1
|
Liu J, Zhang Y, Huang J, Yang L, Yang Y, Deng G, Hu D, Yan C. Fe oxides nano-modified pumice enhances hydrogenotrophic methanogenesis in anaerobic digestion: Performance and mechanism of microbial community. J Environ Sci (China) 2025; 154:114-127. [PMID: 40049860 DOI: 10.1016/j.jes.2024.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 05/13/2025]
Abstract
Anaerobic digestion (AD), as an eco-friendly biological process, shows potential for the decomposition of leachate produced by waste incineration power plants. In this study, the effects of Fe oxides nano-modified pumice (FNP) were investigated on the fresh leachate AD process. Firstly, a simple hydrothermal method was used to prepare FNP, then introduced into the UASB reactor to evaluate its AD efficiency. Results showed that the inclusion of FNP could shorten the lag phase by 10 days compared to the control group. Furthermore, cumulative methane production in the FNP group was enhanced by 20.11%. Mechanistic studies suggested that hydrogenotrophic methanogenesis in the FNP group was more pronounced due to the influence of key enzymes (i.e., dehydrogenase and coenzyme F420). Microbial community analysis demonstrated that FNP could enhance the abundance of Methanosarcina, Proteobacteria, Sytrophomonas, and Limnobacter, which might elevate enzyme activity involved in methane production. These findings suggest that FNP might mediate interspecies electron transfer among these microorganisms, which is essential for efficient leachate treatment.
Collapse
Affiliation(s)
- Jiaqi Liu
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Yong Zhang
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; Pollution Control and Resource Utilization in Industrial Parks Joint Laboratory of Anhui Province, Hefei 230601, China.
| | - Jian Huang
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; Pollution Control and Resource Utilization in Industrial Parks Joint Laboratory of Anhui Province, Hefei 230601, China
| | - Lili Yang
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Yuzhou Yang
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Guohao Deng
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Dingcheng Hu
- CSCEC AECOM Consultants Co., Ltd., Lanzhou 730000, China
| | - Chuanchuan Yan
- CSCEC AECOM Consultants Co., Ltd., Lanzhou 730000, China
| |
Collapse
|
2
|
Xu W, Wu L, Geng M, Zhou J, Bai S, Nguyen DV, Ma R, Wu D, Qian J. Biochar@MIL-88A(Fe) accelerates direct interspecies electron transfer and hydrogen transfer in waste activated sludge anaerobic digestion: Exploring electron transfer and biomolecular mechanisms. ENVIRONMENTAL RESEARCH 2025; 268:120810. [PMID: 39793869 DOI: 10.1016/j.envres.2025.120810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/13/2025]
Abstract
Adding additives exogenously is an effective strategy to enhance methanogenic activity and improve AD stability. Corn straw-based biochar@MIL-88A(Fe) (BM) was synthesized herewith and used as an exogenous additive to boost methane (CH4) production. After adding BM at 250 mg/g WAS VS, the accumulative CH4 production and maximum CH4 yield increased by 1.2 and 1.9 times, respectively, with CH₄ comprising 88% of the biogas. BM accelerated electron transfer through its unsaturated sites and surface functional groups, while also enhancing metabolic functions for facilitating enzymatic activities and converting organic substrates. The abundance of syntrophic bacteria and methanogen were higher after BM addition. BM-mediated DIET and IHT pathways effectively oxidized propionate and butyrate, promoting methane generation. Higher expression of key genes involved in methane production correlated with shifts in microbial structure and increased CH4 yield after BM dosage. The invention of BM may provide more solutions for addressing low energy recovery during AD.
Collapse
Affiliation(s)
- Weihang Xu
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China
| | - Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Mengqi Geng
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China
| | - Junmei Zhou
- Sichuan Rongshi Environmental Protection Technology Co., Ltd, Chengdu, China
| | - Sai Bai
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China
| | - Duc Viet Nguyen
- Center for Environmental Energy Research, Ghent University Global Campus, Incheon, South Korea; Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Rui Ma
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China
| | - Di Wu
- Center for Environmental Energy Research, Ghent University Global Campus, Incheon, South Korea; Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Jin Qian
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China.
