1
|
Zhang Y, Wang T, Wang L, Zhang Y, Liu Z, Zhong M, Huang H, Guo P, Luo D, Zhang J, Xu Y, Chen J. Enhancing aerobic composting of cow dung and wheat straw with nanobubble water: Improved lignocellulose degradation and nutrient enrichment for increased crop biomass. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 198:1-11. [PMID: 40014881 DOI: 10.1016/j.wasman.2025.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/12/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Cow dung and wheat straw are rich in lignocellulose, which has a complex structure, making it difficult to biodegrade. This study investigated the promotion of composting effectiveness and product fertility by adding nanobubble water (Air, CO2, He, and N2) during aerobic composting of cow dung and wheat straw. Nanobubble water prolonged the high-temperature period by 1-2 days, increased the activity of soil urease and soil ligninase, reduced the lignocellulose content by 1.4 %-6.1 %, and increased the total potassium/total phosphorus ratio of the final compost products by 1.8 %-3.5 %/31.6 %-43.0 %. Nanobubble water of N2 significantly increased the total nitrogen of final compost products by 8.3 %. The lignocellulose content was significantly positively correlated with the moisture content, but significantly negatively correlated with the relative abundances of Georgenia and Marinimicrobium. The final compost products of the nanobubble water groups significantly increased the total biomass of cabbage by 37.1 %-195.3 %. The results showed that adding nanobubble water to aerobic compost of cow dung and wheat straw improved the biodegradation of lignocellulose and enriched the nutrient elements (total nitrogen, total phosphorus, and total potassium) of the final compost products. Among the four types of nanobubble water, N2-containing nanobubble water is the most promising.
Collapse
Affiliation(s)
- Yu Zhang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Tianfeng Wang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Lingying Wang
- China National Nuclear Industry Corporation 404, Jiayuguan 735100, China
| | - Yuqian Zhang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zifan Liu
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Mudan Zhong
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Haizhou Huang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Peilin Guo
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Dan Luo
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jining Zhang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yuanshun Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Jixiang Chen
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
2
|
Zhang L, Xu W, Jiang J, Li R, Liang W. Nitrogen conversion and mechanisms related to reduced emissions by adding exogenous modified magnesium ore during aerobic composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 378:124550. [PMID: 40037242 DOI: 10.1016/j.jenvman.2025.124550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/03/2025] [Accepted: 02/11/2025] [Indexed: 03/06/2025]
Abstract
In this study, modified products with a higher specific surface area and pore volume were prepared by light burning magnesite (MS) to increase its magnesium content and surface activity. MS heated at 650 °C (MS650) was applied in aerobic composting to assess its effect on nitrogen transformation during composting and the possible related chemical and microbial mechanisms. Adding MS650 reduced the NH3 emissions (0.74-52.4%), N2O emissions (29.0-57.9%), and greenhouse gas emissions (41.8-60.3%), and its effect on reducing nitrogen emissions was negatively correlated with the amount added, where the optimum proportion of MS650 was 2.5%. Struvite precipitation and physical adsorption were the chemical mechanisms responsible for nitrogen retention. MS650 inhibited the growth of nitrifying, nitrate reducing, and denitrifying bacteria. The total organic carbon content, electrical conductivity, and N2O together explained most of the variation (52.7%) in nitrogen functional genes, followed by Proteobacteria (28.6%). These findings have important implications for reducing nitrogen and greenhouse gas emissions, and improving the quality of compost products.
Collapse
Affiliation(s)
- Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wanying Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiangxiang Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wen Liang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Lin B, Zhang Y, Hao Y, Lu M, Xiang H, Ding D, Niu S, Li K, Li J, Huang Z. Insights into nitrogen metabolism and humification process in aerobic composting facilitated by microbial inoculation. ENVIRONMENTAL RESEARCH 2025; 269:120894. [PMID: 39828197 DOI: 10.1016/j.envres.2025.120894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
To enhance the retention of compost nutrients, specifically in nitrogen metabolism and humification, compound microbial agents were added during the aerobic composting of bagasse pith and buffalo manure. The introduction of the microbial agent successfully colonized the mixture, boosted the degradation capacity of organic matter, and facilitated the formation of nitrogenous substances and humic substances (HSs). The incorporation of a composite microbial inoculum led to a substantial rise in total Kjeldahl nitrogen (TKN) by 62.04%, nitrate nitrogen (NO- 3-N) by 291.65%, and amino acid (AA) by 78.77%. Furthermore, this intervention resulted in achieving a humic acid (HA) to fulvic acid (FA) ratio of 1.64. Metagenomic sequencing revealed enhanced synergistic interactions among microorganisms through inoculation, increasing the abundance of functional genes related to nitrification and nitrogen fixation compared to the uninoculated control. Spearman correlation analysis identified unclassified_c__Deltaproteobacteria, unclassified_f__Planctomycetaceae, Chryseosolibacter, unclassified_f__Hyphomicrobiaceae as the principal producers of HA. This research provides insights into the interactions between nitrogen metabolism and humification in composting, aiming to effectively retain compost nutrients and support the long-term sustainability of agriculture.
Collapse
Affiliation(s)
- Binfeng Lin
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yu Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yuhao Hao
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Mengling Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Hongquan Xiang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - De Ding
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Shiyuan Niu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China; Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning, 530004, Guangxi, China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning, 530004, Guangxi, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China; Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning, 530004, Guangxi, China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning, 530004, Guangxi, China.
| | - Zhi Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China; Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning, 530004, Guangxi, China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning, 530004, Guangxi, China.
| |
Collapse
|
4
|
Liu S, Suo Y, Wang J, Chen B, Wang K, Yang X, Zhu Y, Zhang J, Lu M, Liu Y. Impact of Polystyrene Microplastics on Soil Properties, Microbial Diversity and Solanum lycopersicum L. Growth in Meadow Soils. PLANTS (BASEL, SWITZERLAND) 2025; 14:256. [PMID: 39861609 PMCID: PMC11768701 DOI: 10.3390/plants14020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
The pervasive presence of microplastics (MPs) in agroecosystems poses a significant threat to soil health and plant growth. This study investigates the effects of varying concentrations and sizes of polystyrene microplastics (PS-MPs) on the Solanum lycopersicum L.'s height, dry weight, antioxidant enzyme activities, soil physicochemical properties, and rhizosphere microbial communities. The results showed that the PS0510 treatment significantly increased plant height (93.70 cm, +40.83%) and dry weight (2.98 g, +100%). Additionally, antioxidant enzyme activities improved across treatments for S. lycopersicum L. roots. Physicochemical analyses revealed enhanced soil organic matter and nutrient levels, including ammonium nitrogen, phosphorus, and effective potassium. Using 16S rRNA sequencing and molecular ecological network techniques, we found that PS-MPs altered the structure and function of the rhizosphere microbial community associated with S. lycopersicum L. The PS1005 treatment notably increased microbial diversity and displayed the most complex ecological network, while PS1010 led to reduced network complexity and more negative interactions. Linear discriminant analysis effect size (LEfSe) analysis identified biomarkers at various taxonomic levels, reflecting the impact of PS-MPs on microbial community structure. Mantel tests indicated positive correlations between microbial diversity and soil antioxidant enzyme activity, as well as relationships between soil physicochemical properties and enzyme activity. Predictions of gene function revealed that PS-MP treatments modified carbon and nitrogen cycling pathways, with PS1005 enhancing methanogenesis genes (mcrABG) and PS1010 negatively affecting denitrification genes (nirK, nirS). This study provides evidence of the complex effects of PS-MPs on soil health and agroecosystem functioning, highlighting their potential to alter soil properties and microbial communities, thereby affecting plant growth.
