1
|
Singh A, Manikandan SK, Nair V. Mechanistic studies on bioremediation of dye using Aeromonas veronii immobilized peanut shell biochar. ENVIRONMENTAL RESEARCH 2024; 262:119908. [PMID: 39233033 DOI: 10.1016/j.envres.2024.119908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Recalcitrant chemicals in the environment not only present obstacles to living organisms but also contribute to the degradation of natural resources. One contribution to environmental pollution is the discharge of synthetic dyes from the textile sector. This study investigates the combined effect of microbial cells and biochar on eliminating methyl orange (MO) dye. The immobilization of Aeromonas veronii on peanut shell biochar (APSB) was conducted to investigate its efficacy in removing MO dye from water. PSB synthesized by pyrolysis at 300 °C for 120 min showed maximum bacterial immobilization potential. The highest degradation rate of 96.19 % was achieved in APSB within 96 h using MO dye concentration of 100 mg L-1, incubation temperature of 37 °C, pH 7, and biocatalyst dosage of 1g L-1. In comparison, free cells achieved degradation rates of 72.53 % and 61.56 % for PSB. Moreover, the adsorption process was primarily controlled by PSB, with subsequent dye mineralization by A. veronii, as supported by FTIR and LC-MS studies. Moreover, this innovative approach exhibited the reusability of the biocatalyst, giving 76.23 % removal after fifth cycle, suggesting sustainable alternative in dye remediation and potential option for real-time applications.
Collapse
Affiliation(s)
- Aparna Singh
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Surathkal, Srinivasanagar P.O, Mangalore, 575025, India.
| | - Soumya Koippully Manikandan
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Surathkal, Srinivasanagar P.O, Mangalore, 575025, India.
| | - Vaishakh Nair
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Surathkal, Srinivasanagar P.O, Mangalore, 575025, India.
| |
Collapse
|
2
|
Wang J, Yang Y, Wu J, Zhao K, Zhang X. The interaction between biochar and earthworms: Revealing the potential ecological risks of biochar application and the feasibility of their co-application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175240. [PMID: 39111445 DOI: 10.1016/j.scitotenv.2024.175240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Biochar's interaction with soil-dwelling organisms, particularly earthworms, is crucial in ensuring the effective and secure utilization of biochar in the soil. This review introduces the application of biochar in soil, summarizes how earthworms respond to biochar-amended soil and the underlying factors that can influence their response, discusses the synergistic and antagonistic impacts of earthworm activity on the efficacy of biochar, and considers the feasibility of applying them together. A review of existing research has identified uncertainty in the effect of biochar exposure on earthworms, with biochar derived from animal wastes, produced at higher pyrolysis temperatures, and used at higher doses of biochar having more negative effects on earthworms. Habitat modification, toxicity release, particle effects, and contaminant immobilization are underlying factors in how biochar affects earthworm indicators. While biochar in contaminated soils may alleviate the stress of pollutants on earthworms by decreasing their bioaccumulation, this remedial effect is not always effective. Additionally, earthworm bioturbation can enhance the migration, fragmentation, and oxidation of biochar, while also stimulating extracellular enzymes that convert biochar into 'vermichar'. Earthworms and biochar can synergize well to improve soil fertility and remediate soil organic pollution, yet exhibit contrasting roles in soil C sequestration and immobilizing heavy metals in soil. These findings highlight both the advantages and risks of their co-application. Therefore, when considering the use of biochar alone or with earthworms, it is crucial to thoroughly assess its potential ecotoxicity on earthworms and other soil organisms, as well as the influence of bioturbation, such as that caused by earthworms, on the effectiveness of biochar.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuxiang Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Jizi Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Keli Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| | - Xiaokai Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Li J, Chen Y, Zhao G, Chen Y, Zhang N, Yu D, Li X. Herbal materials used as soil amendments alleviate root rot of Panax ginseng. Sci Rep 2024; 14:23825. [PMID: 39394247 PMCID: PMC11470044 DOI: 10.1038/s41598-024-74304-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024] Open
Abstract
Root rot is a serious soil-borne fungal disease that seriously affects the yield and quality of Panxa ginseng. To develop a sustainable strategy for alleviating ginseng root rot, an herb-based soil amendment is suggested in this study. Mixed powers of medicinal herbs (MP) and corn stalks (CS) were used as soil amendments, respectively, along with a control group (CK) without treatment. The application of MP and CS led to significant relief from ginseng root rot. The disease index (%) represents both the incidence rate and symptom severity of the disease. The disease index of the MP and CS group was 18.52% and 25.93%, respectively, lower than that of CK (40.74%). Correspondingly, three soil enzyme activities improved; the antifungal components in the soil increased; and the relative abundances of root rot pathogens decreased in response to MP Soil enzyme activities were negatively correlated with disease grades. MP group also led to possible interactive changes in the communities of soil fungi and chemical components. In conclusion, our results suggest that the use of herb-based soil amendments has significant potential as an ecological and effective approach to controlling root rot disease of ginseng by the changing rhizosphere fungal community and soil compositions.
