1
|
Liu H, Gao Y, Zhang Y, Peng Z, Ma L. Investigation of the long-term interactions of nature's contributions to people under SDGs-SSPs scenarios to promote ecological sustainability in the arid and semiarid zones of China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125104. [PMID: 40132378 DOI: 10.1016/j.jenvman.2025.125104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Understanding the interactions among nature's contributions to people (NCPs) is considered an important way to manage ecosystem and reduce future ecological risks. However, few existing studies forecast the intricate interplay of trade-offs, synergies, and bundles among NCPs under future scenarios. This gap is particularly pronounced in the arid and semiarid zones of China (ASZC), which are highly vulnerable to climate change and human disturbances. To address this issue, this study focuses on the ASZC as the research area and employs an integrated research framework to clarify the spatiotemporal dynamics of land use, NCPs and their interactions under three Sustainable Development Goals and Shared Socioeconomic Pathway (SDGs-SSPs) scenarios between 2030 and 2060. The results indicate that: (1) forest area is projected to expand, and grassland area slightly decrease in future scenarios; (2) high-density forest and grassland in the southeastern part of the ASZC have significantly increased the provision of NCPs; (3) trade-off between NCPs is primarily observed between the regulation of water quantity, location and timing (NCP6) and the formation, protection and decontamination of soils and sediments (NCP8). Furthermore, NCP bundles that were previously dominated by habitat creation and maintenance (NCP1)-regulation of climate (NCP4)-NCP6 have shifted to NCP1-NCP4 in and NCP1-NCP8 bundles across different SDGs-SSPs scenarios. This study enhances our understanding of future NCPs dynamics and suggests that the interactions and bundles of NCPs is essential for improving ecosystem management.
Collapse
Affiliation(s)
- Hua Liu
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yuanyi Gao
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yangjian Zhang
- School of Life Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Ziyang Peng
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Lin Ma
- School of Life Sciences, Hebei University, Baoding, 071002, China
| |
Collapse
|
2
|
Ai X, Zheng X, Zhang Y, Liu Y, Ou X, Xia C, Liu L. Climate and land use changes impact the trajectories of ecosystem service bundles in an urban agglomeration: Intricate interaction trends and driver identification under SSP-RCP scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173828. [PMID: 38857801 DOI: 10.1016/j.scitotenv.2024.173828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/19/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
The delivery of ecosystem services (ESs), particularly in urban agglomerations, faces substantial threats from impending future climate change and human activity. Assessing ES bundles (ESBs) is critical to understanding the spatial allocation and interactions between multiple ESs. However, dynamic projections of ESBs under various future scenarios are still lacking, and their underlying driving mechanisms have received insufficient attention. This study examined the Beijing-Tianjin-Hebei urban agglomeration and proposed a framework that integrates patch-generating land use simulation into three shared socioeconomic pathway (SSP) scenarios and clustering analysis to assess spatiotemporal variations in seven ESs and ESBs from 1990 to 2050. The spatial trajectories of ESBs were analyzed to identify fluctuating regions susceptible to SSP scenarios. The results indicated that (1) different scenarios exhibited different loss rates of regulating and supporting services, where the mitigation of degradation was most significant under SSP126. The comprehensive ES value was highest under SSP245. (2) Bundles 1 and 2 (dominated by regulating and supporting services) had the largest total proportion under SSP126 (51.92 %). The largest total proportion of Bundles 4 and 5 occurred under SSP585 (48.96 %), with the highest provisioning services. The SSP126 scenario was projected to have the least ESB fluctuation at the grid scale, while the most occurred under SSP585. (3) Notably, synergies between regulating/supporting services were weaker under SSP126 than under either SSP245 or SSP585, while trade-offs between water yield and non-provisioning services were strongest. (4) Forestland and grassland proportions significantly affected carbon sequestration and habitat quality. Climatic factors (precipitation and temperature) acted as the dominant drivers of provisioning services, particularly water yield. Our findings advocate spatial strategies for future regional ES management to address upcoming risks.