Collapse
Affiliation(s)
- Shuming Liu
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China; (S.L.)
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Yan Suo
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Jinghuizi Wang
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Binglin Chen
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Kaili Wang
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Xiaoyu Yang
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Yaokun Zhu
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Jiaxing Zhang
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Mengchu Lu
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China; (S.L.)
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Yunqing Liu
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China; (S.L.)
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| |
Collapse
|
5
|
Wang X, You G, Liu C, Sun Y. Bioaugmentation strategies in co-composting anaerobically digested food waste with agricultural by-products: Enhancing fertilizer quality and microbial communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117539. [PMID: 39700777 DOI: 10.1016/j.ecoenv.2024.117539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Effective management of urban solid waste is critical for achieving sustainable development goals. One key aspect of this challenge is the recycling of anaerobically digested residues from anaerobic digestion of food waste, which plays a pivotal role in promoting sustainability. However, there is a gap in understanding the feasibility and effectiveness of converting these digested residues into valuable fertilizers through composting. Addressing this gap, the present study explored the potential of composting anaerobically digested residue and evaluated the quality of the co-compost products. In this study, we investigated the composting process using a mixture of rice straw, food waste, sheep manure and mature composted residues (RFM group) alongside the anaerobically digested residues. The results demonstrated that the composting process quickly reached the thermophilic stage, during which NH+4-N concentrations increased and C/N ratio decrease. The RFM group exhibited the highest humic acid content compared to other groups. Additionally, microbial analysis revealed key species such as Clostridium, Moheibacter, Bacillus, Thermobacillus, and Pseudogracilibacillus as major contributors to the composting process. The germination index (GI) test indicated that the co-composted residues were non-toxic to plants, suggesting their suitability as a fertilizer. All these works indicated that the addition of rice straw, food waste, and mature composted residues to anaerobically digested materials significantly enhanced the composting process, resulting in a high-quality co-compost. This approach not only provided a promising method for recycling food waste but also contributed to the broader goal of sustainable solid waste management.
Collapse
Affiliation(s)
- Xuezhi Wang
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Guyu You
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Chenchen Liu
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yuan Sun
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
6
|
Wang J, Huan C, Lyu Q, Tian X, Liu Y, Ji G, Yan Z. Efficacy of composite bacterial deodorant constructed with Camellia sinensis and its in-situ deodorization mechanism on pig manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 192:69-81. [PMID: 39615288 DOI: 10.1016/j.wasman.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/10/2024]
Abstract
Here, we constructed a novel bacterial deodorant (BD) composed of Delftia tsuruhatensis, Paracoccus denitrificans, Pediococcus acidilactici, and Bacillus velezensis. The BD alone removed 64.84 % of NH3, 100 % of H2S, and 63.68 % of comprehensive odor (OU) during a five-day fermentation of pig manure. The effect was enhanced by introducing Camellia sinensis in the composite bacterial deodorant (CBD) treatment, with the removal efficiency (RE) of NH3 and OU being 88.68 % and 88.14 %, respectively. In prolonged trials, maximum RE of NH3, H2S and OU RE reached 90.16 %, 92.32 % and 100 % in CBD group. Bacterial composition of manure revealed that the abundance of odor-producing microbes (Kurthia, Solibacillus, Proteiniphilum and Acholeplasma) and potential pathogens decreased after CBD application. Functional prediction and correlation analyses indicated that the process of nitrification, denitrification and S/N assimilation were facilitated, while S/N mineralization and methanogenesis processes might be inhibited. This deodorant promoted the conversion of malodorous substances into non-odorous forms, establishing an efficient odor removal system in hoggery. Therefore, the bacterial deodorant compounded with C. sinensis has been shown to be an effective method for deodorizing pig farms. This approach will advance the livestock industry toward greener practices and environmental protection, contributing positively to the development of a sustainable agro-ecosystem.
Collapse
Affiliation(s)
- Jialing Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenchen Huan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Xueping Tian
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Yang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaosheng Ji
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Fu J, Chen S, Tan Y, Zou K, Yu X, Ji L, Zhang J, Xiao X, Wang W, Zhao K, Zou L. Inoculation of thermophilic bacteria from giant panda feces into cattle manure reduces gas emissions and decreases resistance gene prevalence in short-term composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123601. [PMID: 39642832 DOI: 10.1016/j.jenvman.2024.123601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/16/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Here, thermophilic bacteria (TB) with cellulose degradation functions were screened from composting panda feces and applied to cattle manure composting. TB (Aeribacillus pallidus G5 and Parageobacillus toebii G12) inoculation led to remarkable improvement of the compost temperature, prolonging of the thermophilic stage and shortening of the composting process, resulting in increased manure harmlessness (GI ≥ 70%), compost humification, and greenhouse gas emission reduction (14.19%-22.57%), compared with the control compost, within 15 days of composting. In particular, G5 inoculation reduced NH3 emissions by 41.97% relative to control composts over 15 days. G5 was capable of rapidly colonizing in the composts, and its inoculation immediately enriched the genera of Firmicutes, and simultaneously decreased the genera of Proteobacteria, contributing to the elimination of harmful microorganisms. Notably, this strain lacked antibiotic resistance genes, and the absolute abundances of resistance genes and mobile genetic genes (MGEs) decreased the most (by 80.84%). Metagenomic analysis revealed that enzymes capable of producing CO2, N2O, and NH3 were generally inhibited, while CO2 fixation and N2O and NH3 reduction enzymes were enriched in the G5 compost, since metagenome-assembled genomes of Proteobacteria harbored more key genes and enzymes in complete pathways for producing N2O, NH3, and CO2. Moreover, Proteobacteria, such as Pseudomonas and Halopseudomonas, were the main host of resistance genes and MGEs. Overall, the gas emission could be reduced, and more efficient control of resistance genes could be achieved by inhibited the abundance of Proteobacteria during composting. This study provides a safe and effective microbial agent (A. pallidus) for manure treatment.