Collapse
Affiliation(s)
- Jie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Dongzhimen Nanxiao Rd, Beijing, 100700, China
| | - Yingying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Dongzhimen Nanxiao Rd, Beijing, 100700, China
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, No. 1076, Yuhua Rd, Kunming, 650500, China
| | - Guiping Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Dongzhimen Nanxiao Rd, Beijing, 100700, China
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, No. 1076, Yuhua Rd, Kunming, 650500, China
| | - Yanguo Chen
- China Medico corporation, No. 18, Gaofu Rd, Tianjin, 300301, China
| | - Naiwu Zhang
- China Medico corporation, No. 18, Gaofu Rd, Tianjin, 300301, China
| | - Dade Yu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Dongzhimen Nanxiao Rd, Beijing, 100700, China.
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Dongzhimen Nanxiao Rd, Beijing, 100700, China.
| |
Collapse
|
4
|
Chen L, Yang X, Huang F, Zhu X, Wang Z, Sun S, Dong F, Qiu T, Zeng Y, Fang L. Unveiling biochar potential to promote safe crop production in toxic metal(loid) contaminated soil: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124309. [PMID: 38838809 DOI: 10.1016/j.envpol.2024.124309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Biochar application emerges as a promising and sustainable solution for the remediation of soils contaminated with potentially toxic metal (loid)s (PTMs), yet its potential to reduce PTM accumulation in crops remains to be fully elucidated. In our study, a hierarchical meta-analysis based on 276 research articles was conducted to quantify the effects of biochar application on crop growth and PTM accumulation. Meanwhile, a machine learning approach was developed to identify the major contributing features. Our findings revealed that biochar application significantly enhanced crop growth, and reduced PTM concentrations in crop tissues, showing a decrease trend of grains (36.1%, 33.6-38.6%) > shoots (31.1%, 29.3-32.8%) > roots (27.5%, 25.7-29.2%). Furthermore, biochar modifications were found to amplify its remediation potential in PTM-contaminated soils. Biochar application was observed to provide favorable conditions for reducing PTM uptake by crops, primarily through decreasing available PTM concentrations and improving overall soil quality. Employing machine learning techniques, we identified biochar properties, such as surface area and C content as a key factor in decreasing PTM bioavailability in soil-crop systems. Furthermore, our study indicated that biochar application could reduce probabilistic health risks associated with of the presence of PTMs in crop grains, thereby contributing to human health protection. These findings highlighted the essential role of biochar in remediating PTM-contaminated lands and offered guidelines for enhancing safe crop production.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Renmin Road, Haikou, 570228, China
| | - Fengyu Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhe Wang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Shiyong Sun
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Faqin Dong
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
5
|
Zhang J, Xia R, Tao Z. Transcriptome sequencing analysis of gene expression in phosphate-solubilizing bacterium 'N3' and grafted watermelon plants coping with toxicity induced by cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50513-50528. [PMID: 39096459 DOI: 10.1007/s11356-024-34601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Cadmium (Cd) is a harmful metal in soil, and reducing Cd accumulation in plants has become a vital prerequisite for maintaining food safety. Phosphate-solubilizing bacteria (PSB) can not only improve plant growth but also inhibit the transportation of metals to roots. However, data on gene expression in PSB Burkholderia sp. strain 'N3' and grafted watermelon plants dealing with Cd remain to be elucidated. In this study, core genes and metabolic pathways of strain 'N3' and grafted plants were analyzed by Illumina sequencing. Results showed that 356 and 2527 genes were upregulated in 'N3' and grafted watermelon plants, respectively, whereas 514 and 1540 genes were downregulated in 'N3' and grafted watermelon plants, respectively. Gene ontology enrichment analysis showed that signal transduction, inorganic ion transport, cell motility, amino acid transport, and metabolism pathways were marked in 'N3'. However, pathways such as secondary metabolite biosynthesis, oxidation-reduction process, electron transfer activity, and channel regulator activity were marked in the grafted plants. Six genes related to pentose phosphate, glycolysis, and gluconeogenesis metabolism were upregulated in the grafted plants. This study paves the way for developing potential strategies to improve plant growth under Cd toxicity.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Nongke South Road 40, Hefei, 230031, Anhui Province, China.
