1
|
Xue Z, Zhu W, Bai S, Chen M, Chen X, Liu J, Lv Y. Wind-driven post-bloom dispersion of Microcystis in a large shallow eutrophic lake: A case study in Lake Taihu. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173512. [PMID: 38815825 DOI: 10.1016/j.scitotenv.2024.173512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
To clarify the wind-driven post-bloom dispersion range of Microcystis, which originally clustered on the water surface, an Individual-Based Model (IBM) of Microcystis movement considering the combined effects of wind and light was developed based on actual hydrodynamic data and Microcystis biomass. After calibrating the effects of hydrodynamics and light, 66 cases of short-term (within a week) post-bloom with satellite images from 2011 to 2017 were simulated. The results showed that there were three short-term post-bloom types: vertical reduction (VR), horizontal reduction (HR) and mixed reduction (MR). For VR type, the cyanobacterial bloom reduction rate was rapid (>160 km2/day), but the dispersion range of Microcystis was limited (<2 km/day), and a larger bloom area was likely to form in the original location when wind speed decreased. For HR type, the cyanobacterial bloom reduction rate was slow (<10 km2/day), but Microcystis exhibited a broad dispersion range (>4 km/day), often leading to smaller, thicker, and longer-lasting cyanobacterial blooms downwind, albeit with a lower probability of occurrence. The characteristics of MR lay between the two aforementioned types.
Collapse
Affiliation(s)
- Zongpu Xue
- Jiangsu Nanjing Environmental Monitoring Center, Nanjing 210098, PR China
| | - Wei Zhu
- Institute of Water Science and Technology, Hohai University, Nanjing 210098, PR China.
| | - Song Bai
- Jiangsu Nanjing Environmental Monitoring Center, Nanjing 210098, PR China
| | - Ming Chen
- Jiangsu Nanjing Environmental Monitoring Center, Nanjing 210098, PR China
| | - Xinqi Chen
- Jiangsu Nanjing Environmental Monitoring Center, Nanjing 210098, PR China
| | - Jun Liu
- Jiangsu Nanjing Environmental Monitoring Center, Nanjing 210098, PR China
| | - Yi Lv
- College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
2
|
Sun Q, Luo W, Dong X, Lei S, Mu M, Zeng S. Landsat observations of total suspended solids concentrations in the Pearl River Estuary, China, over the past 36 years. ENVIRONMENTAL RESEARCH 2024; 249:118461. [PMID: 38354886 DOI: 10.1016/j.envres.2024.118461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Information on long-term trends in total suspended solids (TSS) is critical for assessing aquatic ecosystems. However, the long-term patterns of TSS concentration (CTSS) and its latent drivers have not been well investigated. In this study, we developed and validated three semi-analysis algorithms for deriving CTSS using Landsat images. Subsequently, the long-term trends in CTSS in the Pearl River Estuary (PRE) from 1987 to 2022 and the driving factors were clarified. The developed algorithms yielded excellent performance in estimating CTSS, with mean absolute percentage errors <25% and root mean square errors of <13 mg/L. Long-term Landsat observations showed an overall decreasing trend and significant spatiotemporal dynamics of the CTSS in the PRE from 1987 to 2022. The analysis of driving factors suggested that industrial sewage, cropland, forests and grasslands, and built-up land were the four potential driving forces that explained 87.81% of the long-term variation in CTSS. This study not only provides 36-year recorded datasets of CTSS in estuary water, but also offers new insights into the complex mechanisms that regulate CTSS spatiotemporal dynamics for water resource management.
Collapse
Affiliation(s)
- Qiang Sun
- South China Institute of Environmental Science, Ministry of Ecology and Environment, NO.18 Ruihe RD., Guangzhou, 510535, China; National Key Laboratory of Urban Ecological Environmental Simulation and Protection, Guangzhou, 510535, China
| | - Wei Luo
- School of Geography and Environmental Engineering, Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, Gannan Normal University, Ganzhou, 341000, China
| | - Xianzhang Dong
- Key Laboratory of Virtual Geographic Environment of Education Ministry, Nanjing Normal University, Nanjing, 210023, China
| | - Shaohua Lei
- National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Meng Mu
- School of City and Urban Planning, Yancheng Teachers University, Yancheng, 224000, China
| | - Shuai Zeng
- South China Institute of Environmental Science, Ministry of Ecology and Environment, NO.18 Ruihe RD., Guangzhou, 510535, China; National Key Laboratory of Urban Ecological Environmental Simulation and Protection, Guangzhou, 510535, China.