Collapse
Affiliation(s)
- Jingxia Fu
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yulan Tan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; School of Life Sciences, Guizhou Normal University, Guiyang, 550025, Guizhou, China
| | - Keyi Zou
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Ji
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jianmin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
8
|
Zhao M, Ding Y, Qin Y, Xiao Z, Xi B, Ren X, Zhao J, Wang Q. Effects of selenate on greenhouse gas release and microbial community variations during swine manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123523. [PMID: 39632302 DOI: 10.1016/j.jenvman.2024.123523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Co-composting of livestock manure and selenate is an effective means to produce selenium-rich organic fertilizer. However the effect of selenate on greenhouse gas emission during composting is still unknown. To probe the influences of selenate on greenhouse gas and microbial community changes during swine manure composting. Various dose of selenate were added to the fresh swine manure and wheat straw for 80 days aerobic composting, sequentially labeled as T1 (control) to T6 (0, 1, 2, 3, 4 and 5 mg kg-1). Results indicated that selenate generally increased the nitrous oxide (N2O) and ammonia (NH3) emissions while presented varying impacts on methane (CH4) emissions. Compared with the control, adding 2 and 5 mg kg-1 selenate reduced the CH4 emission by 39.60% and 13.75%, respectively, while other concentrations presented opposite results. Meanwhile, adding 2 mg kg-1 selenate could reduce the global warming potential and improve the compost maturity. According to the microbial results, adding 2 mg kg-1 selenate enhanced the richness and variety of the microbes and might influence Proteobacteria, Chloroflexi, Actinobacteria and Methylococcaceae_unclassified to decrease the global warming potential.
Collapse
Affiliation(s)
- Mengxiang Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China
| | - Yilang Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Ziling Xiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Bin Xi
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100000, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Jiarui Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China.
| |
Collapse
|
9
|
Zhang Z, Yang H, Linghu M, Li J, Chen C, Wang B. Cattle manure composting driven by a microbial agent: A coupled mechanism involving microbial community succession and organic matter conversion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175953. [PMID: 39226954 DOI: 10.1016/j.scitotenv.2024.175953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Aerobic composting has been used as a mainstream treatment technology for agricultural solid waste resourcing. In the present study, we investigated the effects and potential mechanisms of the addition of a microbial agent (LD) prepared by combining Bacillus subtilis, Bacillus paralicheniformis and Irpex lacteus in improving the efficiency of cattle manure composting. Our results showed that addition of 1.5 % LD significantly accelerated compost humification, i.e., the germination index and lignocellulose degradation rate of the final compost product reached values of 92.20 and 42.29 %, respectively. Metagenomic sequencing results showed that inoculation of cattle manure with LD increased the abundance of functional microorganisms. LD effectively promoted the production of humus precursors, which then underwent reactions through synergistic abiotic and biotic pathways to achieve compost humification. This research provides a theoretical basis for the study of microbial enhancement strategies and humus formation mechanisms in the composting of livestock manure.
Collapse
Affiliation(s)
- Zichun Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Huaikai Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Meilin Linghu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Bin Wang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
10
|
Wang L, Ren Z, Xu Z, Liu L, Chang R, Li Y. Promoting effect of ammonia oxidation on sulfur oxidation during composting: Nitrate as a bridge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 191:13-22. [PMID: 39504837 DOI: 10.1016/j.wasman.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/25/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Ammonia (NH3) and hydrogen sulfide (H2S) are the main odor components in the composting process. Controlling their emissions is very important to reduce environmental pollution and improve the quality of composting products. This study explored the effects of functional bacteria on nitrogen and sulfur metabolism in the composting process of food waste (FW) by adding ammonia-oxidizing bacteria (AOB, A treatment), sulfur-oxidizing bacteria (SOB, S treatment), and combined AOB and SOB (AS treatment), respectively. The key bacterial species involved in nitrogen and sulfur transformation were identified, and the intrinsic mechanisms by which ammonia oxidation drove sulfur oxidation during composting were deciphered. Compared with control treatment (CK), the combined addition of functional microorganisms increased the maximum of soxB gene abundance by 1.72 times, thus resulting in the increase in the SO42- content by 44.00 %. AS treatment decreased the cumulative H2S emission and total sulfur (TS) loss by 40.24 % and 34.69 %, respectively, meanwhile lowering NH3 emission. Correlation network analysis showed that the simultaneous addition of AOB and SOB enhanced the correlation between microorganisms and sulfur oxidation genes, and Acinetobacter, Aeribacillus, Brevibacterium and Ureibacillus might be involved in the ammonia oxidation-promoted sulfur oxidation process. In summary, the optimized inoculation strategy of AOB and SOB could drive biological transformation of nitrogen and sulfur by regulating microbial community, ultimately reducing odor emissions and improving sulfur conservation.
Collapse
Affiliation(s)
- Lingxiao Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhiping Ren
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhao Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lixin Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Ruixue Chang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanming Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Hou T, Zhou Y, Du R, Liu J, Li W, Zhang S, Li M, Chu J, Meng L. Insights into effects of thermotolerant nitrifying and sulfur-oxidizing inoculants on nitrogen-sulfur co-metabolism in sewage sludge composting. J Environ Sci (China) 2024; 144:76-86. [PMID: 38802240 DOI: 10.1016/j.jes.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 05/29/2024]
Abstract
In this study, high temperature thermotolerant nitrifying bacteria (TNB) and high temperature thermotolerant sulfide oxidizing bacteria (TSOB) were obtained from compost samples and inoculated into sewage sludge (SS) compost. The effects of inoculation on physical and chemical parameters, ammonia and hydrogen sulfide release, nitrogen form and sulfur compound content change and physical-chemical properties during nitrogen and sulfur conversion were studied. The results showed that inoculation of TNB and TSOB increased the temperature, pH, OM degradation, C/N ratio and germination index (GI) of compost. Compared with the control treatment (CK), the addition of inoculants reduced the release of NH3 and H2S, and transformed them into nitrogen and sulfur compounds, the hydrolysis of polymeric ferrous sulfate was promoted, resulting in relatively high content of sulfite and sulfate. At the same time, the physical and chemical properties of SS have a strong correlation with nitrogen and sulfur compounds.