Collapse
Affiliation(s)
- Xin Ai
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Xi Zheng
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Yaru Zhang
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Yang Liu
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyang Ou
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Chunbo Xia
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Lingjun Liu
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Wang Z, Gao Y, Zhang X, Li L, Li F. Integrating historical patterns and future trends for ecological management zone identification and validation: A case study in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172249. [PMID: 38593881 DOI: 10.1016/j.scitotenv.2024.172249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/16/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Ecological management zones (EMZs) are pivotal in improving the management of ecosystem services (ESs) and promoting sustainable regional development. In this study, we developed a comprehensive framework aimed at identifying EMZs and substantiating their efficacy through the amalgamation of historical evolutionary patterns and future trends. We applied this framework to Beijing, China, and selected five vital ESs for the study area namely, water yield (WY), carbon sequestration (CS), habitat quality (HQ), soil conservation (SC) and water purification (WP). The framework involves two key components. Firstly, the identification of EMZs is based on the historical evolution of five types of ESs and the dynamic assessment of ES bundles. Subsequently, it enables a simulation of various scenarios to predict future alterations in land use and ESs, thereby validating the effectiveness of the identified EMZs. Our findings reveal notable spatial heterogeneity among different ESs, and that CS, HQ, SC, and WP exhibited synergies, while WY and showed trade-offs with the remaining four types of ESs. Based on an analysis of ES bundle evolution trajectories, we identified four types of EMZs: ecological conservation zone, ecological restoration zone, ecological transition zone and sustainable construction zone. Through strategic EMZ planning, it becomes possible to augment the area of forestland and grassland, alleviate the contradiction between arable land and construction land, and enhance the supply of various ESs. The proposed framework not only offers a novel perspective on the scientific management of ESs but also furnishes decision-makers and planners with an intuitive understanding of the tangible benefits associated with EMZ planning.
Collapse
Affiliation(s)
- Ziyao Wang
- Department of Landscape Architecture, School of Architecture, Tsinghua University, Beijing 100084, China; Research Center for Ecological Restoration, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Yu Gao
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Xi Zhang
- School of Art and Design, Tianjin University of Technology, Tianjin 300384, China
| | - Liang Li
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Feng Li
- Department of Landscape Architecture, School of Architecture, Tsinghua University, Beijing 100084, China; Research Center for Ecological Restoration, School of Architecture, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Jiang H, Qin M, Wu X, Luo D, Ouyang H, Liu Y. Spatiotemporal evolution and driving factors of ecosystem service bundle based on multi-scenario simulation in Beibu Gulf urban agglomeration, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:542. [PMID: 38735886 DOI: 10.1007/s10661-024-12663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
Rapid urbanization is profoundly impacting the ecological environment and landscape patterns, leading to a decline in ecosystem services (ES) and posing threats to both ecological security and human well-being. This study aimed to identify the spatial and temporal patterns of ecosystem service bundles (ESB) in the Beibu Gulf urban agglomeration from 2000 to 2030, analyze the trajectory of ESB evolution, and elucidate the drivers behind ESB formation and evolution. We utilized the Patch-generating Land Use Simulation (PLUS) model to establish baseline (BLS), carbon sequestration priority (CPS), and urbanization priority (UPS) scenarios for simulating land use patterns in 2030. Following the assessment of ecosystem service values (ESV) through the equivalent factor method, we identified the spatiotemporal distribution patterns of ESB using the K-means clustering algorithm. By employing stability mapping and landscape indices, we identified and analyzed various types of ESB evolutionary trajectories. Redundancy analysis (RDA) was employed to pinpoint the drivers of ESB formation and evolution. The results revealed that from 2000 to 2030, land use changes were primarily observed in cropland, forestland, and construction land. Between 2000 and 2020, 92.88% of the region did not experience shifts in ESB types. In UPS, the ESB pattern in the study area underwent significant changes, with only 76.68% of the region exhibiting stabilized trajectories, while the other two scenarios recorded percentages higher than 80%. Key drivers of ESB-type shifts included initial food provision services, elevation, slope, changes in the proportion of construction land, and population change. This multi-scenario simulation of ESB evolution due to land use changes aids in comprehending potential future development directions from diverse perspectives and serves as a valuable reference for formulating and changing ecological management policies and strategies.
