1
|
Qiu F, Wang L, Li H, Pan Y, Song H, Chen J, Fan Y, Zhang S. Electrochemically enhanced activation of Co 3O 4/TiO 2 nanotube array anode for persulfate toward high catalytic activity, low energy consumption, and long lifespan performance. J Colloid Interface Sci 2024; 655:594-610. [PMID: 37956547 DOI: 10.1016/j.jcis.2023.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Advanced oxidation processes (AOPs) can directly degrade and mineralize organic pollutants (OPs) in water by generating reactive oxygen species with strong oxidizing ability. The development of advanced electrode materials with high catalytic performance, low energy consumption, no secondary pollution, and long lifespan has become a challenge that must be addressed in this field. A heterojunction catalyst loaded with Co3O4 on TDNAs (Co3O4/RTDNAs) was designed and constructed by a simple and efficient pyrolysis (Co3O4/TDNAs) and electrochemical reduction. Co3O4 can be uniformly distributed on the inner wall and surface of the TiO2 nanotubes, enhancing the specific surface area while forming a tight conductive interface with TiO2. This facilitates rapid transmission of electrons, thereby assisting Co3O4 in quickly activating PS to form reactive oxygen species. The Ti3+ and Ov generated in Co3O4/RTDNAs can significantly improve the electrocatalytic degradation of OPs. Also, the interface formed by Co3O4 and RTDNAs will effectively suppress Co2+ leakage, thereby reducing the risk of secondary pollution. When the reaction conditions were 1 mM PMS (PDS) and a current density of 5 mA/cm2 in the EA-PMS (PDS)/Co3O4/RTDNA system, 30 mg/L TC can achieve 83.24 % (81.89 %) removal in 120 min, with very low cobalt ion leaching, while the energy consumption was reduced significantly. Therefore, EA-PS/Co3O4/RTDNA system has strong stability and a high potential for treating the OPs in AOPs.
Collapse
Affiliation(s)
- Fan Qiu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Luyao Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Hongxiang Li
- School of Environment, Nanjing Normal University, Nanjing, 210097, PR China
| | - Yanan Pan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Haiou Song
- School of Environment, Nanjing Normal University, Nanjing, 210097, PR China.
| | - Junjie Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Yang Fan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Shupeng Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
2
|
Zheng MW, Lin CW, Chou PH, Chiang CL, Lin YG, Liu SH. Highly effective degradation of ibuprofen by alkaline metal-doped copper oxides via peroxymonosulfate activation: Mechanisms, degradation pathway and toxicity assessments. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132751. [PMID: 37839384 DOI: 10.1016/j.jhazmat.2023.132751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Redox ratios of Cu2+/Cu+ and adsorbed oxygen species (Oads) have shown great activity toward radical generation by activating peroxymonosulfate (PMS). Herein, different alkaline metal oxides (CaO, MgO and BaO) and various amounts of CaO are incorporated into CuO, which could tune the main active sites of redox ratios of Cu2+/Cu+ and Oads. The results show that CaO-CuO-5% exhibits the outstanding performance of PMS activation toward ibuprofen (IBF) degradation with excellent kinetics (k = 0.812 min-1). The X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculation show that the CaO-CuO-5% has the higher electron density with superior electron transfer ability and lower PMS adsorption energy. Based on radical scavengers and electron paramagnetic resonance spectrometer (EPR), a nonradical process is proposed to play the dominant role. The degradation pathway and the corresponding toxicity of degraded intermediates with residue PMS after reaction is evaluated by LC-MS/MS and bioassay experiments, indicating the lower antagonistic influence on human hormone receptors after advanced oxidation process. Mitigation of the Cu leaching with cyclic stability can be achieved. This study provides a facile method to optimize high-performance catalysts to activate PMS and offer practical environmental applications in the remediation of emerging contaminants.
Collapse
Affiliation(s)
- Meng-Wei Zheng
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Cheng-Wei Lin
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pei-Hsin Chou
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chao-Lung Chiang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yan-Gu Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Shou-Heng Liu
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan; Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
3
|
Treatment of Water Contaminated with Non-Steroidal Anti-Inflammatory Drugs Using Peroxymonosulfate Activated by Calcined Melamine@magnetite Nanoparticles Encapsulated into a Polymeric Matrix. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227845. [PMID: 36431944 PMCID: PMC9698753 DOI: 10.3390/molecules27227845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
In the present study, calcined melamine (CM) and magnetite nanoparticles (MNPs) were encapsulated in a calcium alginate (CA) matrix to effectively activate peroxymonosulfate (PMS) and generate free radical species for the degradation of ibuprofen (IBP) drug. According to the Langmuir isotherm model, the adsorption capacities of the as-prepared microcapsules and their components were insignificant. The CM/MNPs/CA/PMS process caused the maximum degradation of IBP (62.4%) in 30 min, with a synergy factor of 5.24. Increasing the PMS concentration from 1 to 2 mM improved the degradation efficiency from 62.4 to 68.0%, respectively, while an increase to 3 mM caused a negligible effect on the reactor effectiveness. The process performance was enhanced by ultrasound (77.6% in 30 min), UV irradiation (91.6% in 30 min), and electrochemical process (100% in 20 min). The roles of O•H and SO4•- in the decomposition of IBP by the CM/MNPs/CA/PMS process were 28.0 and 25.4%, respectively. No more than 8% reduction in the degradation efficiency of IBP was observed after four experimental runs, accompanied by negligible leachate of microcapsule components. The bio-assessment results showed a notable reduction in the bio-toxicity during the treatment process based on the specific oxygen uptake rate (SOUR).
Collapse
|
4
|
Degradation of Ibuprofen by the Electro/Fe3+/Peroxydisulfate Process: Reactive Kinetics, Degradation Products and Mechanism. Catalysts 2022. [DOI: 10.3390/catal12030329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ibuprofen (IBU), a nonsteroidal anti-inflammatory drug, is one of the most widely used and frequently detected pharmaceuticals and personal care products in water bodies. This study examined the IBU degradation in aquatic solutions via ferric ion activated peroxydisulfate (PDS) coupled with electro-oxidation (EC/Fe3+/PDS). The degradation mechanisms involved three synergistic reactions in the EC/Fe3+/PDS system, including: (1) the electro-oxidation; (2) SO4•− generated from the activation of PDS by ferrous ions formed via cathodic reduction; (3) SO4•− generated from the electron transfer reaction. The radical scavenging experiments indicated that SO4•− and •OH dominated the oxidation process. The effects of the applied current density, PDS concentration, Fe3+ dosage, initial IBU concentration and initial pH as well as inorganic anions and humic acid on the degradation efficiency, were studied, and the degradation process of IBU followed the pseudo-first-order kinetic model. About 99.37% of IBU was removed in 60 min ((Fe3+ concentration) = 2.0 mM, (PDS concentration) = 12 mM, (initial IBU concentration) = 30 mg/L, current density = 15 mA/cm2, initial pH = 3). Finally, seven intermediate compounds were identified and probable IBU degradation pathways in the EC/Fe3+/PDS system were speculated.
Collapse
|