Collapse
Affiliation(s)
- Tingting Hou
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Yujie Zhou
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Rongchun Du
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Jiali Liu
- Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shumei Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Muzi Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junhong Chu
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liqiang Meng
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China.
| |
Collapse
|
12
|
Xu Z, Wang S, Li R, Li H, Zhang C, Zhang Y, Zhang X, Quan F, Wang F. Enhancement of microbial community dynamics and metabolism in compost through ammonifying cultures inoculation. ENVIRONMENTAL RESEARCH 2024; 255:119188. [PMID: 38795950 DOI: 10.1016/j.envres.2024.119188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
The efficient use of livestock and poultry manure waste has become a global challenge, with microorganisms playing an important role. To investigate the impact of novel ammonifying microorganism cultures (NAMC) on microbial community dynamics and carbon and nitrogen metabolism, five treatments [5% (v/w) sterilized distilled water, Amm-1, Amm-2, Amm-3, and Amm-4] were applied to cow manure compost. Inoculation with NAMC improved the structure of bacterial and fungal communities, enriched the populations of the functional microorganisms, enhanced the role of specific microorganisms, and promoted the formation of tight modularity within the microbial network. Further functional predictions indicated a significant increase in both carbon metabolism (CMB) and nitrogen metabolism (NMB). During the thermophilic phase, inoculated NAMC treatments boosted carbon metabolism annotation by 10.55%-33.87% and nitrogen metabolism annotation by 26.69%-63.11. Structural equation modeling supported the NAMC-mediated enhancement of NMB and CMB. In conclusion, NAMC inoculation, particularly with Amm-4, enhanced the synergistic interaction between bacteria and fungi. This collaboration promoted enzymatic catabolic and synthetic processes, resultng in positive feedback loops with the endogenous microbial community. Understanding these mechanisms not only unravels how ammonifying microorganisms influence microbial communities but also paves the way for the development of the composting industry and global waste management practices.
Collapse
Affiliation(s)
- Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Shaowen Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Huijia Li
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos Building, Singapore 138669, Singapore
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan, 750021, China.
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, 712100, China.
| | - Faming Wang
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Leuven, 3001, Belgium
| |
Collapse
|
13
|
Xiao R, Li L, Zhang Y, Fang L, Li R, Song D, Liang T, Su X. Reducing carbon and nitrogen loss by shortening the composting duration based on seed germination index (SCD@GI): Feasibilities and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172883. [PMID: 38697528 DOI: 10.1016/j.scitotenv.2024.172883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Addressing carbon (C) and nitrogen (N) losses through composting has emerged as a critical environmental challenge recently, and how to mitigate these losses has been a hot topic across the world. As the emissions of carbonaceous and nitrogenous gases were closely correlated with the composting process, the feasibility of composting duration shortening on C and N loss needs to be explored. Therefore, the goal of this paper is to find evidence-based approaches to reduce composting duration, utilizing the seed germination index as a metric (SCD@GI), for assessing its efficiency on C and N loss reductions as well as compost quality. Our findings reveal that the terminal seed germination index (GI) frequently surpassed the necessary benchmarks, with a significant portion of trials achieving the necessary GI within 60 % of the standard duration. Notably, an SCD@GI of 80 % resulted in a reduction of CO2 and NH3 by 21.4 % and 21.9 %, respectively, surpassing the effectiveness of the majority of current mitigation strategies. Furthermore, compost quality, maturity specifically, remained substantially unaffected at a GI of 80 %, with the composting process maintaining adequate thermophilic conditions to ensure hygienic quality and maturity. This study also highlighted the need for further studies, including the establishment of uniform GI testing standards and comprehensive life cycle analyses for integrated composting and land application practices. The insights gained from this study would offer new avenues for enhancing C and N retention during composting, contributing to the advancement of high-quality compost production within the framework of sustainable agriculture.
Collapse
Affiliation(s)
- Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Lan Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yanye Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Linfa Fang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China.
| | - Dan Song
- Chongqing Academy of Ecology and Environmental Sciences, Chongqing 401147, China
| | - Tao Liang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Xiaoxuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China.
| |
Collapse
|
14
|
Zhou L, Xie Y, Wang X, Wang Z, Sa R, Li P, Yang X. Effect of microbial inoculation on nitrogen transformation, nitrogen functional genes, and bacterial community during cotton straw composting. BIORESOURCE TECHNOLOGY 2024; 403:130859. [PMID: 38777228 DOI: 10.1016/j.biortech.2024.130859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The effects of microbial agents on nitrogen (N) conversion during cotton straw composting remains unclear. In this study, inoculation increased the germination index and total nitrogen (TN) by 24-29 % and 7-10 g/kg, respectively. Inoculation enhanced the abundance of nifH, glnA, and amoA and reduced that of major denitrification genes (nirK, narG, and nirS). Inoculation not only produced high differences in the assembly process and strong community replacement but also weakened environmental constraints. Partial least squares path modelling demonstrated that enzyme activity and bacterial community were the main driving factors influencing TN. In addition, network analysis and the random forest model showed distinct changing patterns of bacterial communities after inoculation and identified keystone microorganisms in maintaining network complexity and synergy, as well as system function to promote nitrogen preservation. Findings provide a novel perspective on high-quality resource recovery of agricultural waste.
Collapse
Affiliation(s)
- Liuyan Zhou
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Yuqing Xie
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Xiaowu Wang
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Zhifang Wang
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Renna Sa
- Research Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Pengbing Li
- Comprehensive Testing Ground, Xinjiang Academy of Agricultural Sciences, Urumqi 830013, China.