| |
Collapse
|
3
|
Liu Y, He L, Liu M, Wang Y, Li L, Gu L, Li J, Liu S, He Q. Different regulation strategies of anaerobic digestion by AC/CaO 2 and Fe 3O 4/CaO 2: Reactive oxygen species induction, methanogenic performance, and microbial response. BIORESOURCE TECHNOLOGY 2024; 406:130977. [PMID: 38897546 DOI: 10.1016/j.biortech.2024.130977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
This study examined the combination of activated carbon and magnetite with calcium peroxide in enhancing the anaerobic digestion (AD) performance of food waste (FW). The individual mechanisms of these two approaches were also clarified. The results indicated that AC/CaO2 achieved the highest specific methane yield of 434.4 mL/g VS, followed by Fe3O4/CaO2 (416.9 mL/g VS). Both were significantly higher than other groups (control, AC, Fe3O4, and CaO2 were 330.1, 341.4, 342.8, and 373.2 mL/g VS, respectively). Additionally, compared to Fe3O4/CaO2, AC/CaO2 further increased reactive oxygen species (ROS), thereby enhancing the hydrolytic acidification process. Simultaneously, the higher ROS levels of Fe3O4/CaO2 and AC/CaO2 promoted the formation of microbial aggregates and established a more robust enzymatic defense system and unique damage repair strategy. The research comparatively analyzed the synergistic mechanism of iron-based and carbon-based conductive materials with CaO2, providing new perspectives for optimizing the AD of FW.
Collapse
Affiliation(s)
- Yongli Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Linyan He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Miao Liu
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, 174 Shapingba Road, 400045, PR China
| | - Yi Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Lin Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China.
| | - Jinze Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Shaowu Liu
- Chongqing Water Environment Group, 80 Huju Road, 400043, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| |
Collapse
|
4
|
Liu C, Ma X, Xie J, Wang J, Wang H, Wang Y. Impact of waste separation on the biological nitrogen removal in a MSW incineration leachate treatment plant: Performance and microbial community shift. ENVIRONMENTAL RESEARCH 2024; 244:117876. [PMID: 38072101 DOI: 10.1016/j.envres.2023.117876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
After waste separation program was launched in China in 2019, incineration leachate treatment plants are facing a challenge of effective removal of nitrogen from leachate due to lack of sufficient carbon source. In this study, the performance of a biological incineration leachate treatment process (anaerobic digestion (AD) - two-stage anoxic/aerobic (A/O) process) was evaluated after adopting the waste separation program, and the changes in the microbial community and function was analyzed using 16S rRNA amplicon sequencing technology. Results showed that after the waste separation, the influent chemical oxygen demand (COD) concentration reduced by 90% (from 19,300 to 1780 mg L-1) with the COD/N ratio decreased from 12.3 to 1.4, which led to a decreased nitrogen removal efficiency (NRE) of <65% and a high effluent NO3- accumulation (445.8-986.5 mg N·L-1). By bypassing approximately 60% of the influent to the two-stage A/O process and adding external carbon source (glucose), the mean NRE increased to 86.3 ± 7.4%. Spearman's analysis revealed that refractory compounds in the bypassed leachate were closely related to the variations in bacterial community composition and nitrogen removal function in the two-stage A/O, leading to a weakened correlation of microbial network. KEGG functional pathway predictions based on Tax4Fun also confirmed that the bypassed leachate induced xenobiotic compounds to the two-stage A/O process, the relative abundance of nitrogen metabolism was reduced by 32%, and more external carbon source was required to ensure the satisfactory nitrogen removal of >80%. The findings provide a good guide for regulation of incineration leachate treatment processes after the waste separation.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China; Shanghai Youlin Zhuyuan Sewage Investment and Development Co. Ltd., Shanghai, 200125, PR China
| | - Xiaoqian Ma
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China; Xiamen Tungsten Co., Ltd, Xiamen, 361009, PR China.
| | - Junxiang Xie
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Jialin Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China.
| |
Collapse
|
5
|
Li W, Liu Y, Wu B, Gu L, Deng R. Upgrade the high-load anaerobic digestion and relieve acid stress through the strategy of side-stream micro-aeration: biochemical performances, microbial response and intrinsic mechanisms. WATER RESEARCH 2022; 221:118850. [PMID: 35949076 DOI: 10.1016/j.watres.2022.118850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/03/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
In high-load anaerobic digestion such as in kitchen waste, side-stream micro-aeration (SMA) shows excellent operational performance to direct micro-aeration (DMA). It immediately restores the acidification to stability. Methanogenic performance remained stable when organic load ratios (OLR) was further increased to 5.5 g VS/L. Enhanced enzyme activity, microbial aggregation, and proliferation of bacteria and archaea were observed in SMA. The results indicates that SMA enriched Methanosaeta (relative abundance exceeded 93%) and induced the change of the main methanogenic pathway to acetoclastic methanogenesis. Mechanisms was further explored by using metagenomic analysis, and the results show SMA avoids mass formation of ROS (reactive oxygen species) by cycling the aerated slurry, and retains benefits of trace O2 on material and energic metabolism, which poses great application potentials and deserves further investigation.
Collapse
Affiliation(s)
- Wen Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Yongli Liu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Baocun Wu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Li Gu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China.
| | - Rui Deng
- School of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing 400074, PR China
| |
Collapse
|