1
|
Zhang J, Zhu Z, Niu M, Yu M, Dong X, Yang H. In Situ Evolution of Ionic Sites at Clay Mineral Interfaces Facilitates Fluoride and Phosphorus Mineralization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39058062 DOI: 10.1021/acs.est.4c05988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Soil minerals influence the biogeochemical cycles of fluoride (F) and phosphorus (P), impacting soil quality and bioavailability to plants. However, the cooperative mechanisms of soil minerals in governing F and P in the soil environment remain a grand challenge. Here, we reveal the essential role of a typical soil mineral, montmorillonite (Mt), in the cycling and fate of F and P. The results show that the enrichment of metal sites on the Mt surface promotes the mineralization of F to the fluorapatite (FAP) phase, thereby remaining stable in the environment, simultaneously promoting P release. This differential behavior leads to a reduction in the level of F pollution and an enhancement of P availability. Moreover, solid-state NMR and HRTEM observations confirm the existence of metastable F-Ca-F intermediates, emphasizing the pivotal role of Mt surface sites in regulating crystallization pathways and crystal growth of FAP. Furthermore, the in situ atomic force microscopy and theoretical calculations reveal molecular fractionation mechanisms and adsorption processes. It is observed that a competitive relationship exists between F and P at the Mt interface, highlighting the thermodynamically advantageous pathway of forming metastable intermediates, thereby governing the activity of F and P in the soil environment at a molecular level. This work paves the way to reveal the important role of clay minerals as a mineralization matrix for soil quality management and offers new strategies for modulating F and P dynamics in soil ecosystems.
Collapse
Affiliation(s)
- Jun Zhang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Ziqi Zhu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Mengyuan Niu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Menghan Yu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiongbo Dong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
2
|
Chen WH, Biswas PP, Kwon EE, Lin KYA, Rajendran S, Chang JS. Optimizing bone and biomass co-torrefaction parameters: High-performance arsenic removal from wastewater via co-torrefied bone char. ENVIRONMENTAL RESEARCH 2024; 252:118990. [PMID: 38670214 DOI: 10.1016/j.envres.2024.118990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/21/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
This study aimed to investigate bone char's physicochemical transformations through co-torrefaction and co-pyrolysis processes with biomass. Additionally, it aimed to analyze the carbon sequestration process during co-torrefaction of bone and biomass and optimize the process parameters of co-torrefaction. Finally, the study sought to evaluate the arsenic sorption capacity of both torrefied and co-torrefied bone char. Bone and biomass co-torrefaction was conducted at 175 °C-300 °C. An orthogonal array of Taguchi techniques and artificial neural networks (ANN) were employed to investigate the influence of various torrefaction parameters on carbon dioxide sequestration within torrefied bone char. A co-torrefied bone char, torrefied at a reaction temperature of 300 °C, a heating rate of 15 °C·min-1, and mixed with 5 g m of biomass (wood dust), was selected for the arsenic (III) sorption experiment due to its elevated carbonate content. The results revealed a higher carbonate fraction (21%) in co-torrefied bone char at 300 °C compared to co-pyrolyzed bone char (500-700 °C). Taguchi and artificial neural network (ANN) analyses indicated that the relative impact of process factors on carbonate substitution in bone char followed the order of co-torrefaction temperature (38.8%) > heating rate (31.06%) > addition of wood biomass (30.1%). Co-torrefied bone chars at 300 °C exhibited a sorption capacity of approximately 3 mg g-1, surpassing values observed for pyrolyzed bone chars at 900 °C in the literature. The findings suggest that co-torrefied bone char could serve effectively as a sorbent in filters for wastewater treatment and potentially fulfill roles such as a remediation agent, pH stabilizer, or valuable source of biofertilizer in agricultural applications.
Collapse
Affiliation(s)
- Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan.
| | - Partha Pratim Biswas
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; College of Engineering, Tunghai University, Taichung, 407, Taiwan.
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan; Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Saravanan Rajendran
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, 1000000, Chile
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Taiwan
| |
Collapse
|
3
|
Biswas PP, Chen WH, Lam SS, Park YK, Chang JS, Hoang AT. A comprehensive study of artificial neural network for sensitivity analysis and hazardous elements sorption predictions via bone char for wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133154. [PMID: 38103286 DOI: 10.1016/j.jhazmat.2023.133154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023]
Abstract
Using bone char for contaminated wastewater treatment and soil remediation is an intriguing approach to environmental management and an environmentally friendly way of recycling waste. The bone char remediation strategy for heavy metal-polluted wastewater was primarily affected by bone char characteristics, factors of solution, and heavy metal (HM) chemistry. Therefore, the optimal parameters of HM sorption by bone char depend on the research being performed. Regarding enhancing HM immobilization by bone char, a generic strategy for determining optimal parameters and predicting outcomes is crucial. The primary objective of this research was to employ artificial neural network (ANN) technology to determine the optimal parameters via sensitivity analysis and to predict objective function through simulation. Sensitivity analysis found that for multi-metals sorption (Cd, Ni, and Zn), the order of significance for pyrolysis parameters was reaction temperature > heating rate > residence time. The primary variables for single metal sorption were solution pH, HM concentration, and pyrolysis temperature. Regarding binary sorption, the incubation parameters were evaluated in the following order: HM concentrations > solution pH > bone char mass > incubation duration. This approach can be used for further experiment design and improve the immobilization of HM by bone char for water remediation.