| | - Xinping Yang
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| |
Collapse
|
15
|
Tran HT, Binh QA, Van Tung T, Pham DT, Hoang HG, Hai Nguyen NS, Xie S, Zhang T, Mukherjee S, Bolan NS. A critical review on characterization, human health risk assessment and mitigation of malodorous gaseous emission during the composting process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124115. [PMID: 38718963 DOI: 10.1016/j.envpol.2024.124115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Composting has emerged as a suitable method to convert or transform organic waste including manure, green waste, and food waste into valuable products with several advantages, such as high efficiency, cost feasibility, and being environmentally friendly. However, volatile organic compounds (VOCs), mainly malodorous gases, are the major concern and challenges to overcome in facilitating composting. Ammonia (NH3) and volatile sulfur compounds (VSCs), including hydrogen sulfide (H2S), and methyl mercaptan (CH4S), primarily contributed to the malodorous gases emission during the entire composting process due to their low olfactory threshold. These compounds are mainly emitted at the thermophilic phase, accounting for over 70% of total gas emissions during the whole process, whereas methane (CH4) and nitrous oxide (N2O) are commonly detected during the mesophilic and cooling phases. Therefore, the human health risk assessment of malodorous gases using various indexes such as ECi (maximum exposure concentration for an individual volatile compound EC), HR (non-carcinogenic risk), and CR (carcinogenic risk) has been evaluated and discussed. Also, several strategies such as maintaining optimal operating conditions, and adding bulking agents and additives (e.g., biochar and zeolite) to reduce malodorous emissions have been pointed out and highlighted. Biochar has specific adsorption properties such as high surface area and high porosity and contains various functional groups that can adsorb up to 60%-70% of malodorous gases emitted from composting. Notably, biofiltration emerged as a resilient and cost-effective technique, achieving up to 90% reduction in malodorous gases at the end-of-pipe. This study offers a comprehensive insight into the characterization of malodorous emissions during composting. Additionally, it emphasizes the need to address these issues on a larger scale and provides a promising outlook for future research.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Quach An Binh
- Advanced Applied Sciences Research Group, Dong Nai Technology University, Bien Hoa City, Viet Nam; Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Viet Nam
| | - Tra Van Tung
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Duy Toan Pham
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho 900000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Viet Nam
| | - Ngoc Son Hai Nguyen
- Faculty of Environment, Thai Nguyen University of Agriculture and Forestry (TUAF), Thai Nguyen, 23000, Viet Nam
| | - Shiyu Xie
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Santanu Mukherjee
- School of Biological & Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Nanthi S Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
16
|
Xu Z, Li R, Liu J, Xu X, Wang S, Gao F, Yang G, Yao Y, Zhang Z, Zhang X, Zhang Y, Quan F. The impact of ammonifying microorganisms on the stabilization and carbon conversion of cow manure and wheat husk co-composting. CHEMICAL ENGINEERING JOURNAL 2024; 490:151626. [DOI: 10.1016/j.cej.2024.151626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
17
|
Yu L, An Z, Xie D, Yin D, Xie G, Gao X, Xiao Y, Liu J, Fang Z. From waste to protein: a new strategy of converting composted distilled grain wastes into animal feed. Front Microbiol 2024; 15:1405564. [PMID: 38881654 PMCID: PMC11176434 DOI: 10.3389/fmicb.2024.1405564] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Distilled grain waste (DGW) is rich in nutrients and can be a potential resource as animal feed. However, DGW contains as much as 14% lignin, dramatically reducing the feeding value. White-rot fungi such as Pleurotus ostreatus could preferentially degrade lignin with high efficiency. However, lignin derivatives generated during alcohol distillation inhibit P. ostreatus growth. Thus, finding a new strategy to adjust the DGW properties to facilitate P. ostreatus growth is critical for animal feed preparation and DGW recycling. In this study, three dominant indigenous bacteria, including Sphingobacterium thermophilum X1, Pseudoxanthomonas byssovorax X3, and Bacillus velezensis 15F were chosen to generate single and compound microbial inoculums for DGW composting to prepare substrates for P. ostreatus growth. Compared with non-inoculated control or single microbial inoculation, all composite inoculations, especially the three-microbial compound, led to faster organic metabolism, shorter composting process, and improved physicochemical properties of DGW. P. ostreatus growth assays showed the fastest mycelial colonization (20.43 μg·g-1 ergosterol) and extension (9 mm/d), the highest ligninolytic enzyme activities (Lac, 152.68 U·g-1; Lip, 15.56 U·g-1; MnP, 0.34 U·g-1; Xylanase, 10.98 U·g-1; FPase, 0.71 U·g-1), and the highest lignin degradation ratio (30.77%) in the DGW sample after 12 h of composting with the three-microbial compound inoculation when compared to other groups. This sample was relatively abundant in bacteria playing critical roles in amino acid, carbohydrate, energy metabolism, and xenobiotic biodegradation, as suggested by metagenomic analysis. The feed value analysis revealed that P. ostreatus mycelia full colonization in composted DGW led to high fiber content retention and decreased lignin content (final ratio of 5% lignin) but elevated protein concentrations (about 130 g·kg-1 DM). An additional daily weight gain of 0.4 kg/d was shown in cattle feeding experiments by replacing 60% of regular feed with it. These findings demonstrate that compound inoculant consisting of three indigenous microorganisms is efficient to compost DGW and facilitate P. ostreatus growth. P. ostreatus decreased the lignin content of composted DGW during its mycelial growth, improving the quality of DGW for feeding cattle.
Collapse
Affiliation(s)
- Lei Yu
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Zichao An
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Dengdeng Xie
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Diao Yin
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Guopai Xie
- Anhui Golden Seed Winery Co., Ltd., Fuyang, China
| | - Xuezhi Gao
- Anhui Golden Seed Winery Co., Ltd., Fuyang, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| |
Collapse
|
18
|
Wang S, Xu Z, Xu X, Gao F, Zhang K, Zhang X, Zhang X, Yang G, Zhang Z, Li R, Quan F. Effects of two strains of thermophilic nitrogen-fixing bacteria on nitrogen loss mitigation in cow dung compost. BIORESOURCE TECHNOLOGY 2024; 400:130681. [PMID: 38599350 DOI: 10.1016/j.biortech.2024.130681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Excavating nitrogen-fixing bacteria with high-temperature tolerance is essential for the efficient composting of animal dung. In this study, two strains of thermophilic nitrogen-fixing bacteria, NF1 (Bacillus subtilis) and NF2 (Azotobacter chroococcum), were added to cow dung compost both individually (NF1, NF2) and mixed together (NF3; mixing NF1 and NF2 at a ratio of 1:1). The results showed that NF1, NF2, and NF3 inoculants increased the total Kjeldahl nitrogen level by 38.43%-55.35%, prolonged the thermophilic period by 1-13 d, increased the seed germination index by 17.81%, and the emissions of NH3 and N2O were reduced by 25.11% and 42.75%, respectively. Microbial analysis showed that Firmicutes were the predominant bacteria at the thermophilic stage, whereas Chloroflexi, Proteobacteria, and Bacteroidetes were the predominant bacteria at the mature stage. These results confirmed that the addition of the isolated strains to cow dung composting improved the bacterial community structure and benefited nitrogen retention.
