1
|
Shobham, Bhanot V, Mamta, Verma SK, Gupta S, Panwar J. Unveiling the potential of Aspergillus terreus SJP02 for zinc remediation and its driving mechanism. Sci Rep 2025; 15:3376. [PMID: 39870778 PMCID: PMC11772822 DOI: 10.1038/s41598-025-87749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/21/2025] [Indexed: 01/29/2025] Open
Abstract
In present study, 15 morphologically different fungi isolated from rhizopheric soils of an industrial area were screened for their Zn2+ removal efficiency from aqueous solution. Isolate depicting highest potential was molecularly identified as Aspergillus terreus SJP02. Effect of various process parameters viz. biosorbent dose, contact time, temperature, agitation rate, pH and initial Zn2+ concentration on the fungal sorption capacity were studied. The biosorbent exhibited maximum Zn2+ sorption capacity of 10.7 ± 0.2 mg g- 1 in 60 min. Desorption studies showed 71.46% Zn2+ recovery rate in 120 min with 0.01 N HNO3, indicating efficient metal recovery for reuse and subsequent reutilization of spent mycosorbents. Acid digestion study suggested adsorption being the primary mechanism accounting for 87% Zn2+removal. It was further confirmed by the FE-SEM and EDX analysis. FTIR analysis suggested involvement of amino, hydroxyl, carbonyl, and phosphate functional groups of fungal cell wall in adsorption. The experimental results were in accordance with the tested isotherm and kinetic models, and suggested the role of physical adsorption for Zn2+ removal. Noteworthy, the present study showed better sorption capacity in considerably shorter equilibration time compared to previous reports and advocate potential utilization of A. terreus SJP02 for bioremediation of Zn2+ contaminated wastewater at industrial scale.
Collapse
Affiliation(s)
- Shobham
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India
| | - Vishalakshi Bhanot
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India
| | - Mamta
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India
| | - Sanjay Kumar Verma
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India
| | - Suresh Gupta
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
2
|
K AK, Jujaru M, Panwar J, Gupta S. Non-derivatizing solvent assisted waste-derived cellulose/ MOF composite porous matrix for efficient metal ion removal: comprehensive analysis of batch and continuous packed-bed column sorption studies. RSC Adv 2024; 14:20254-20277. [PMID: 38953057 PMCID: PMC11215655 DOI: 10.1039/d4ra02566k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
The use of metal-organic frameworks (MOFs) for wastewater treatment in continuous operation is a major challenge. To address this, the present study demonstrates the eco-friendly and economic synthesis of Ca-MOF immobilized cellulose beads (Ca-MOF-CB) derived from paper waste. The synthesized Ca-MOF-CB were characterized using standard analytical techniques. Batch sorption studies were performed to check the effect of cellulose composition (wt%), Ca-MOF loading, contact time, and initial metal ion (Pb2+, Cd2+, and Cu2+) concentration. Ca-MOF-CB beads exhibited outstanding equilibrium sorption capacities for Pb2+, Cd2+, and Cu2+, with estimated values of 281.22 ± 7.8, 104.01 ± 10.58, and 114.21 ± 9.68 mg g-1, respectively. Different non-linear isotherms and kinetic models were applied which confirmed the spontaneous, endothermic reactions for the physisorption of Pb2+, Cd2+, and Cu2+. Based on the highest equilibrium sorption capacity for Pb2+ ion, in-depth parametric column studies were conducted in an indigenously developed packed-bed column set-up. The effect of packed-bed height (10 and 20 cm), inlet flow rate (5 and 10 mL min-1), and inlet Pb2+ ion concentration (200, 300, and 500 mg L-1) were studied. The breakthrough curves obtained at different operating conditions were fitted with the empirical models viz. the bed depth service time (BDST), Yoon-Nelson, Thomas, and Yan to estimate the column design parameters. In order to determine the financial implications at large-scale industrial operations, an affordable synthesis cost of 1 kg of Ca-MOF-CB was estimated. Conclusively, the present study showed the feasibility of the developed Ca-MOF-CB for the continuous removal of metal ions at an industrial scale.