Collapse
Affiliation(s)
- Partha Pratim Biswas
- College of Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Wei-Hsin Chen
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Taiwan
| | - Anh Tuan Hoang
- Faculty of Automotive Engineering, Dong A University, Danang, Vietnam
| |
Collapse
|
4
|
Kalami S, Diakina E, Noorbakhsh R, Sheidaei S, Rezania S, Vasseghian Y, Kamyab H, Mohammadi AA. Metformin-modified polyethersulfone magnetic microbeads for effective arsenic removal from apatite soil leachate water. ENVIRONMENTAL RESEARCH 2024; 241:117627. [PMID: 37967700 DOI: 10.1016/j.envres.2023.117627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/08/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
Arsenic is the hazardous species and still is the global challenge in water treatment. Apatite soil is highly rich in arsenic species, and its mining presents various environmental issues. In this study, novel magnetic microbeads as adsorbent were developed for the elimination of hazardous arsenic ions from apatite soil's aqueous leachate before discharging into environment. The microbeads were fabricated with metformin polyether sulfone after being doped with zero-valent iron (Met-PES/ZVI). The microbeads were characterized using various techniques, including FTIR, XRD, SEM-EDX, VSM, and zeta potential analysis. The developed adsorbent demonstrated a significant elimination in arsenic in aqueous leachate, achieving 82.39% removal after 30 min of contact time, which further increased to 90% after 180 min of shaking. The kinetic analysis revealed that the pseudo-second-order model best represented the adsorption process. The intra-particle diffusion model indicated that the adsorption occurred in two steps. The Langmuir model (R2 = 0.991), with a maximum adsorption capacity of 188.679 mg g-1, was discovered to be the best fit for the experimental data as compared Freundlich model (R2 = 0.981). According to the thermodynamic outcome (ΔG < -20 kJ/mol), the adsorption process was spontaneous and involved physisorption. These findings demonstrate the potential of magnetic Met-PES/ZVI microbeads as an efficient adsorbent for the removal of arsenic from apatite soil aqueous leachate.
Collapse
Affiliation(s)
- Shakila Kalami
- Department of Chemical Engineering and Petroleum, Chemistry & Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Ekaterina Diakina
- Department of Mechanical Engineering, Bauman Moscow State Technical University, Moscow, Russia; Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mishref Campus, Kuwait
| | - Roya Noorbakhsh
- Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), PO Box 31745-139, Karaj, Iran.
| | - Sina Sheidaei
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India
| | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, 9318614139, Iran
| |
Collapse
|
5
|
Biswas PP, Rathod J, Chiang CY, Liang B, Wang CC, Lee YC, Chuang YC, Loni PC, Chen WH, Wang SL. First principal observation documenting the three-dimensional uptake of cadmium and spatial distribution of cadmium hydroxyapatite mineral in bone char. CHEMOSPHERE 2023:139357. [PMID: 37392801 DOI: 10.1016/j.chemosphere.2023.139357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/14/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
The 3-D matrix scale ion-exchange mechanism was explored for high-capacity cadmium (Cd) removal using bone chars (BC) chunks (1-2 mm) made at 500 °C (500BCE) and 700 °C (700BCE) in aqueous solutions. The Cd incorporation into the carbonated hydroxyapatite (CHAp) mineral of BC was examined using a set of synchrotron-based techniques. The Cd removal from solution and incorporation into mineral lattice were higher in 500BCE than 700BCE, and the diffusion depth was modulated by the initial Cd concentration and charring temperature. A higher carbonate level of BC, more pre-leached Ca sites, and external phosphorus input enhanced Cd removal. The 500BCE showed a higher CO32-/PO43- ratio and specific surface area (SSA) than the 700BCE, providing more vacant sites by dissolution of Ca2+. In situ observations revealed the refilling of sub-micron pore space in the mineral matrix because of Cd incorporation.The X-ray nanodiffraction (XND) analyses revealed that Cd was mainly removed from water by incorporation into the mineral lattice of 500BCE via ion exchange, rather than surface sorption and precipitation, and the mineral phase was transformed from hydroxyapatite (HAp) to cadmium hydroxyapatite (Cd-HAp). The Rietveld's refinement of X-ray diffraction (XRD) data resolved up to 91% of the crystal displacement of Ca2+ by Cd2+. The A specific phase and stoichiometry of the new Cd-HAp mineral was dependent on the level of ion exchange. This mechanistic study confirmed that 3-D ion exchange was the most important path for heavy metal removal from aqueous solution and immobilization in BC mineral matrix, and put forward a novel and sustainable remediation strategy for Cd removal in wastewater and soil clean-up.