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction By Ministry and Province), Hefei, 230031, Anhui Province, China.
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei, 230031, Anhui Province, China.
| | - Rui Xia
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Nongke South Road 40, Hefei, 230031, Anhui Province, China
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
- Shanxi Research Institute For Clean Energy, Tsinghua University, Beijing Hydecom Technology Co., Ltd, Biejing, China
| | - Zhen Tao
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Nongke South Road 40, Hefei, 230031, Anhui Province, China
| |
Collapse
|
6
|
Shi R, Liu W, Liu J, Zeb A, Wang Q, Wang J, Li J, Yu M, Ali N, An J. Earthworms improve the rhizosphere micro-environment to mitigate the toxicity of microplastics to tomato (Solanum lycopersicum). JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134578. [PMID: 38743971 DOI: 10.1016/j.jhazmat.2024.134578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Microplastics (MPs) are widespread in agricultural soil, potentially threatening soil environmental quality and plant growth. However, toxicological research on MPs has mainly been limited to individual components (such as plants, microbes, and animals), without considering their interactions. Here, we examined earthworm-mediated effects on tomato growth and the rhizosphere micro-environment under MPs contamination. Earthworms (Eisenia fetida) mitigated the growth-inhibiting effect of MPs on tomato plant. Particularly, when exposed to environmentally relevant concentrations (ERC, 0.02% w/w) of MPs, the addition of earthworms significantly (p < 0.05) increased shoot and root dry weight by 12-13% and 13-14%, respectively. MPs significantly reduced (p < 0.05) soil ammonium (NH4+-N) (0.55-0.69 mg/kg), nitrate nitrogen (NO3--N) (7.02-8.65 mg/kg) contents, and N cycle related enzyme activities (33.47-42.39 μg/h/g) by 37.7-50.9%, 22.6-37.2%, and 34.2-48.0%, respectively, while earthworms significantly enhanced (p < 0.05) inorganic N mineralization and bioavailability. Furthermore, earthworms increased bacterial network complexity, thereby enhancing the robustness of the bacterial system to resist soil MPs stress. Meanwhile, partial least squares modelling showed that earthworms significantly influenced (p < 0.01) soil nutrients, which in turn significantly affected (p < 0.01) plant growth. Therefore, the comprehensive consideration of soil ecological composition is important for assessing MPs ecological risk.
Collapse
Affiliation(s)
- Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Nouman Ali
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jing An
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
7
|
Huang J, Gotoh T, Nakai S, Ueda A. Functional Hydrogels Promote Vegetable Growth in Cadmium-Contaminated Soil. Gels 2024; 10:348. [PMID: 38786265 PMCID: PMC11121211 DOI: 10.3390/gels10050348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Over the years, the concentration of cadmium in soil has increased due to industrialization. Cadmium in the soil enters the human body through plant accumulation, seriously endangering human health. In the current study, two types of hydrogels were successfully synthesized using a free radical polymerization method: an ion-type hydrogel referred to as DMAPAA (N-(3-(Dimethyl amino) propyl) acrylamide)/DMAPAAQ (N,N-Dimethyl amino propyl acrylamide, methyl chloride quaternary) and a non-ion-type hydrogel known as DMAA (N,N-Dimethylacrylamide). In the experiment carried out in this study, the ion-type hydrogel DMAPAA/DMAPAAQ was introduced to cadmium-contaminated soil for vegetable cultivation. The study found that at cadmium levels of 0 and 2 mg/kg in soil, when exposed to a pH 2 solution, cadmium wasn't detected in the filtrate using ICP. As the amount of cadmium increased to 500 mg/kg, hydrogel addition gradually reduced the filtrate cadmium concentration. Notably, the use of the 4% hydrogel resulted in 0 mg/L of cadmium. For the 0% hydrogel, vegetable cadmium absorption was determined to be 0.07 mg/g, contrasting with 0.03 mg/g for the 4% hydrogel. The DMAPAA/DMAPAAQ hydrogel significantly boosts vegetable growth by efficiently absorbing nitrate ions through ion exchange, releasing them for plant uptake. In contrast, the DMAA hydrogel, used as a control, does not enhance plant growth despite its water absorption properties. In summary, the composite hydrogel shows great potential for enhancing vegetable yield and immobilizing heavy metals in soil.