| |
Collapse
|
3
|
Feng G, Cao J, Chen H, Meng XZ, Duan Z. Potential gap in understanding cyanoHABs: Light-dependent morphological variations in colonial cyanobacterium Microcystis. HARMFUL ALGAE 2024; 134:102622. [PMID: 38705618 DOI: 10.1016/j.hal.2024.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 05/07/2024]
Abstract
Colony formation is a crucial characteristic of Microcystis, a cyanobacterium known for causing cyanobacterial harmful algal blooms (cyanoHABs). It has been observed that as Microcystis colonies grow larger, they often become less densely packed, which correlates with a decrease in light penetration. The objective of this study was to investigate the effects of light limitation on the morphological variations in Microcystis, particularly in relation to the crowded cellular environment. The results indicated that when there was sufficient light (transmittance = 100 %) to support a growth rate of 0.11±0.01 day-1, a significant increase in colony size was found, from 466±15 μm to 1030±111 μm. However, under light limitation (transmittance = 50 % - 1 %) where the growth rate was lower than 0, there was no significant improvement in colony size. Microcystis in the light limitation groups exhibited a loose cell arrangement and even the presence of holes or pores within the colony, confirming the negative correlation between colony size and cell arrangement. This pattern is driven by regional differences in growth within the colony, as internal cells have a significantly lower frequency of division compared to peripheral cells, due to intra-colony self-shading (ICSS). The research demonstrates that Microcystis can adjust its cell arrangement to avoid excessive self-shading, which has implications for predicting and controlling cyanoHABs. These findings also contribute to the understanding of cyanobacterial variations and can potentially inform future research on the diverse phycosphere.
Collapse
Affiliation(s)
- Ganyu Feng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| | - Jun Cao
- National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China
| | - Huaimin Chen
- School of Materials Engineering, Changzhou Vocational Institute of Industry Technology, 28 Mingxinzhong Road, Changzhou 213164, China
| | - Xiang-Zhou Meng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Zhipeng Duan
- College of Environment, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China
| |
Collapse
|
4
|
Schaeffer BA, Whitman P, Vandermeulen R, Hu C, Mannino A, Salisbury J, Efremova B, Conmy R, Coffer M, Salls W, Ferriby H, Reynolds N. Assessing potential of the Geostationary Littoral Imaging and Monitoring Radiometer (GLIMR) for water quality monitoring across the coastal United States. MARINE POLLUTION BULLETIN 2023; 196:115558. [PMID: 37757532 PMCID: PMC10845072 DOI: 10.1016/j.marpolbul.2023.115558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
The Geostationary Littoral Imaging and Monitoring Radiometer (GLIMR) will provide unique high temporal frequency observations of the United States coastal waters to quantify processes that vary on short temporal and spatial scales. The frequency and coverage of observations from geostationary orbit will improve quantification and reduce uncertainty in tracking water quality events such as harmful algal blooms and oil spills. This study looks at the potential for GLIMR to complement existing satellite platforms from its unique geostationary viewpoint for water quality and oil spill monitoring with a focus on temporal and spatial resolution aspects. Water quality measures derived from satellite imagery, such as harmful algal blooms, thick oil, and oil emulsions are observable with glint <0.005 sr-1, while oil films require glint >10-5 sr-1. Daily imaging hours range from 6 to 12 h for water quality measures, and 0 to 6 h for oil film applications throughout the year as defined by sun glint strength. Spatial pixel resolution is 300 m at nadir and median pixel resolution was 391 m across the entire field of regard, with higher spatial resolution across all spectral bands in the Gulf of Mexico than existing satellites, such as MODIS and VIIRS, used for oil spill surveillance reports. The potential for beneficial glint use in oil film detection and quality flagging for other water quality parameters was greatest at lower latitudes and changed location throughout the day from the West and East Coasts of the United States. GLIMR scan times can change from the planned ocean color default of 0.763 s depending on the signal-to-noise ratio application requirement and can match existing and future satellite mission regions of interest to leverage multi-mission observations.
