1
|
Mazumder S, Bhattacharya D, Lahiri D, Nag M. Rhizobacteria and Arbuscular Mycorrhizal Fungi (AMF) Community in Growth Management and Mitigating Stress in Millets: A Plant-Soil Microbe Symbiotic Relationship. Curr Microbiol 2025; 82:242. [PMID: 40220175 DOI: 10.1007/s00284-025-04230-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
Millets, commonly referred to as the "future crop," provide a practical solution for addressing hunger and reducing the impact of climate change. The nutritional and physiological well-being of soil is crucial for the survival and resilience of plants while countering environmental stressors, both abiotic and biotic, that arise from the current climate change scenario. The health and production of millet are directly influenced by the soil microbial community. Millets have several plant growth-promoting rhizobacteria such as Pseudomonas, Azotobacter, Bacillus, Rhizobium, and fungi like Penicillium sp., that increase nutrient uptake, growth, and productivity and protect against abiotic and biotic stressors. Rhizobacteria enhance plant productivity by many mechanisms, including the release of plant hormones and secondary metabolic compounds, the conversion of nutrients into soluble forms, the ability to fix nitrogen, and the provision of resistance to both biotic and abiotic stresses. The microbial populations in the rhizosphere have a significant impact on the growth and production of millet such as enhancing soil fertility and plant nourishment. Additionally, arbuscular mycorrhizal fungi invade the roots of millets. The taxon Glomus is the most prevalent in association with millet plant soil, followed by Acaulospora, Funneliformis, and Rhizophagus. The symbiotic relationship between arbuscular mycorrhizal fungi and millet plants improves plant growth and nutrient absorption under diverse soil and environmental circumstances, including challenging abiotic factors like drought and salinity.
Collapse
Affiliation(s)
- Saikat Mazumder
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India
- Department of Food Technology, Guru Nanak Institute of Technology, Kolkata, West Bengal, India
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India.
| | - Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India.
| |
Collapse
|
2
|
Wang H, Chen Y. Protecting plants from pathogens through arbuscular mycorrhiza: Role of fungal diversity. Microbiol Res 2024; 289:127919. [PMID: 39342745 DOI: 10.1016/j.micres.2024.127919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi play a crucial role in protecting host plants from pathogens. AM fungal taxa show varying abilities to hinder the development of plant pathogens with various underlying mechanisms of action, and plant defense through mycorrhization should be viewed to have a continuum of several possible mechanisms. However, an additive or synergistic effect is not always achieved. This review examines the potential mechanisms by which AM fungi enhance plant tolerance and defense against pathogens, as well as the possible interactive mechanisms among AM fungal traits that may lead to facilitative and antagonistic effect on plant defense outcomes. It also provides evidence demonstrating the benefits of AM fungal consortia used so far to protect crop plants from various pathogens. It concludes by proposing some biotechnological applications aimed at unraveling the connections between AM fungal diversity and their function to enhance efficacy of plant pathogen protection.
Collapse
Affiliation(s)
- Hao Wang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Yinglong Chen
- UWA School of Agriculture and Environment, and UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia.
| |
Collapse
|
3
|
Lu Z, Wang H, Wang Z, Liu J, Li Y, Xia L, Song S. Critical steps in the restoration of coal mine soils: Microbial-accelerated soil reconstruction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122200. [PMID: 39182379 DOI: 10.1016/j.jenvman.2024.122200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/04/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024]
Abstract
Soil reconstruction is a critical step in the restoration of environments affected by mining activities. This paper provides a comprehensive review of the significant role that microbial processes play in expediting soil structure formation, particularly within the context of mining environment restoration. Coal gangue and flotation tailings, despite their low carbon content and large production volumes, present potential substrates for soil reclamation. These coal-based solid waste materials can be utilized as substrates to produce high-quality soil and serve as an essential carbon source to enhance poor soil conditions. However, extracting active organic carbon components from coal-based solid waste presents a significant challenge due to its complex mineral composition. This article offers a thorough review of the soilization process of coal-based solid waste under the influence of microorganisms. It begins by briefly introducing the primary role of in situ microbial remediation technology in the soilization process. It then elaborates on various improvements to soil structure under the influence of microorganisms, including the enhancement of soil aggregate structure and soil nutrients. The article concludes with future recommendations aimed at improving the efficiency of soil reconstruction and restoration, reducing environmental risks, and promoting its application in complex environments. This will provide both theoretical and practical support for more effective environmental restoration strategies.