Collapse
Affiliation(s)
- Jin Huang
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Hiroshima, Japan; (J.H.); (S.N.)
| | - Takehiko Gotoh
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Hiroshima, Japan; (J.H.); (S.N.)
| | - Satoshi Nakai
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Hiroshima, Japan; (J.H.); (S.N.)
| | - Akihiro Ueda
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Hiroshima, Japan
| |
Collapse
|
8
|
K C A, Rao CS, Nair V. Combination of ensemble machine learning models in photocatalytic studies using nano TiO 2 - Lignin based biochar. CHEMOSPHERE 2024; 352:141326. [PMID: 38301840 DOI: 10.1016/j.chemosphere.2024.141326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/08/2023] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Synergizing photocatalytic reactions with machine learning methods can effectively optimize and automate the remediation of pollutants. In this work, commercial Degussa TiO2 nanoparticles and lignin based biochar (LB) where used to prepare TiO2: lignin based biochar (TLB) composites using ultrasound-assisted co-precipitation method. The photocatalytic property of the TLB composites where studied by conducting the photocatalytic degradation of a Basic blue 41 (BB41) dye. The influence of calcination temperature, T:LB compositions, catalyst dosage, initial dye pH, initial dye concentration, and illumination time on photocatalytic dye degradation were experimentally studied. The degradation efficiency of 96.72 % was obtained under optimized conditions for the photocatalyst calcined at 500 °C containing a 1:1 wt percentage of TiO2 and LB. The experimental data was further used to predict the photocatalytic degradation efficiency using Gradient Tree Boosting (GTB) and Extra Trees (ET) models. The GTB model gave the highest prediction accuracy of 94 %. The permutation variable importance revealed catalyst dosage and dye concentration as the most influential parameters in the prediction of the photocatalytic dye degradation efficiency.
Collapse
Affiliation(s)
- Abhayasimha K C
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Surathkal, Mangalore, Karnataka, 575025, India
| | - Chinta Sankar Rao
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Surathkal, Mangalore, Karnataka, 575025, India
| | - Vaishakh Nair
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Surathkal, Mangalore, Karnataka, 575025, India.
| |
Collapse
|
9
|
Liu P, Song Y, Wei J, Mao W, Ju J, Zheng S, Zhao H. Synergistic Effects of Earthworms and Plants on Chromium Removal from Acidic and Alkaline Soils: Biological Responses and Implications. BIOLOGY 2023; 12:831. [PMID: 37372116 DOI: 10.3390/biology12060831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Soil heavy metal pollution has become one of the major environmental issues of global concern and solving this problem is a major scientific and technological need for today's socio-economic development. Environmentally friendly bioremediation methods are currently the most commonly used for soil heavy metal pollution remediation. Via controlled experiments, the removal characteristics of chromium from contaminated soil were studied using earthworms (Eisenia fetida and Pheretima guillelmi) and plants (ryegrass and maize) at different chromium concentrations (15 mg/kg and 50 mg/kg) in acidic and alkaline soils. The effects of chromium contamination on biomass, chromium bioaccumulation, and earthworm gut microbial communities were also analyzed. The results showed that E. fetida had a relatively stronger ability to remove chromium from acidic and alkaline soil than P. guillelmi, and ryegrass had a significantly better ability to remove chromium from acidic and alkaline soil than maize. The combined use of E. fetida and ryegrass showed the best effect of removing chromium from contaminated soils, wih the highest removal rate (63.23%) in acidic soil at low Cr concentrations. After soil ingestion by earthworms, the content of stable chromium (residual and oxidizable forms) in the soil decreased significantly, while the content of active chromium (acid-extractable and reducible forms) increased significantly, thus promoting the enrichment of chromium in plants. The diversity in gut bacterial communities in earthworms decreased significantly following the ingestion of chromium-polluted soil, and their composition differences were significantly correlated with soil acidity and alkalinity. Bacillales, Chryseobacterium, and Citrobacter may have strong abilities to resist chromium and enhance chromium activity in acidic and alkaline soils. There was also a significant correlation between changes in enzyme activity in earthworms and their gut bacterial communities. The bacterial communities, including Pseudomonas and Verminephrobacter, were closely related to the bioavailability of chromium in soil and the degree of chromium stress in earthworms. This study provides insights into the differences in bioremediation for chromium-contaminated soils with different properties and its biological responses.