Collapse
Affiliation(s)
- Shaowen Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Xuerui Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Feng Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Kang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Xin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, PR China
| | - Guoping Yang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling Shaanxi, 712100, PR China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling Shaanxi, 712100, PR China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
19
|
Yang X, Mazarji M, Li M, Li A, Li R, Zhang Z, Pan J. Mechanism of magnetite-assisted aerobic composting on the nitrogen cycle in pig manure. BIORESOURCE TECHNOLOGY 2024; 391:129985. [PMID: 37931761 DOI: 10.1016/j.biortech.2023.129985] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Magnetite affects nitrogen cycle of pig manure (PM) biostabilisation was investigated. Various doses of magnetite (0 % (T1); 2.5 % (T2); 5 % (T3); 7.5 % (T4)) were homogeneously added into PM and wolfberry branch fillings (BF) mixture for a 50-day composting. Compared to T1, total nitrogen (TN) loss in gaseous form increased remarkably by 17.51 %, 56.31 %, and 24.91 %, respectively, in T2-T4. In particular, T3 dramatically increased the cumulative N2O emission but decreased NH3 emissions. However, T2 and T3 enhanced the total nitrogen contents by 7.24 % and 3.09 %. Structural equation models (SEM) analysis indicated that magnetite addition increased the direct and indirect pathways of N2O emission. Further analysis revealed that Ruminofilibacter and N2O emission were significantly correlated, and Pseudomonas played a vital role in nitrogen preservation. Although using 2 % magnetite as an additive could increase the TN content, the obvious increase of N2O emission should be considered in engineering practice.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mahmoud Mazarji
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengtong Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Aohua Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
20
|
Liu Z, Awasthi MK, Zhao J, Liu G, Syed A, Al-Shwaiman HA, Fang J. Unraveling impacts of inoculating novel microbial agents on nitrogen conversion during cattle manure composting: Core microorganisms and functional genes. BIORESOURCE TECHNOLOGY 2023; 390:129887. [PMID: 37858800 DOI: 10.1016/j.biortech.2023.129887] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The impacts of microbial agents on nitrogen conversion during composting is still not entirely clear. In this research, a novel microbial agent containing two thermotolerant nitrifying bacteria was identified and its impacts on nitrogen conversion, bacterial structure and functional genes during cattle manure composting were investigated. The results revealed that the inoculation enhancing the maturation of compost, increased the total nitrogen by 13.6-26.8%, reduced NH3 emission and the N2O emission by 24.8-36.1% and 22.7-32.1%, respectively. Particularly, the microbial agents mixed Acinetobacter radioresistens and Bacillus nitratireducens (1:1, treatment group 1) had the best nitrogen preservation effect. Furthermore, the inoculation not only produced diverse diazotroph community but could strength the co-occurrence between core microorganisms to promote nitrogen metabolism. The metagenomic analysis demonstrated that the inoculation decreased the abundance of nitrate reduction gene (nirS, norC, nap and nif), and increased the abundance of hao, thus facilitating nitrification and suppressing NH3 and N2O emission.
Collapse
Affiliation(s)
- Zhuangzhuang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR Chin
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jinfeng Zhao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR Chin
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR Chin
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Hind A Al-Shwaiman
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR Chin.
| |
Collapse
|
21
|
Tian X, Gao R, Li Y, Liu Y, Zhang X, Pan J, Tang KHD, Scriber II KE, Amoah ID, Zhang Z, Li R. Enhancing nitrogen conversion and microbial dynamics in swine manure composting process through inoculation with a microbial consortium. JOURNAL OF CLEANER PRODUCTION 2023; 423:138819. [DOI: 10.1016/j.jclepro.2023.138819] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
22
|
Zhou S, Jia P, Xu W, Shane Alam S, Zhang Z. A novel composting system for mitigating ammonia emissions and producing nitrogen-rich organic fertilizer. BIORESOURCE TECHNOLOGY 2023; 386:129455. [PMID: 37419288 DOI: 10.1016/j.biortech.2023.129455] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Ammonia emissions not only lead to environmental pollution but also reduce the quality of compost products. Here, a novel composting system (condensation return composting system, CRCS) was designed for mitigating ammonia emissions. The results showed that the CRCS reduced ammonia emissions by 59.3% and increased the total nitrogen content by 19.4% compared with the control. By integrating the results of nitrogen fraction conversion, ammonia-assimilating enzyme activity, and structural equation modeling, it was found that the CRCS facilitated the conversion of ammonia to organic nitrogen by stimulating ammonia-assimilating enzyme activity and ultimately retained nitrogen in the compost product. Moreover, the pot experiment confirmed that nitrogen-rich organic fertilizer produced by the CRCS significantly increased the fresh weight (45.0%), root length (49.2%), and chlorophyll content (11.7%) of pakchoi. This study provides a promising strategy for mitigating ammonia emissions and producing nitrogen-rich organic fertilizer with high agronomic value.
Collapse
Affiliation(s)
- Shunxi Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Peiyin Jia
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Wanying Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Syed Shane Alam
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
23
|
Zhou Y, Kurade MB, Sirohi R, Zhang Z, Sindhu R, Binod P, Jeon BH, Syed A, Verma M, Awasthi MK. Biochar as functional amendment for antibiotic resistant microbial community survival during hen manure composting. BIORESOURCE TECHNOLOGY 2023; 385:129393. [PMID: 37364648 DOI: 10.1016/j.biortech.2023.129393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The study aim was to reveal the mechanism of impact of two type biochar on composting of hen manure (HM) and wheat straw (WS). Biochar derived from coconut shell and bamboo used as additives to reduce antibiotic resistant bacteria (ARB) in HM compost. The results manifested that effect of biochar amendment was significant to reduce ARB in HM composting. Compared with control, the microbial activity and abundance were increased in both biochar applied treatment, and bacterial community was changed. Additionally, network analysis revealed that biochar amendment increased the quantity of microorganisms related to organic matter degrading. Among them, coconut shell biochar (CSB) played a pioneering role to mitigate ARB to better exert its effects. Structural correlation analysis showed that CSB reduce ARB mobility and promote organic matter degradation via improving beneficial bacterial community structure. Overall, composting with participation of biochar amendment stimulated antibiotic resistance bacterial dynamics. These results evidence practical value for scientific research and lay the foundation for agricultural promotion of composting.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Ranjna Sirohi
- School of Health Sciences and Technology, University of Petroleum and Energy Studies Dehradun, 248007 Uttarakhand, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Meenakshi Verma
- University Centre for Research & Development, Department of Chemistry, Chandigarh University Gharuan, Mohali, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
24
|
Liu H, Awasthi MK, Zhang Z, Syed A, Bahkali AH, Sindhu R, Verma M. Microbial dynamics and nitrogen retention during sheep manure composting employing peach shell biochar. BIORESOURCE TECHNOLOGY 2023; 386:129555. [PMID: 37499921 DOI: 10.1016/j.biortech.2023.129555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
In this study, the effects of peach shell biochar (PSB) and microbial agent (EM) amendment on nitrogen conservation and bacterial dynamics during sheep manure (SM) composting were examined. Six treatments were performed including T1 (control with no addition), T2 (EM), T3 (EM + 2.5 %PSB), T4 (EM + 5 %PSB), T5 (EM + 7.5 %PSB), and T6 (EM + 10 %PSB). The results showed that the additives amendment reduced NH3 emissions by 6.12%∼32.88% and N2O emissions by 10.96%∼19.76%, while increased total Kjeldahl nitrogen (TKN) content by 8.15-9.13 g/kg. Meanwhile, Firmicutes were the dominant flora in the thermophilic stages, while Proteobacteria, Actinobacteriota, and Bacteroidota were the dominant flora in the maturation stages. The abundance of Bacteroidota and Actinobacteriota were increased by 17.49%∼32.51% and 2.31%∼12.60%, respectively, which can accelerate the degradable organic materials decomposition. Additionally, redundancy analysis showed that Proteobacteria, Actinobacteriota, and Bacteroidota were positively correlated with NO3--N, TKN, and N2O, but a negative correlation with NH3 and NH4+-N. Finally, results confirmed that (EM + 10 %PSB) additives were more effective to reduce nitrogen loss and improve bacterial dynamics.