Collapse
Affiliation(s)
- Anil Kumar K
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani 333 031 India
| | - Mohan Jujaru
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani 333 031 India
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani 333 031 India
| | - Suresh Gupta
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani 333 031 India
| |
Collapse
|
3
|
Li H, Wang Q, Wang Y, Liu Y, Zhou J, Wang T, Zhu L, Guo J. EDTA enables to alleviate impacts of metal ions on conjugative transfer of antibiotic resistance genes. WATER RESEARCH 2024; 257:121659. [PMID: 38692255 DOI: 10.1016/j.watres.2024.121659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/28/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Various heavy metals are reported to be able to accelerate horizontal transfer of antibiotic resistance genes (ARGs). In real water environmental settings, ubiquitous complexing agents would affect the environmental behaviors of heavy metal ions due to the formation of metal-organic complexes. However, little is known whether the presence of complexing agents would change horizontal gene transfer due to heavy metal exposure. This study aimed to fill this gap by investigating the impacts of a typical complexing agent ethylenediaminetetraacetic acid (EDTA) on the conjugative transfer of plasmid-mediated ARGs induced by a range of heavy metal ions. At the environmentally relevant concentration (0.64 mg L-1) of metal ions, all the tested metal ions (Mg2+, Ca2+, Co2+, Pb2+, Ni2+, Cu2+, and Fe3+) promoted conjugative transfer of ARGs, while an inhibitory effect was observed at a relatively higher concentration (3.20 mg L-1). In contrast, EDTA (0.64 mg L-1) alleviated the effects of metal ions on ARGs conjugation transfer, evidenced by 11 %-66 % reduction in the conjugate transfer frequency. Molecular docking and dynamics simulations disclosed that this is attributed to the stronger binding of metal ions with the lipids in cell membranes. Under metal-EDTA exposure, gene expressions related to oxidative stress response, cell membrane permeability, intercellular contact, energy driving force, mobilization, and channels of plasmid transfer were suppressed compared with the metal ions exposure. This study offers insights into the alleviation mechanisms of complexing agents on ARGs transfer induced by free metal ions.
Collapse
Affiliation(s)
- Hu Li
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, PR China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Qi Wang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yanjie Wang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yue Liu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jian Zhou
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tiecheng Wang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Lingyan Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
4
|
K AK, Mahesh Y, Panwar J, Gupta S. Remediation of multifarious metal ions and molecular docking assessment for pathogenic microbe disinfection in aqueous solution by waste-derived Ca-MOF. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21545-21567. [PMID: 38393560 DOI: 10.1007/s11356-024-32311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
The present study demonstrates an eco-friendly and cost-effective synthesis of calcium terephthalate metal-organic frameworks (Ca-MOF). The Ca-MOF were composed of metal ions (Ca2+) and organic ligands (terephthalic acid; TPA); the former was obtained from egg shells, and the latter was obtained from processing waste plastic bottles. Detailed characterization using standard techniques confirmed the synthesis of Ca-MOF with an average particle size of 461.9 ± 15 nm. The synthesized Ca-MOF was screened for its ability to remove multiple metal ions from an aqueous solution. Based on the maximum sorption capacity, Pb2+, Cd2+, and Cu2+ ions were selected for individual parametric batch studies. The obtained results were interpreted using standard isotherms and kinetic models. The maximum sorption capacity (qm) obtained from the Langmuir model was found to be 644.07 ± 47, 391.4 ± 26, and 260.5 ± 14 mg g-1 for Pb2+, Cd2+, and Cu2+, respectively. Moreover, Ca-MOF also showed an excellent ability to remove all three metal ions simultaneously from a mixed solution. The metal nodes and bonded TPA from Ca-MOF were dissociated by the acid dissolution method, which protonated and isolated TPA for reuse. Further, the crystal structure of Ca-MOF was prepared and docked with protein targets of selected pathogenic water-borne microbes, which showed its disinfection potential. Overall, multiple metal sorption capability, regeneration studies, and broad-spectrum antimicrobial activity confirmed the versatility of synthesized Ca-MOF for industrial wastewater treatment.
Collapse
Affiliation(s)
- Anil Kumar K
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, 333031, India
| | - Yeshwanth Mahesh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, India
| | - Suresh Gupta
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, 333031, India.
| |
Collapse
|
5
|
K AK, Panwar J, Gupta S. One-pot synthesis of metal oxide-clay composite for the evaluation of dye removal studies: Taguchi optimization of parameters and environmental toxicity studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61541-61561. [PMID: 36280640 DOI: 10.1007/s11356-022-23752-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/17/2022] [Indexed: 05/10/2023]
Abstract
The present study demonstrates the synthesis of eco-friendly metal oxide-clay composites (MgO-clay and CaO-clay) with phytochemical functionalization. The physical and chemical properties of prepared composites were characterized using standard techniques viz. scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The effect of pH on the dye adsorption capability of the synthesized composites was studied. The adsorption of an anionic dye methyl orange (MO) and a cationic due methylene blue (MB) was favored in the acidic and basic regions, respectively. The Taguchi design approach was adopted for the removal of MO and MB from wastewater using the synthesized composites. The obtained results suggest that initial dye concentration and composite dosage were the most influential parameters in dye removal among all the studied parameters. The adsorption experiments were carried out using MgO-clay and CaO-clay composites with the optimum conditions obtained from Taguchi optimization to validate the predicted response. The experimental parameters viz. the effect of contact time, initial dye concentration, and solution temperature were studied for screened composite (CaO-clay) with optimized conditions. The obtained results were interpreted using standard isotherms and kinetic models. A maximum adsorption capacity of 571 ± 10 and 859 ± 14 mg g-1 was obtained from the Langmuir adsorption isotherm for MO and MB, respectively. Regeneration studies suggested that the CaO-clay composite can be utilized up to 3 cycles with reduced adsorption capacity of the dyes over cycles due to the solid binding nature of dyes on the CaO-clay composite. The fresh and utilized CaO-clay composite were tested for their environmental toxicity analysis using ecologically important soil microorganisms. The obtained results suggested no detrimental effects on soil microbe's functionality, indicating their threat-free disposal in the soil environment.