Collapse
Affiliation(s)
- Ping Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Ministry of Agriculture and Rural Affairs, Yangzhou 225127, China
| | - Yan Song
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Ministry of Agriculture and Rural Affairs, Yangzhou 225127, China
| | - Jie Wei
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Ministry of Agriculture and Rural Affairs, Yangzhou 225127, China
| | - Wei Mao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Ministry of Agriculture and Rural Affairs, Yangzhou 225127, China
| | - Jing Ju
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Ministry of Agriculture and Rural Affairs, Yangzhou 225127, China
| | - Shengyang Zheng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Ministry of Agriculture and Rural Affairs, Yangzhou 225127, China
| | - Haitao Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Ministry of Agriculture and Rural Affairs, Yangzhou 225127, China
| |
Collapse
|
10
|
Zhen Z, Luo S, Chen Y, Li G, Li H, Wei T, Huang F, Ren L, Liang YQ, Lin Z, Zhang D. Performance and mechanisms of biochar-assisted vermicomposting in accelerating di-(2-ethylhexyl) phthalate biodegradation in farmland soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130330. [PMID: 36372018 DOI: 10.1016/j.jhazmat.2022.130330] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Biochar and earthworms can accelerate di-(2-ethylhexyl) phthalate (DEHP) degradation in soils. However, little is known regarding the effect of biochar-assisted vermicomposting on soil DEHP degradation and the underlying mechanisms. Therefore, the present study investigated DEHP degradation performance and bacterial community changes in farmland soils using earthworms, biochar, or their combination. Biochar-assisted vermicomposting significantly improved DEHP degradation through initial physical adsorption on biochar and subsequent rapid biodegradation in the soil, earthworm gut, and charosphere. Burkholderiaceae, Pseudomonadaceae, and Flavobacteriaceae were the potential DEHP degraders and were enriched in biochar-assisted vermicomposting. In particularly, Burkholderiaceae and Sphingomonadaceae were enriched in the earthworm gut and charosphere, possibly explaining the mechanism of accelerated DEHP degradation in biochar-assisted vermicomposting. Soil pH, soil organic matter, and humus (humic acid, fulvic acid, and humin) increased by earthworms or biochar enhanced DEHP degradation. These findings imply that biochar-assisted vermicomposting enhances DEHP removal not only through rapid physical sorption but also through the improvement of soil physicochemical characteristics and promotion of degraders in the soil, earthworm gut, and charosphere. Overall, biochar-assisted vermicomposting is a suitable method for the remediation of organic-contaminated farmland soils.
Collapse
Affiliation(s)
- Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Shuwen Luo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Gaoyang Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Fengcheng Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
11
|
Manikandan SK, Pallavi P, Shetty K, Bhattacharjee D, Giannakoudakis DA, Katsoyiannis IA, Nair V. Effective Usage of Biochar and Microorganisms for the Removal of Heavy Metal Ions and Pesticides. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020719. [PMID: 36677777 PMCID: PMC9862088 DOI: 10.3390/molecules28020719] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
The bioremediation of heavy metal ions and pesticides is both cost-effective and environmentally friendly. Microbial remediation is considered superior to conventional abiotic remediation processes, due to its cost-effectiveness, decrement of biological and chemical sludge, selectivity toward specific metal ions, and high removal efficiency in dilute effluents. Immobilization technology using biochar as a carrier is one important approach for advancing microbial remediation. This article provides an overview of biochar-based materials, including their design and production strategies, physicochemical properties, and applications as adsorbents and support for microorganisms. Microorganisms that can cope with the various heavy metal ions and/or pesticides that enter the environment are also outlined in this review. Pesticide and heavy metal bioremediation can be influenced by microbial activity, pollutant bioavailability, and environmental factors, such as pH and temperature. Furthermore, by elucidating the interaction mechanisms, this paper summarizes the microbe-mediated remediation of heavy metals and pesticides. In this review, we also compile and discuss those works focusing on the study of various bioremediation strategies utilizing biochar and microorganisms and how the immobilized bacteria on biochar contribute to the improvement of bioremediation strategies. There is also a summary of the sources and harmful effects of pesticides and heavy metals. Finally, based on the research described above, this study outlines the future scope of this field.