Collapse
Affiliation(s)
- Zijing Lu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| | - Hengshuang Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| | - Zhixiang Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| | - Jiazhi Liu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| | - Yinta Li
- Department of Food Engineering, Weihai Ocean Vocational College, Haiwan South Road 1000, Weihai, 264300, Shandong, China
| | - Ling Xia
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China.
| | - Shaoxian Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| |
Collapse
|
4
|
Feng F, Sun J, Ding L, Su W, Zhou Y, Tao Z, Shang W, Li Y. Migration patterns of heavy metals from solid waste stockpile soils by native plants for ecological restoration in arid and semi-arid regions of Northwest China. ENVIRONMENTAL RESEARCH 2024; 251:118607. [PMID: 38431071 DOI: 10.1016/j.envres.2024.118607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Ecological remediation with native plants is the main measure to control the pollution of solid waste in Northwest China. However, the heavy metal transport characteristics of these native plants are still unidentified. This study analyzed the distribution of 16 heavy metals in native plants in the desulfurization gypsum yard (DGY), the gangue yard (GY) and the fly ash yard (FAY). The results showed that the soil contained many heavy metals in high concentrations. For instance, As concentrations were comparable to the global soil background values, whereas Cr and Mn concentrations in the area were 2-3 times greater than the global soil background values. The content of heavy metals in the plant root system increased first, then decreased as the distance from the yard increased. Ni, Pb, and Cd migrated well in Artemisia frigida Willd and Artemisia sieversiana Ehrhart ex Willd, with A. sieversiana showing a particularly strong migration in GY. A. sieversiana, on the other hand, was more successful at migrating Cd at DGY and had a similar capability for Mg migration in all three locations. Festuca rubra L was potentially suitable for planting in GY for Ni removal. In conclusion, the migration patterns of different heavy metals were not alike for plants in the three landfills. The results provided a basis for plant selection for ecological restoration in arid and semi-arid regions.
Collapse
Affiliation(s)
- Feisheng Feng
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui Province, China
| | - Jie Sun
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui Province, China
| | - Liao Ding
- Shaanxi Deyuan Fu1gu Energy Co. Ltd. China Energy Investment, Shaanxi Province, China.
| | - Wanli Su
- Institute of Coal Chemical Industry Technology, China Energy Group, Ningxia Coal Industry Co., Ltd, Yinchuan, China
| | - Yong Zhou
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui Province, China
| | - Zenghao Tao
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui Province, China
| | - Wenqin Shang
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei, Anhui Province, China
| | - Yang Li
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui Province, China
| |
Collapse
|
5
|
Li Q, Chang J, Li L, Lin X, Li Y. Soil amendments alter cadmium distribution and bacterial community structure in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171399. [PMID: 38458464 DOI: 10.1016/j.scitotenv.2024.171399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
Soil amendments play a pivotal role in ensuring the safety of food production by inhibiting the transfer of heavy metal ions from soils to crops. Nevertheless, their impact on soil characteristics and the microbial community and their role in reducing cadmium (Cd) accumulation in rice remain unclear. In this study, pot experiments were conducted to investigate the effects of three soil amendments (mineral, organic, and microbial) on the distribution of Cd speciation, organic components, iron oxides, and microbial community structure. The application of soil amendments resulted in significant reductions in the soil available Cd content (16 %-51 %) and brown rice Cd content (16 %-78 %), facilitating the transformation of Cd from unstable forms (decreasing 10 %-20 %) to stable forms (increasing 77 %-150 %) in the soil. The mineral and organic amendments increased the soil cation exchange capacity (CEC) and plant-derived organic carbon (OC), respectively, leading to reduced Cd accumulation in brown rice, while the microbial amendment enhanced OC complexity and the abundances of Firmicutes and Bacteroidota, contributing to the decreased rice Cd uptake. The synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectroscopy indicated that soil amendments regulated soil Cd species by promoting iron oxides and OC coupling. Moreover, both organic and microbial amendments significantly reduced the diversity and richness of the bacterial communities and altered their compositions and structures, by increasing the relative abundances of Bacteroidota and Firmicutes and decreasing those of Acidobacteria, Actinobacteria, and Myxococcota. Soil microbiome analysis revealed that the increase of Firmicutes and Bacteroidota associated with Cd adsorption and sequestration contributed to the suppression of soil Cd reactivity. These findings offer valuable insights into the potential mechanisms by which soil amendments regulate the speciation and bioavailability of Cd, and improve the bacterial communities, thereby providing guidance for agricultural management practices.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jingjing Chang
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Linfeng Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiaoyang Lin
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yichun Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
6
|