Collapse
Affiliation(s)
- Hongbo Jiang
- College of Forestry, Guangxi University, Nanning, 530004, China
| | - Menglin Qin
- School of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China.
| | - Xinyu Wu
- College of Forestry, Guangxi University, Nanning, 530004, China
| | - Dingding Luo
- College of Forestry, Guangxi University, Nanning, 530004, China
| | - Huiting Ouyang
- School of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China
| | - Yuting Liu
- School of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China
| |
Collapse
|
5
|
Huang H, Xue J, Feng X, Zhao J, Sun H, Hu Y, Ma Y. Thriving arid oasis urban agglomerations: Optimizing ecosystem services pattern under future climate change scenarios using dynamic Bayesian network. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119612. [PMID: 38035503 DOI: 10.1016/j.jenvman.2023.119612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/18/2023] [Accepted: 11/11/2023] [Indexed: 12/02/2023]
Abstract
The effects of global climate change and human activities are anticipated to significantly impact ecosystem services (ESs), particularly in urban agglomerations of arid regions. This paper proposes a framework integrating the dynamic Bayesian network (DBN), system dynamics (SD) model, patch generation land use simulation (PLUS) model, and the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model for predicting land use change and optimizing ESs spatial patterns that is built upon the SSP-RCP scenarios from CMIP6. This framework is applied to the oasis urban agglomeration on the northern slope of the Tianshan Mountains in Xinjiang (UANSTM), China. The findings indicate that both the SD model and PLUS model can accurately forecast the distribution of future land use. The SD model shows a relative error of less than 2.32%, while the PLUS model demonstrates a Kappa coefficient of 0.89. The land use pattern displays obvious spatial heterogeneity under different climate scenarios. The expansion of cultivated land and construction land is the main form of land use change in UANSTM in the future. The DBN model proficiently simulates the interactive relationships between ESs and diverse factors. The classification error rates for net primary productivity (NPP), habitat quality (HQ), water yield (WY), and soil retention (SR) are 20.04%, 3.47%, 4.45%, and 13.42%, respectively. The prediction and diagnosis of DBN determine the optimal ESs development scenario and the optimal ESs region in the study area. It is found that the majority of ESs in UANSTM are predominantly influenced by natural factors with the exception of HQ. The socio-economic development plays a minor role in such urban agglomerations. This study offers significant insights that can contribute to the fields of ecological protection and land use planning in arid urban agglomerations worldwide.
Collapse
Affiliation(s)
- Hao Huang
- College of Mathematics and System Science, Xinjiang University, Urumqi, 830046, China; State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, Xinjiang, China.
| | - Jie Xue
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, Xinjiang, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xinlong Feng
- College of Mathematics and System Science, Xinjiang University, Urumqi, 830046, China.
| | - Jianping Zhao
- College of Mathematics and System Science, Xinjiang University, Urumqi, 830046, China
| | - Huaiwei Sun
- School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yang Hu
- College of Mathematics and System Science, Xinjiang University, Urumqi, 830046, China; State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, Xinjiang, China
| | - Yantao Ma
- College of Mathematics and System Science, Xinjiang University, Urumqi, 830046, China; State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, Xinjiang, China
| |
Collapse
|
6
|
Guo H, Cai Y, Li B, Wan H, Yang Z. An improved approach for evaluating landscape ecological risks and exploring its coupling coordination with ecosystem services. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119277. [PMID: 37839199 DOI: 10.1016/j.jenvman.2023.119277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/13/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
The rapid urbanization has accelerated the destruction of regional ecosystems, triggering ecological risks and threatening sustainable development. Landscape ecological risk (LER) evaluation is an effective tool to mitigate such negative impacts. However, the existing evaluation systems exhibit certain subjectivity. Therefore, an improved LER evaluation method was proposed, which incorporates ecosystem services (ESs) to characterize landscape vulnerability. The method was validated using the Pearl River Delta urban agglomeration (PRDUA) as the study area. The results showed that the optimal grain size and extent for landscape pattern analysis in the PRDUA were determined to be 150 m and 6km × 6 km, respectively. The comparison results with the traditional LER evaluation method demonstrated the improved method's superior rationality and reliability. The hotspot analysis based on the Getis-Ord Gi* method revealed that the hotspots of LER were mainly concentrated in the densely populated areas of the south-central region of the PRDUA. The coupling coordination degree (CCD) between LERs and ESs showed four different levels of development in both temporal and spatial dimensions, generally dominated by moderately balanced development and lagging ESs, reflecting the unbalanced ecological environment and socio-economic development of the PRDUA. It is recommended that the ecosystems in the PRDUA be managed and protected separately according to the delineated Ecological Protection Area (EPA), Urban Built-up Area (UBA), and Urban Ecological Boundary Area (UEBA). This study can provide an important reference for regional ecosystem conservation and management.