Collapse
Affiliation(s)
- Soumya K. Manikandan
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Mangalore 575025, India
| | - Pratyasha Pallavi
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Mangalore 575025, India
| | - Krishan Shetty
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Mangalore 575025, India
| | | | - Dimitrios A. Giannakoudakis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (D.A.G.); (V.N.)
| | - Ioannis A. Katsoyiannis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vaishakh Nair
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Mangalore 575025, India
- Correspondence: (D.A.G.); (V.N.)
| |
Collapse
|
12
|
Rashid MS, Liu G, Yousaf B, Hamid Y, Rehman A, Arif M, Ahmed R, Song Y, Ashraf A. Role of biochar-based free radicals in immobilization and speciation of metals in the contaminated soil-plant environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116620. [PMID: 36323123 DOI: 10.1016/j.jenvman.2022.116620] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The structure of biochar produced at various pyrolysis temperatures influences metal geochemical behavior. Here, the impact of wheat straw-derived biochar (300, 500, and 700 °C) on the immobilization and transformation of metals in the contaminated soil-plant system was assessed. The findings of the sequential extraction revealed that biochar additives had a substantial influence on the speciation of Cr, Ni, Pb, and Zn in the contaminated soil. The lowest F1 (exchangeable and soluble fraction) + F2 (carbonate fraction) accounted for Cr (44%) in WB-300, Ni (43.87%) in WB-500, Pb (43.79%), and Zn (49.78%) in WB-700 with applied amendments of their total amounts. The characterization results indicated that high pyrolysis temperatures (300-700 °C) increased the carbon-containing groups with the potential to adsorb metals from the soil-plant environment. The bioconcentration and translocation factors (BCF and TF) were less than 1, indicating that metal concentration was restricted to maize roots and translocation to shoots. Reactive oxygen species (ROS) intracellularly influence metal interactions with plants. Electron paramagnetic resonance (EPR) was performed to determine hydroxyl radical generation (•OH) in plant segments to assess the dominance of free radicals (FRs). Consequently, the formation of •OH significantly depends on the pyrolysis temperature and the interaction with a contaminated soil-plant environment. Thus, metal transformation can be effectively decreased in the soil-plant environment by applying WB amendments.
Collapse
Affiliation(s)
- Muhammad Saqib Rashid
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, China
| | - Yasir Hamid
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Abdul Rehman
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Muhammad Arif
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Rafay Ahmed
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Yu Song
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
13
|
Pseudomonas stutzeri Immobilized Sawdust Biochar for Nickel Ion Removal. Catalysts 2022. [DOI: 10.3390/catal12121495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nickel ions generated from the electroplating industry and stainless steel and battery manufacturing industries contribute to water pollution, harm human health, and pose environmental risks. A long-term, sustainable, and efficient treatment method should be developed to address this issue. Bioremediation in the presence of biochar and microorganisms is a potential approach for metal ion abatement. This study evaluates the feasibility of Pseudomonas stutzeri immobilized sawdust biochar (PSDB) for Ni2+ removal. Sawdust biochar was prepared by pyrolyzing in a muffle furnace and was characterized using SEM, FTIR, and BET. The influence of biochar preparation parameters such as pyrolysis temperature, time on biochar yield, and impact on cell immobilization was investigated. The effect of various parameters, such as incubation time, pH, temperature, and biocatalyst dosage, was studied. The total Ni2+ in solution was analyzed using inductively coupled plasma optical emission spectrometry. PSDB showed an 83% Ni2+ removal efficiency and reusability up to three cycles. FT-IR analysis revealed that the mechanism of Ni2+ removal by PSDB was the synergistic effect of adsorption by biochar and bioaccumulation by P. stutzeri. This study presents a novel approach for environmental application by utilizing waste biomass-derived biochar as a carrier support for bacteria and an adsorbent for pollutants.
Collapse
|
14
|
Efficient Remediation of Cadmium Contamination in Soil by Functionalized Biochar: Recent Advances, Challenges, and Future Prospects. Processes (Basel) 2022. [DOI: 10.3390/pr10081627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Heavy metal pollution in soil seriously harms human health and animal and plant growth. Among them, cadmium pollution is one of the most serious issues. As a promising remediation material for cadmium pollution in soil, functionalized biochar has attracted wide attention in the last decade. This paper summarizes the preparation technology of biochar, the existing forms of heavy metals in soil, the remediation mechanism of biochar for remediating cadmium contamination in soil, and the factors affecting the remediation process, and discusses the latest research advances of functionalized biochar for remediating cadmium contamination in soil. Finally, the challenges encountered by the implementation of biochar for remediating Cd contamination in soil are summarized, and the prospects in this field are highlighted for its expected industrial large-scale implementation.
Collapse
|