Collapse
Affiliation(s)
- Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691505, Kerala, India
| | - Meenakshi Verma
- University Centre for Research & Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, India
| |
Collapse
|
25
|
Xu Z, Liang W, Zhang X, Yang X, Zhou S, Li R, Syed A, Bahkali AH, Kumar Awasthi M, Zhang Z. Effects of magnesite on nitrogen conversion and bacterial community during pig manure composting. BIORESOURCE TECHNOLOGY 2023; 384:129325. [PMID: 37315627 DOI: 10.1016/j.biortech.2023.129325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
The objective of this research was to elucidate the effect of varying proportions of magnesite (MS) addition - 0% (T1), 2.5% (T2), 5% (T3), 7.5% (T4), and 10% (T5) - on nitrogen transformation and bacterial community dynamics during pig manure composting. In comparison to T1 (control), MS treatments amplified the abundance of Firmicutes, Actinobacteriota, and Halanaerobiaeota, bolstered the metabolic functionality of associated microorganisms, and enhanced the nitrogenous substance metabolic pathway. A complementary effect in core bacillus species played a key role in nitrogen preservation. Compared to T1, 10% MS demonstrated the most substantial influence on composting because Total Kjeldahl Nitrogen increased by 58.31% and NH3 emission decreased by 41.52%. In conclusion, 10% MS appears to be optimal for pig manure composting, as it can augment microbial abundance and mitigate nitrogen loss. This study offers a more ecologically sound and economically viable method for curtailing nitrogen loss during composting.
Collapse
Affiliation(s)
- Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Wen Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Xu Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shunxi Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
26
|
Xu Z, Li R, Zhang X, Liu J, Xu X, Wang S, Lan T, Zhang K, Gao F, He Q, Pan J, Quan F, Zhang Z. Mechanisms and effects of novel ammonifying microorganisms on nitrogen ammonification in cow manure waste composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:167-178. [PMID: 37442037 DOI: 10.1016/j.wasman.2023.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
It is essential to reduce nitrogen losses and to improve nitrogen conversion during organic waste composting because of environmental protection and sustainable development. To reveal newly domesticated ammonifying microorganisms (AM) cultures on the ammonification and nitrogen conversion during the composting, the screened microbial agents were inoculated at 5 % concentration (in weight basis) into cow manure compost under five different treatments: sterilized distilled water (Control), Amm-1 (mesophilic fungus-F1), Amm-2 (mesophilic bacterium-Z1), Amm-3 (thermotolerant bacterium-Z2), and Amm-4 (consortium: F1, Z1, and Z2), and composted for 42 days. Compared to control, AM inoculation prolonged the thermophilic phases to 9-19 days, increased the content of NH4+-N to 1.60-1.96 g/kg in the thermophilic phase, reduced N2O and NH3 emissions by 22.85-61.13 % and 8.45-23.29 %, increased total Kjeldahl nitrogen, and improved cell count and viability by 12.09-71.33 % and 66.71-72.91 %. AM was significantly associated with different nitrogen and microbial compositions. The structural equation model (SEM) reveals NH4+-N is the preferable nitrogen for the majority of bacterial and fungal growth and that AM is closely associated with the conversion between NH3 and NH4+-N. Among the treatments, inoculation with Amm-4 was more effective, as it significantly enhanced the driving effect of the critical microbial composition on nitrogen conversion and accelerated nitrogen ammonification and sequestration. This study provided new concepts for the dynamics of microbial in the ammonification process of new AM bacterial agents in cow manure compost, and an understanding of the ecological mechanism underlying the ammonification process and its contribution to nitrogen (N) cycling from the perspective of microbial communities.
Collapse
Affiliation(s)
- Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xuerui Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Shaowen Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tianyang Lan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Kang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Feng Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Qifu He
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Junting Pan
- Key Laboratory of Non-point Source Pollution of Ministry of Agricultural and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
27
|
Wang L, Zhao Y, Xie L, Zhang G, Wei Z, Li J, Song C. The dominant role of cooperation in fungal community drives the humification process of chicken manure composting under addition of regulatory factors. ENVIRONMENTAL RESEARCH 2023:116358. [PMID: 37295586 DOI: 10.1016/j.envres.2023.116358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
This study aimed to explore the action mechanism of fungal community on the enhancement of humification during chicken manure composting by regulating the core pathway of carbon metabolism - the tricarboxylic acid cycle. Regulators adenosine triphosphate (ATP) and malonic acid were added at the beginning of composting. The analysis of changes in humification parameters showed that the humification degree and stability of compost products were improved by adding regulators. Compared with CK, the humification parameters of adding regulators group increased by 10.98% on average. Meanwhile, adding regulators not only increased key nodes, but also strengthened the positive correlation between fungi, and network relationship was closer. Moreover, core fungi associated with humification parameters were identified by constructing OTU networks, and the division and cooperation mechanism of fungi were confirmed. Ultimately, the functional role of the fungal community acting on humification was confirmed by statistical means, that was, the fungal community promoting humification was the main group of composting process. And the contribution was more obvious in ATP treatment. This study was helpful to gain insight into the mechanism of regulators addition to advance the humification process, and provided new ideas for the safe, efficient and harmless disposal of organic solid waste.
Collapse
Affiliation(s)
- Liqin Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China; College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Guogang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Jie Li
- School of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Caihong Song
- School of Life Science, Liaocheng University, Liaocheng, 252000, China
| |
Collapse
|
28
|
Ren L, Huang X, Min H, Wang H, Xie Y, Zou H, Qiao C, Wu W. Different ratios of raw material triggered composting maturity associated with bacterial community co-occurrence patterns. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62532-62543. [PMID: 36943561 DOI: 10.1007/s11356-023-26468-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
Exploring the ecological function of potential core bacteria for high-efficiency composting can provide a fundamental understanding of the role of composting bacterial communities. Mushroom residue and kitchen garbage at different ratios (N1: 1/1, N2: 1/2) of dry weight were tested to investigate the key ecological role of the core bacteria responsible for producing mature compost. N1 had a peak temperature of 75.0 °C which was higher than N2 (68.3 °C). Other key composting parameters (carbon to nitrogen ratio (C/N) and germination index (GI)) also indicated that N1 achieved higher compost maturity. Rice seedlings experiments also further validated this conclusion. Putative key bacterial taxa (Thermobifida, Luteimonasd, Bacillus, etc.) were positively associated with the GI, indicating a substantial contribution to composting maturity. Co-occurrence network analysis revealed the ecological function of potentially beneficial core bacteria promoted cooperation among the bacterial community. The putative core bacteria in N1 may affect composting efficiency. Our findings reveal the mechanism of potential core bacteria throughout the compost maturity phases.