Collapse
Affiliation(s)
- Partha Pratim Biswas
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; College of Engineering, Tunghai University, Taichung, 407, Taiwan
| | - Jagat Rathod
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan; Department of Environmental Biotechnology, Gujarat Biotechnology University, Gandhinagar, 382355, India
| | - Ching-Yu Chiang
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Biqing Liang
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan.
| | - Chun-Chieh Wang
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Yao-Chang Lee
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan; Department of Optics and Photonics, National Central University, Chung-Li, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chun Chuang
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Prakash C Loni
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Hsin Chen
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Hart A, Ebiundu K, Peretomode E, Onyeaka H, Nwabor OF, Obileke K. Value-added materials recovered from waste bone biomass: technologies and applications. RSC Adv 2022; 12:22302-22330. [PMID: 36043087 PMCID: PMC9364440 DOI: 10.1039/d2ra03557j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 12/22/2022] Open
Abstract
As the world population increases, the generation of waste bones will multiply exponentially, increasing landfill usage and posing health risks. This review aims to shed light on technologies for recovering valuable materials (e.g., alkaline earth material oxide such as CaO, hydroxyapatite, beta tri-calcium phosphate, phosphate and bone char) from waste bones, and discuss their potential applications as an adsorbent, catalyst and catalyst support, hydroxyapatite for tissue engineering, electrodes for energy storage, and phosphate source for soil remediation. Waste bone derived hydroxyapatite and bone char have found applications as a catalyst or catalyst support in organic synthesis, selective oxidation, biodiesel production, hydrocracking of heavy oil, selective hydrogenation and synthesis of bioactive compounds. With the help of this study, researchers can gather comprehensive data on studies regarding the recycling of waste bones, which will help them identify material recovery technologies and their applications in a single document. Furthermore, this work identifies areas for further research and development as well as areas for scaling-up, which will lead to reduced manufacturing costs and environmental impact. The idea behind this is to promote a sustainable environment and a circular economy concept in which waste bones are used as raw materials to produce new materials or for energy recovery.
Collapse
Affiliation(s)
- Abarasi Hart
- Department of Chemical and Biological Engineering, The University of Sheffield Sheffield S1 3JD UK
| | - Komonibo Ebiundu
- Department of Chemical Engineering, Niger Delta University Wilberforce Island Nigeria
| | | | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham Edgbaston Birmingham B15 2TT UK +44 (0)1214145292
| | - Ozioma Forstinus Nwabor
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - KeChrist Obileke
- Department of Physics, University of Fort Hare PMB X1314 Alice 5700 South Africa
| |
Collapse
|
7
|
Sorption of Cd2+ on Bone Chars with or without Hydrogen Peroxide Treatment under Various Pyrolysis Temperatures: Comparison of Mechanisms and Performance. Processes (Basel) 2022. [DOI: 10.3390/pr10040618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this study, bone char pretreated with hydrogen peroxide and traditional pyrolysis was applied to remove Cd2+ from aqueous solutions. After hydrogen peroxide pretreatment, the organic matter content of the bone char significantly decreased, while the surface area, the negative charge and the number of oxygen-containing functional groups on the bone char surface increased. After being pyrolyzed, the specific surface area and the negative charge of the material were further improved. The adsorption kinetics and isotherms of Cd2+ adsorption were studied, and the influence of solution pH and the presence of ionic species were investigated. The experimental results showed that the samples with lower crystallinity exhibited less organic matter content and more surface oxygen-containing functional groups, resulting in stronger adsorption capacity. After being treated with hydrogen peroxide and pyrolyzed at 300 °C, the maximum adsorption capacity of bone char was 228.73 mg/g. The bone char sample with the lowest adsorption capacity(47.71 mg/g) was pyrolyzed at 900 °C without hydrogen peroxide pretreatment. Ion exchange, surface complexation, and electrostatic interactions were responsible for the elimination of Cd2+ by the bone char samples. Overall, this work indicates that hydrogen peroxide-treated pyrolytic bone char is a promising material for the immobilization of Cd2+.
Collapse
|