Collapse
Affiliation(s)
- Hongjiang Guo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Bowen Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hang Wan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
7
|
Peng J, Tang H, Su C, Jiang H, Dong J, Xu D. Regarding reference state to identify priority areas for ecological restoration in a karst region. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119214. [PMID: 37852077 DOI: 10.1016/j.jenvman.2023.119214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/28/2023] [Accepted: 10/01/2023] [Indexed: 10/20/2023]
Abstract
Widespread degradation of natural ecosystems around the globe has resulted in several ecological problems. Ecological restoration is considered a global priority as an important means of mitigating ecosystem degradation and enhancing ecosystem services provision. Regarding ecosystem reference state is a prerequisite for ecological restoration. However, there were few studies focusing on how to regard reference state for ecological restoration, especially under a changing climate. Taking Guizhou Province, a typical karst region in China, as a case study area, in this study we firstly assessed ecosystem services under homogeneous climate conditions. Secondly, we defined the optimal ecosystem services as ecosystem reference state, and then evaluated restoration suitability under a comprehensive framework. Finally, ecological restoration priority areas (EPRAs), which included ecological reconstruction areas, assisted regeneration areas and conservation priority areas needing restoration, were identified by integrating restoration suitability and conservation priority areas. The results showed that the services of water conservation and habitat maintenance only increased less than 10% from 2001 to 2018. Identified ecological reconstruction areas and assisted regeneration areas covered 1078 km2 and 1159 km2 respectively. Additionally, 15 conservation priority areas with the total area of 18,507 km2 were identified as conservation priority areas needing restoration. Accounting for 11.78% of the total area, ERPAs were mostly located in the eastern part of Guizhou, including Qiandongnan, Tongren, and Zunyi. The approach proposed here for regarding ecosystem reference state after controlling climate variables and the framework for identifying ERPAs can provide a scientific reference for large-scale ecological restoration planning.
Collapse
Affiliation(s)
- Jian Peng
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| | - Hui Tang
- Key Laboratory of Earth Surface System and Human-Earth Relations, Ministry of Natural Resources, School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Chong Su
- China Academy of Urban Planning & Design, Beijing, 100044, China
| | - Hong Jiang
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jianquan Dong
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Dongmei Xu
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
8
|
Lyu Y, Wu C. Managing the supply-demand mismatches and potential flows of ecosystem services from the perspective of regional integration: A case study of Hangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165918. [PMID: 37544455 DOI: 10.1016/j.scitotenv.2023.165918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
Regional integration is a development strategy that synergizes various components as a whole to maximize overall benefits. The natural heterogeneity and fluidity of ecosystem service (ES) make it a promising target for regional integration. However, the current focus on regional integration was more on the socio-economic factors rather than ecological resources, and the understanding of the supply-demand relationship and potential flow of ecosystem services was still limited. Therefore, we attempted to interpret ecological integration management by linking ES budgets, bundles, and flows in this study. The results showed that the spatial mismatches of ESs supply-demand were observed in all six selected ES types. Most of the ESs deficit regions were concentrated in urban centers, while ES surplus regions were scattered in surrounding rural areas. Multiple heterogeneous ES resources could ideally benefit an additional 0.13-4.84 million people in 9-70 townships through potential ES flows under ecological integration management. Therefore, we connected the service provisioning areas (SPAs) and service beneficiary areas (SBAs) with three types of ES flows and drew the potential provider-beneficiary relationship networks at the townships/bundles scale, demonstrating the interactive relationship of ecological integration within the region. On this basis, we also proposed the applicability matrix of governance tools for the first time according to the type of ES flows, and then put forward the corresponding governance opinions around the two aspects of "improving ES budges within clusters" and "strengthening ES flow among clusters". This study provided an ecological perspective for understanding regional integration, and relevant conclusions can inform environmental policy priorities for sustainable decision-making in urbanized areas.
Collapse
Affiliation(s)
- Yuefeng Lyu
- School of Public Administration, Zhejiang University of Finance and Economics, Hangzhou, Zhejiang 310018, China.