Sun W, Shahrajabian MH. The Application of Arbuscular Mycorrhizal Fungi as Microbial Biostimulant, Sustainable Approaches in Modern Agriculture. PLANTS (BASEL, SWITZERLAND) 2023; 12:3101. [PMID: 37687348 PMCID: PMC10490045 DOI: 10.3390/plants12173101] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Biostimulant application can be considered an effective, practical, and sustainable nutritional crop supplementation and may lessen the environmental problems related to excessive fertilization. Biostimulants provide beneficial properties to plants by increasing plant metabolism, which promotes crop yield and improves the quality of crops; protecting plants against environmental stresses such as water shortage, soil salinization, and exposure to sub-optimal growth temperatures; and promoting plant growth via higher nutrient uptake. Other important benefits include promoting soil enzymatic and microbial activities, changing the architecture of roots, increasing the solubility and mobility of micronutrients, and enhancing the fertility of the soil, predominantly by nurturing the development of complementary soil microbes. Biostimulants are classified as microbial, such as arbuscular mycorrhizae fungi (AMF), plant-growth-promoting rhizobacteria (PGPR), non-pathogenic fungi, protozoa, and nematodes, or non-microbial, such as seaweed extract, phosphite, humic acid, other inorganic salts, chitin and chitosan derivatives, protein hydrolysates and free amino acids, and complex organic materials. Arbuscular mycorrhizal fungi are among the most prominent microbial biostimulants and have an important role in cultivating better, healthier, and more functional foods in sustainable agriculture. AMF assist plant nutrient and water acquisition; enhance plant stress tolerance against salinity, drought, and heavy metals; and reduce soil erosion. AMF are proven to be a sustainable and environmentally friendly source of crop supplements. The current manuscript gives many examples of the potential of biostimulants for the production of different crops. However, further studies are needed to better understand the effectiveness of different biostimulants in sustainable agriculture. The review focuses on how AMF application can overcome nutrient limitations typical of organic systems by improving nutrient availability, uptake, and assimilation, consequently reducing the gap between organic and conventional yields. The aim of this literature review is to survey the impacts of AMF by presenting case studies and successful paradigms in different crops as well as introducing the main mechanisms of action of the different biostimulant products.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-13-4260-83836
| | | |
Collapse
|
7
|
Li X, Zhou M, Shi F, Meng B, Liu J, Mi Y, Dong C, Su H, Liu X, Wang F, Wei Y. Influence of arbuscular mycorrhizal fungi on mercury accumulation in rice (Oryza sativa L.): From enriched isotope tracing perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114776. [PMID: 36931088 DOI: 10.1016/j.ecoenv.2023.114776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
The microorganisms that co-exist between soil and rice systems in heavy metal-contaminated soil environments play important roles in the heavy metal pollution states of rice, as well as in the growth of the rice itself. In this study, in order to further examine the effects of soil microorganisms on the mercury (Hg) uptake of rice plants and determine potential soil phytoremediation agents, an enriched 199Hg isotope was spiked in a series of pot experiments to trace the absorption and migration of Hg and rice growth in the presence of arbuscular mycorrhizal fungi (AMF). It was observed that the AMF inoculations significantly reduced the Hg concentration in the rice. The Hg concentration in rice in the AMF inoculation group was between 52.82% and 96.42% lower than that in the AMF non-inoculation group. It was also interesting to note that the presence of AMF tended to cause Hg (especially methyl-Hg (Me199Hg)) to migrate and accumulate in the non-edible parts of the rice, such as the stems and leaves. Under the experimental conditions selected in this study, the proportion of Me199Hg in rice grains decreased from 9.91% to 27.88%. For example, when the exogenous Hg concentration was 0.1 mg/kg, the accumulated methyl-Hg content in the grains of the rice in the AMF inoculation group accounted for only 20.19% of the Me199Hg content in the rice plants, which was significantly lower than that observed in the AMF non-inoculated group (48.07%). AMF also inhibited the absorption of Hg by rice plants, and the decrease in the Hg concentration levels in rice resulted in significant improvements in growth indices, including biomass and micro-indexes, such as antioxidant enzyme activities. The improvements occurred mainly because the AMF formed symbiotic structures with the roots of rice plants, which fixed Hg in the soil. AMF also reduce the bioavailability of Hg by secreting a series of substances and changing the physicochemical properties of the rhizosphere soil. These findings suggest the possibility of using typical co-existing microorganisms for the remediation of soil heavy metal contamination and provide valuable insights into reducing human Hg exposure through rice consumption.
Collapse
Affiliation(s)
- Xinru Li
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Min Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Feng Shi
- National Center for Science & Technology Evaluation, Beijing 100081, PR China
| | - Bo Meng
- Institute of Geochemistry Chinese Academy of Sciences, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jiang Liu
- Institute of Geochemistry Chinese Academy of Sciences, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Yidong Mi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Cuimin Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Hailei Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xuesong Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fanfan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Yuan Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|