Collapse
Affiliation(s)
- Blake A Schaeffer
- US EPA, Office of Research and Development, Durham, NC 27709, United States of America.
| | - Peter Whitman
- Oak Ridge Institute for Science and Education, US EPA, Durham, NC 27709, United States of America
| | - Ryan Vandermeulen
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Silver Spring, MD, United States of America; Science Systems and Applications, Inc., Lanham, MD, United States of America
| | - Chuanmin Hu
- College of Marine Science, University of South Florida, St. Petersburg, FL, United States of America
| | - Antonio Mannino
- National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD, United States of America
| | - Joseph Salisbury
- University of New Hampshire, Durham, NH, United States of America
| | | | - Robyn Conmy
- US EPA, Office of Research and Development, Cincinnati, OH 45268, United States of America
| | - Megan Coffer
- National Oceanic and Atmospheric Administration, NESDIS Center for Satellite Applications and Research, Greenbelt, MD, United States of America; Global Science and Technology Inc., Durham, NC, United States of America
| | - Wilson Salls
- US EPA, Office of Research and Development, Durham, NC 27709, United States of America
| | - Hannah Ferriby
- Tetra Tech, Research Triangle Park, NC 27709, United States of America
| | - Natalie Reynolds
- RTI International, Research Triangle Park, NC, United States of America
| |
Collapse
|
5
|
Xiong J, Xue K, Li J, Hu M, Li J, Wang X, Lin C, Ma R, Chen L. Vertical distribution analysis and total mass estimation of nitrogen and phosphorus in large shallow lakes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118465. [PMID: 37418911 DOI: 10.1016/j.jenvman.2023.118465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/25/2023] [Accepted: 06/17/2023] [Indexed: 07/09/2023]
Abstract
Analysing the vertical distribution of nutrient salts and estimating the total mass of lake nutrients is helpful for the management of lake nutrient status and the formulation of drainage standards in basins. However, studies on nitrogen (N) and phosphorus (P) in lakes have focused on obtaining measures of N and P concentrations, but no understanding exists on the vertical distribution of N and P in the entire water column. The present study proposes algorithms for estimating the total masses of N/P per unit water column (ALGO-TNmass/ALGO-TPmass) for shallow eutrophic lakes. Using Lake Taihu as an example, the total masses of nutrients in Lake Taihu in the historical period were obtained, and the algorithm performance was discussed. The results showed that the vertical distribution of nutrients decreased with increasing depth and exhibited a quadratic distribution. Surface nutrients and chlorophyll-a concentrations play important roles in the vertical distribution of nutrients. Based on conventional surface water quality indicators, algorithms for the vertical nutrient concentration in Lake Taihu were proposed. Both algorithms had good accuracy (ALGO-TNmass R2 > 0.75, RMSE <0.57; ALGO-TPmass R2 > 0.80, RMSE ≤0.50), the ALGO-TPmass had better applicability than the ALGO-TNmass, and had good accuracy in other shallow lakes. Therefore, deducing the TPmass using conventional water quality indicators in surface water, which not only simplifies the sampling process but also provides an opportunity for remote sensing technology to monitor the total masses of nutrients, is feasible. The long-term average total mass of N was 11,727 t, showing a gradual downward trend before 2010, after which it stabilised. The maximum and minimum intra-annual total N masses were observed in May and November, respectively. The long-term average total mass of P was 512 t, showing a gradual downward trend before 2010, and a slow upward trend thereafter. The maximum and minimum intra-annual total masses of P occurred in August and February or May, respectively. The correlation between the total mass of N and meteorological conditions was not obvious, whereas some influence on the total mass of P was evident, particularly water level and wind speed.