| | - Cifang Wu
- Department of Land Management, School of Public Affairs, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
9
|
Yang M, Gao X, Siddique KHM, Wu P, Zhao X. Spatiotemporal exploration of ecosystem service, urbanization, and their interactive coercing relationship in the Yellow River Basin over the past 40 years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159757. [PMID: 36349629 DOI: 10.1016/j.scitotenv.2022.159757] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/12/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Understanding how ecosystem services (ESs) interact with urbanization is crucial for formulating sustainable development policies. Although previous literature has paid attention to this topic, information on complex spatiotemporal interactions between ESs and urbanization remains inadequate, especially in the Yellow River Basin (YRB), a typical basin that will usher in rapid progress of ecological protection and urbanization. In this study, we constructed a framework for evaluating ecosystem service values (ESV) and urbanization by synthesizing multi-source data in the YRB from 1980 to 2018, and further revealing the interactive coercing mechanisms of ESV and urbanization. We found that the YRB has experienced rapid urbanization, with an increasing growth trend for all urbanization indicators, especially from 2000 onwards. ESV had a significant negative correlation with urbanization, showing a decreasing trend with urbanization growth before 2000, but reversed this trend after 2000 as ecological restoration projects offset the adverse effects of urbanization on ESV. Furthermore, while significant negative spatial correlations occurred between ESV and urbanization, these correlations diminished over time. The results also revealed differences in the spatial correlations between global and local scales, with three types of spatial correlations at the local scale: High-Low (high ESV and low urbanization), Low-High (low ESV and high urbanization), and Low-Low (low ESV and low urbanization). Our results contribute to understanding the interactive coercing relationship between ESV and urbanization in the YRB, particularly at the local scale, and insights into coordinating future ecological protection and urban development.
Collapse
Affiliation(s)
- Menghao Yang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100 Yangling, Shannxi Province, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiaodong Gao
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100 Yangling, Shannxi Province, China; Institute of Soil and Water Conservation, Northwest A&F University, 712100 Yangling, Shannxi Province, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Pute Wu
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100 Yangling, Shannxi Province, China; Institute of Soil and Water Conservation, Northwest A&F University, 712100 Yangling, Shannxi Province, China.
| | - Xining Zhao
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100 Yangling, Shannxi Province, China; Institute of Soil and Water Conservation, Northwest A&F University, 712100 Yangling, Shannxi Province, China.
| |
Collapse
|
10
|
Yuan Y, Bai Z, Zhang J, Huang Y. Investigating the trade-offs between the supply and demand for ecosystem services for regional spatial management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116591. [PMID: 36419288 DOI: 10.1016/j.jenvman.2022.116591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Understanding the supply and demand characteristics of ecosystem services (ESs) and their trade-offs is the basis for effective ecosystem management and the improvement of human well-being. However, current management practices based on the trade-offs between the supply and demand for ESs remain limited. This study aimed to integrate ES trade-offs into regional spatial management. With Changzhi, China, as the study area, this study evaluated the supply, demand, and trade-offs of food provision, water conservation, soil retention, and carbon sequestration by linking multi-source data and using spatial analysis tools, including the InVEST model, ArcGIS, and GeoDA. Based on the trade-offs and importance of different ecological functions, we constructed an urban spatial management framework and proposed recommendations for optimization in different management zones. The results showed that (1) the supply and demand for multiple ESs exhibited spatial heterogeneity. Except for water conservation, the supply of other ESs met the demand of the city, but there were still obvious deficits in some regions. (2) In terms of the ES supply, there were trade-offs between food production and other ESs, and synergies existed among water conservation, soil retention, and carbon sequestration. In terms of the ES demand, the four ESs exhibited synergistic relationships. In the cluster analysis, ES supply and demand were divided into four ES bundles, respectively. (3) The spatial mismatch of ESs in the sub-watersheds of the study area was obvious. The ESDR coldspots for the four ESs were primarily located in the urban built-up areas in the central and southern regions of the city. The ESDR hotspots of soil retention and carbon sequestration were mainly distributed in the eastern and northwestern regions of Changzhi, which are less urbanized. There were few ESDR hotspots for food production and water conservation. (4) Based on the regional spatial management framework, Changzhi was divided into ten zones, including extremely important, moderately important, important, supply-demand risk management, soil erosion management, and high food production areas. The results and conclusions of this study provide a basis for spatial planning and ecosystem management.
Collapse
Affiliation(s)
- Yuan Yuan
- School of Land Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Zhongke Bai
- School of Land Science and Technology, China University of Geosciences, Beijing, 100083, China; Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Natural Resources, Beijing, 100035, China; Technology Innovation Center of Ecological Restoration Engineering in Mining Area, Ministry of Natural Resources, Beijing, 100035, China.
| | - Junjie Zhang
- Guangzhou Urban Planning and Design Survey Research Institute, Guangzhou, 510060, China
| | - Yuhan Huang
- School of Land Science and Technology, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|