Collapse
Affiliation(s)
- Anil Kumar K
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, 333 031, India
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333 031, India
| | - Suresh Gupta
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, 333 031, India.
| |
Collapse
|
6
|
Damiri F, Andra S, Kommineni N, Balu SK, Bulusu R, Boseila AA, Akamo DO, Ahmad Z, Khan FS, Rahman MH, Berrada M, Cavalu S. Recent Advances in Adsorptive Nanocomposite Membranes for Heavy Metals Ion Removal from Contaminated Water: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5392. [PMID: 35955327 PMCID: PMC9369589 DOI: 10.3390/ma15155392] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 05/31/2023]
Abstract
Water contamination is one of the most urgent concerns confronting the world today. Heavy metal poisoning of aquatic systems has piqued the interest of various researchers due to the high toxicity and carcinogenic consequences it has on living organisms. Due to their exceptional attributes such as strong reactivity, huge surface area, and outstanding mechanical properties, nanomaterials are being produced and employed in water treatment. In this review, recent advances in the use of nanomaterials in nanoadsorptive membrane systems for wastewater treatment and heavy metal removal are extensively discussed. These materials include carbon-based nanostructures, metal nanoparticles, metal oxide nanoparticles, nanocomposites, and layered double hydroxide-based compounds. Furthermore, the relevant properties of the nanostructures and the implications on their performance for water treatment and contamination removal are highlighted. The hydrophilicity, pore size, skin thickness, porosity, and surface roughness of these nanostructures can help the water permeability of the nanoadsorptive membrane. Other properties such as surface charge modification and mechanical strength can improve the metal adsorption effectiveness of nanoadsorptive membranes during wastewater treatment. Various nanocomposite membrane fabrication techniques are also reviewed. This study is important because it gives important information on the roles of nanomaterials and nanostructures in heavy metal removal and wastewater treatment.
Collapse
Affiliation(s)
- Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| | - Swetha Andra
- Department of Chemistry, Rajalakshmi Institute of Technology, Chennai 600124, Tamil Nadu, India
| | | | - Satheesh Kumar Balu
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Raviteja Bulusu
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Amira A. Boseila
- Department of Pharmaceutics, National Organization for Drug Control and Research (NODCAR), Cairo 12611, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University, Sinai 41636, Egypt
| | - Damilola O. Akamo
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
7
|
Treatment of Wastewater Effluent with Heavy Metal Pollution Using a Nano Ecological Recycled Concrete. WATER 2022. [DOI: 10.3390/w14152334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Water pollution exacerbates water stress and poses a great threat to the ecosystem and human health. Construction and demolition waste (CDW) due to rapid urbanization also causes heavy environmental burdens. A major proportion of CDW can be effectively converted into recycled aggregates, which can be reused in many fields, including environment remediation. In this study, a nano ecological recycled concrete (nano-ERC) was produced with recycled aggregates and copper oxide nanoparticles (nCuO) to remove heavy metals (HMs) from a simulated wastewater effluent (SWE) for further treatment. Recycled aggregates were obtained from CDW, thereby simultaneously reducing the treatment cost of the SWE and the environmental burden of solid waste. The adsorption capacity of nano-ERC was presumed to be significantly enhanced by the addition of nCuO due to the unique large surface-to-volume ratio and other properties of NPs. The SWE containing five common HMs, arsenic (As), chromium (Cr), cadmium (Cd), manganese (Mn) and lead (Pb), was filtered through a control ERC and nano-ERCs, and the concentrations of these HMs were determined with ICP-MS in the SWE and the filtrates. Results showed the nano-ERCs could significantly remove these HMs from the SWE compared to the control ERC, due to the enhanced adsorption capacity by nCuO. The relative weighted average removal percentage (RWAR%) was in the range of 53.05–71.83% for nano-ERCs and 39.27–61.65% for control ERC. Except for Cr, concentrations of these HMs in the treated wastewater effluent met the requirements for crop irrigation or scenic water supplementation; the Cr may be removed by multiple filtrations. In conclusion, nano-ERC can serve as a cost-effective approach for the further treatment of wastewater effluent and may be applied more widely in wastewater treatment to help relieve water stress.
Collapse
|