Collapse
Affiliation(s)
- Junfeng Xiong
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Kun Xue
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jing Li
- Hydrology and Water Resources Department, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Minqi Hu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jiaxin Li
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaoyang Wang
- College of Geometrics, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Chen Lin
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Ronghua Ma
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Lei Chen
- State Key Laboratory of Water Quality Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
6
|
Xue K, Ma R, Shen M, Wu J, Hu M, Guo Y, Cao Z, Xiong J. Horizontal and vertical migration of cyanobacterial blooms in two eutrophic lakes observed from the GOCI satellite. WATER RESEARCH 2023; 240:120099. [PMID: 37216785 DOI: 10.1016/j.watres.2023.120099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Under the variations of natural conditions (temperature, wind speed, light, et al.) and self-regulation of buoyancy, cyanobacterial blooms can change rapidly in a short time. The Geostationary Ocean Color Imager (GOCI) can provide hourly monitoring of the dynamics of algal blooms (eight times per day), and has potential in observing the horizontal and vertical movement of cyanobacterial blooms. Based on the fractional floating algae cover (FAC), the diurnal dynamics and migration of floating algal blooms were evaluated, and the horizontal and vertical migration speed of phytoplankton was estimated from the proposed algorithm in two eutrophic lakes, Lake Taihu and Lake Chaohu in China. The locations, number, and area of algal bloom patches showed the hotspots and horizontal movement of bloom patches. The spatial and seasonal variations of the vertical velocities indicated that both the rising and sinking speed were higher in summer and autumn than those in spring and winter. The factors affecting diurnal horizontal and vertical migrations of phytoplankton were analyzed. Diffuse horizontal irradiance (DHI), direct normal irradiance (DNI), and temperature had significant positive relationships with FAC in the morning. Wind speed contributed 18.3 and 15.1% to the horizontal movement speed in Lake Taihu and Lake Chaohu, respectively. The rising speed was more related to DNI and DHI in Lake Taihu and Lake Chaohu with contribution of 18.1 and 16.6%. The horizontal and vertical movement of algae provide important information for understanding phytoplankton dynamics and the prediction and warning of algal blooms in lake management.
Collapse
Affiliation(s)
- Kun Xue
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ronghua Ma
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, Nanjing 211135, China.
| | - Ming Shen
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jinghui Wu
- Lamont Doherty Earth Observatory at Columbia University, NY 10964, USA
| | - Minqi Hu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yuyu Guo
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhigang Cao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Junfeng Xiong
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
7
|
Zeng S, Qin Z, Ruan B, Lei S, Yang J, Song W, Sun Q. Long-term dynamics and drivers of particulate phosphorus concentration in eutrophic lake Chaohu, China. ENVIRONMENTAL RESEARCH 2023; 221:115219. [PMID: 36608765 DOI: 10.1016/j.envres.2023.115219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Particulate phosphorus (PP) plays an important biological role in the eutrophication process, and is thus an important water quality parameter for assessing climatic change and anthropogenic activity factors that affect aquatic ecosystems. Here, we used 20-year Moderate Resolution Imaging Spectroradiometer (MODIS) data to explore the patterns and trends of PP concentration (CPP) in eutrophic Lake Chaohu based on a new empirical model. The validation results indicated that the developed model performed satisfactorily in estimating CPP, with a mean absolute percentage error of 31.89% and root mean square error of 0.022 mg/L. Long-term MODIS observations (2000-2019) revealed that the CPP of Lake Chaohu has experienced an overall increasing trend and distinct spatiotemporal heterogeneity. The driving factor analysis revealed that the chemical fertilizer consumption, municipal wastewater, industrial sewage, precipitation, and air temperature were the five potential driving factors and collectively explained more than 81% of the long-term variation in CPP. This study provides the long-term datasets of CPP in inland waters and new insights for future water eutrophication control and restoration efforts.
Collapse
Affiliation(s)
- Shuai Zeng
- South China Institute of Environmental Science, Ministry of Ecology and Environment, NO.18 Ruihe RD., Guangzhou, 510535, PR China
| | - Zihong Qin
- South China Institute of Environmental Science, Ministry of Ecology and Environment, NO.18 Ruihe RD., Guangzhou, 510535, PR China
| | - Baozhen Ruan
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou, 510006, PR China
| | - Shaohua Lei
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210029, PR China
| | - Jian Yang
- South China Institute of Environmental Science, Ministry of Ecology and Environment, NO.18 Ruihe RD., Guangzhou, 510535, PR China
| | - Weiwei Song
- South China Institute of Environmental Science, Ministry of Ecology and Environment, NO.18 Ruihe RD., Guangzhou, 510535, PR China
| | - Qiang Sun
- South China Institute of Environmental Science, Ministry of Ecology and Environment, NO.18 Ruihe RD., Guangzhou, 510535, PR China.