Collapse
Affiliation(s)
- Lantian Ren
- Anhui Engineering Research Center for Smart Crop Planting and Processing Technology, Anhui Science and Technology University, 233100, Chuzhou, Anhui Province, People's Republic of China
| | - Xingchen Huang
- Anhui Engineering Research Center for Smart Crop Planting and Processing Technology, Anhui Science and Technology University, 233100, Chuzhou, Anhui Province, People's Republic of China
| | - Hongzhi Min
- Anhui Engineering Research Center for Smart Crop Planting and Processing Technology, Anhui Science and Technology University, 233100, Chuzhou, Anhui Province, People's Republic of China
| | - Hong Wang
- Anhui Engineering Research Center for Smart Crop Planting and Processing Technology, Anhui Science and Technology University, 233100, Chuzhou, Anhui Province, People's Republic of China
| | - Yiqing Xie
- Anhui Engineering Research Center for Smart Crop Planting and Processing Technology, Anhui Science and Technology University, 233100, Chuzhou, Anhui Province, People's Republic of China
| | - Haiming Zou
- Anhui Engineering Research Center for Smart Crop Planting and Processing Technology, Anhui Science and Technology University, 233100, Chuzhou, Anhui Province, People's Republic of China
| | - Cece Qiao
- Anhui Engineering Research Center for Smart Crop Planting and Processing Technology, Anhui Science and Technology University, 233100, Chuzhou, Anhui Province, People's Republic of China.
| | - Wenge Wu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, 230031, Hefei, Anhui Province, People's Republic of China
| |
Collapse
|
29
|
Zhao Y, Li W, Chen L, Meng L, Zhang S. Impacts of adding thermotolerant nitrifying bacteria on nitrogenous gas emissions and bacterial community structure during sewage sludge composting. BIORESOURCE TECHNOLOGY 2023; 368:128359. [PMID: 36423768 DOI: 10.1016/j.biortech.2022.128359] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to evaluate the impacts of inoculation with bacterial inoculum containing three thermotolerant nitrifying bacteria strains on nitrogenous gas (mainly NH3 and N2O) emissions and bacterial structure during the sludge composting. The results of physicochemical parameters indicated that inoculation could prolong the thermophilic phase, accelerate degradation of organic substances and improve compost quality. Compared with the non-inoculated treatment, the addition of bacterial agents not only increased the total nitrogen content by 8.7% but also reduced the cumulative NH3 and N2O emissions by 32.2% and 34.6%, respectively. The bacterial inoculation changed the structure and diversity of the microbial community in composting. Additionally, the relative abundances (RA) of bacteria and correlation analyses revealed that inoculation increased the RA of bacteria involved in nitrogen fixation. These results suggested that inoculation of thermotolerant nitrifying bacteria was beneficial for reducing nitrogen loss, nitrogenous gas emissions and regulating the bacterial community during the composting.
Collapse
Affiliation(s)
- Yi Zhao
- School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- School of Environmental, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Li Chen
- School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Liqiang Meng
- Institute of Microbiology, Heilongjiang Academy of Science, Harbin 150010, China
| | - Shumei Zhang
- Institute of Microbiology, Heilongjiang Academy of Science, Harbin 150010, China
| |
Collapse
|
30
|
Yu J, Gu J, Wang X, Lei L, Guo H, Song Z, Sun W. Exploring the mechanism associated with methane emissions during composting: Inoculation with lignocellulose-degrading microorganisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116421. [PMID: 36308953 DOI: 10.1016/j.jenvman.2022.116421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Inoculation with microorganisms is an effective strategy for improving traditional composting processes. This study explored the effects of inoculation with lignocellulose-degrading microorganisms (LDM) on the degradation of organic matter (OM), methane (CH4) emissions, and the microbial community (bacteria and methanogens) during composting. The results showed that LDM accelerated the degradation of OM (including the lignocellulose fraction) and increased the CH4 releases in the later thermophilic and cooling stages during composting. At the ending of composting, LDM increased the CH4 emissions by 38.6% compared with the control. Moreover, LDM significantly increased the abundances of members of the bacterial and methanogenic community during the later thermophilic period (P < 0.05). In addition, LDM promoted the growth and activity of major bacterial genera (e.g., Ureibacillus) with the ability to degrade macromolecular OM, as well as affecting key methanogens (e.g., Methanocorpusculum) in the composting system. Network analysis and variance partitioning analysis indicated that OM and temperature were the main factors that affected the bacterial and methanogen community structures. Structural equation modeling demonstrated that the higher CH4 emissions under LDM were related to the growth of methanogens, which was facilitated by the anaerobic environment produced by large amounts of CO2. Thus, aerobic conditions should be improved during the end of the thermophilic and cooling composting period when inoculating with lignocellulose-degrading microorganisms in order to reduce CH4 emissions.
Collapse
Affiliation(s)
- Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; School of the Environment, Nanjing University, Nanjing, 210046, China
| | - Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
31
|
Bao J, Lv Y, Qv M, Li Z, Li T, Li S, Zhu L. Evaluation of key microbial community succession and enzyme activities of nitrogen transformation in pig manure composting process through multi angle analysis. BIORESOURCE TECHNOLOGY 2022; 362:127797. [PMID: 35987437 DOI: 10.1016/j.biortech.2022.127797] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
This experiment aimed to investigate changes in enzyme activity, microbial succession, and nitrogen conversion caused by different initial carbon-to-nitrogen ratios of 25:1, 35:1 and 20:1 (namely CK, T1 and T2) during pig manure composting. The results showed that the lower carbon-to-nitrogen ratio (T2) after composting retained 19.64 g/kg of TN which was more than 16.74 and 17.32 g/kg in treatments of CK and T1, respectively, but excessive conversion of ammonium nitrogen to ammonia gas resulted in nitrogen loss. Additional straw in T1 could play the role as a bulking agent. After composting, TN in T1 retained the most, and TN contents were 63.51 %, 67.34 % and 56.24 % in CK, T1 and T2, respectively. Network analysis indicated that many types of microorganisms functioned as a whole community at various stages of nitrogen cycle. This study suggests that microbial community structure modification might be a good strategy to reduce ammonium nitrogen loss.
Collapse
Affiliation(s)
- Jianfeng Bao
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Yuanfei Lv
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Mingxiang Qv
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Zhuo Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Tianrui Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|