCG, Crispim MC, Miranda GECD, Eggertsen L, Eloy CC, Santos CAG. Analysis of marine diversity and anthropogenic pressures on Seixas coral reef ecosystem (northeastern Brazil). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166984. [PMID: 37704134 DOI: 10.1016/j.scitotenv.2023.166984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Coral reefs, vital and ecologically significant ecosystems, are among the most jeopardized marine environments in the Atlantic Ocean, particularly along the northeastern coast of Brazil. The persistent lack of effective management and conservation has led to fragmented information on reef use and pressures, hindering the understanding of these ecosystems' health. Major difficulties and challenges include inadequate data, diverse anthropogenic pressures, and the complex interaction between marine species. This study sought to bridge this knowledge gap by conducting a comprehensive analysis of marine diversity and anthropogenic pressures, specifically focusing on Seixas coral reef near João Pessoa city, an area notably impacted by tourism. Utilizing 25 monitoring transects, subdivided into 1 m2 quadrants, the marine diversity was meticulously evaluated through innovative procedures including (a) sedimentological and geochemical field surveys, (b) application of Shannon-Weaver diversity and Simpson dominance indices, (c) cluster analysis, (d) species identification of macroalgae, coral, and fish, and (e) an examination of anthropogenic interactions and pressures on the coral reef. The assessment encompassed three distinct zones: Back Reef, Reef Top, and Fore Reef, and identified a total of 25 species across 15 genera and 10 fish families. The findings revealed the prevalence of brown macroalgae, fish, and coral, with heightened abundance of red macroalgae in the Fore Reef, which also exhibited the greatest diversity (2.816) and dominance (0.894). Original achievements include the identification of specific spatial variations, recognition of the anthropogenic factors leading to ecological changes, and the formulation of evidence-based recommendations. The study concludes that escalating urbanization and burgeoning daily tourist visits to the reef have exacerbated negative impacts on Seixas coral reef's marine ecosystem. These insights underscore the urgent need for strategic planning and resource management to safeguard the reef's biodiversity and ecological integrity.
Collapse
Affiliation(s)
- Karina Massei
- Graduate Program in Ecology and Environmental Monitoring (PPGEMA), Federal University of Paraíba, 58297-000 Rio Tinto, Paraíba, Brazil.
| | - Maria Cecilia Silva Souza
- Graduate Program in Geography, Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil
| | | | - Dimítri de Araújo Costa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal; Environmental Smoke Institute (ES-Inst), 58055-060 João Pessoa, Brazil.
| | - Pedro Costa Guedes Vianna
- Graduate Program in Geography, Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil
| | - Maria Cristina Crispim
- Development and Environmental Program (PRODEMA), Federal University of Paraíba, 58051-900 João Pessoa, Brazil
| | | | - Linda Eggertsen
- Graduate Program in Ecology, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil; Department of Ecology, Environment and Plant Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Christinne Costa Eloy
- Federal Institute of Education, Science and Technology of Paraíba, Cabedelo, Paraíba, Brazil
| | - Celso Augusto Guimarães Santos
- Department of Civil and Environmental Engineering, Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| |
Collapse
|
3
|
Pereñíguez JM, Alós J, Aspillaga E, Rojo I, Calò A, Hackradt C, Hernández-Andreu R, Mourre B, García-Charton JA. Intense scuba diving does not alter activity patterns of predatory reef fish: Evidence from a protected tourism hotspot. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118491. [PMID: 37390579 DOI: 10.1016/j.jenvman.2023.118491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
The rise of nature-based tourism has provided a new avenue for disturbing animal behaviour, especially in protected areas. One of the most important tourism sectors in aquatic environments is scuba diving, an activity considered sustainable given its non-extractive nature and capability of bringing relevant socio-economic benefits to local communities. However, knowledge about its impact on the activity patterns of aquatic animals is still scarce. Here, we used biotelemetry techniques to assess the importance of scuba diving in modulating the activity patterns of the dusky grouper (Epinephelus marginatus, Lowe, 1834), a marine predatory fish of high interest for fishing and tourism. We implemented Hidden Markov Models (HMMs) on high-resolution acceleration data using a temporal and spatial control while controlling for a set of environmental variables (i.e. photoperiod, time-of-day, moon phase, temperature, wave height, and intensity and direction of marine currents) within a multiple-use marine protected area, and diving tourism hot-spot, of the western Mediterranean Sea. Our results underlined the more decisive influence of environmental-related stressors on the activity patterns of the dusky grouper compared to the impact of scuba diving. A high heterogeneity existed in the response against most of the stressors, including the presence of scuba divers. Overall, the activity of dusky grouper was higher at night than at day, showing a positive relationship with wave height, water temperature, and current intensity and a negative one with the moon phase. Remarkably, our findings, based on novel biotelemetry tools, differed substantially from the common wisdom accepted for this species. In conclusion, there is no clear evidence of scuba divers influence on the general activity patterns of the dusky grouper. Beyond their relevance from an ecological perspective, these results provide useful insights for the sustainable management of coastal resources, suggesting that scuba diving, when properly carried out, can represent an important sector to foster for the blue growth of coastal communities.
Collapse
Affiliation(s)
- J M Pereñíguez
- Department of Ecology and Hidrology, University of Murcia, Murcia, Spain.
| | - J Alós
- Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), C/ Miquel Marquès 21, 07190, Esporles, Illes Balears, Spain
| | - E Aspillaga
- Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), C/ Miquel Marquès 21, 07190, Esporles, Illes Balears, Spain
| | - I Rojo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Diagonal 643, 08028, Barcelona, Spain
| | - A Calò
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi 20-22, 90123, Palermo, Italy
| | - C Hackradt
- Ecology and Marine Conservation Laboratory (LECoMAR). Universidade Federal Do Sul da Bahia, Campus Sosígenes Costa, Porto Seguro-Eunápolis, 45810-000, Porto Seguro, Brazil
| | - R Hernández-Andreu
- Ecology and Marine Conservation Laboratory (LECoMAR). Universidade Federal Do Sul da Bahia, Campus Sosígenes Costa, Porto Seguro-Eunápolis, 45810-000, Porto Seguro, Brazil
| | - B Mourre
- SOCIB, Balearic Islands Coastal Observing and Forecasting System, Palma, Mallorca, Spain
| | - J A García-Charton
- Department of Ecology and Hidrology, University of Murcia, Murcia, Spain
| |
Collapse
|