| |
Collapse
|
8
|
Wang S, Zhang X, Wang C, Chen N. Temporal continuous monitoring of cyanobacterial blooms in Lake Taihu at an hourly scale using machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159480. [PMID: 36265631 DOI: 10.1016/j.scitotenv.2022.159480] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacterial blooms in most lakes exhibit extraordinary changes in time and space. Herein, a cyanobacterial prediction model was designed for Lake Taihu based on a machine learning method. This method can generate temporally continuous (24 moments throughout the day) cyanobacterial data at a fine spatial scale of 9 km. The hourly meteorological data for 24 moments of the day were obtained from ERA5-Land data. Areal coverage of cyanobacterial blooms was derived from the hourly Geostationary Ocean Color Imager reflectance data observed only eight times a day (from ~8:00 to ~15:00, UTC+8). The cyanobacterial and meteorological data of eight moments in Lake Taihu from 2011 to 2020 were used to design the prediction model. The results were compared and validated employing nine training strategies to determine the best cyanobacterial prediction model for Lake Taihu (R = 0.42; root mean square error = 0.10). With the best-fitted model utilizing meteorological data (2011-2020), the area coverage of cyanobacterial blooms at the other 16 moments during a day were estimated. Based on this, the regional and temporal characteristics of diurnal bloom variation were evaluated at an hourly scale. The results indicated that the hourly variations in the areal coverage of cyanobacterial blooms at 24 moments of the day had similar patterns in each subregion of Lake Taihu with minor seasonal variations. The six meteorological variables adopted to construct the model had similar diurnal changes but with diverse value ranges among the seasons. Further analysis revealed that three meteorological variables (temperature, surface pressure, and evaporation) were positively related to diurnal bloom variations at an hourly scale. Overall, these results illustrate that meteorological conditions can affect the occurrence of cyanobacterial blooms at multiple time scales (e.g., hourly, daily, or monthly). The developed cyanobacterial prediction model can provide cyanobacterial data when cyanobacterial data is unavailable for the target waterbody.
Collapse
Affiliation(s)
- Siqi Wang
- State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430079, China; Hubei Luojia Laboratory, Wuhan University, Wuhan 430079, China.
| | - Xiang Zhang
- Hubei Luojia Laboratory, Wuhan University, Wuhan 430079, China; National Engineering Research Centre of Geographic Information System, China University of Geosciences, Wuhan 430074, China
| | - Chao Wang
- State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430079, China; Hubei Luojia Laboratory, Wuhan University, Wuhan 430079, China
| | - Nengcheng Chen
- State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430079, China; Hubei Luojia Laboratory, Wuhan University, Wuhan 430079, China; National Engineering Research Centre of Geographic Information System, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
9
|
Wu K, Tang S, Wu X, Zhu J, Song J, Zhong Y, Zhou J, Cai Z. Colony formation of Phaeocystis globosa: A case study of evolutionary strategy for competitive adaptation. MARINE POLLUTION BULLETIN 2023; 186:114453. [PMID: 36495614 DOI: 10.1016/j.marpolbul.2022.114453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Some algae possess a multi-morphic life cycle, either in the form of free-living solitary cells or colonies which constantly occur in algal blooms. Though colony formation seems to consume extra energy and materials, many algae tend to outbreak in form of colonies. Here, we hypothesized that colony formation is a selected evolutionary strategy to improve population competitiveness and environmental adaptation. To test the hypothesis, different sizes of colonies and solitary cells in a natural bloom of Phaeocystis globosa were investigated. The large colony showed a relatively low oxidant stress level, a nutrient trap effect, and high nutrient use efficiency. The colonial nitrogen and phosphorus concentrations were about 5-10 times higher than solitary cell phycosphere and cellular nutrient allocation decreased with the enlargement of the colonial diameter following the economies of scale law. These features provide the colony with monopolistic competence and could function as an evolutionary strategy for competitive adaptation.
Collapse
Affiliation(s)
- Kebi Wu
- School of Life Sciences, Tsinghua University, Beijing 100086, China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Si Tang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaotian Wu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jianming Zhu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Junting Song
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yanlin Zhong
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|