1
|
Habchi S, Pecha J, Šánek L, Karouach F, El Bari H. Sustainable valorization of slaughterhouse waste through anaerobic digestion: A circular economy perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121920. [PMID: 39029174 DOI: 10.1016/j.jenvman.2024.121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/03/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Slaughterhouse waste (SHW) poses significant environmental challenges due to its complex composition. In response, a novel review exploration of anaerobic digestion (AD) as a means of valorising SHW within the context of the circular economy (CE) is presented. The physicochemical properties of individual SHW, representing key parameters for the correct management of the AD process, are scrutinized. These parameters are further connected with identifying suitable pretreatment methods to enhance biogas production. Subsequently, the review examines the diverse technologies employed in the AD of SHW, considering the complexities of mono- or co-digestion. Various AD systems are evaluated for their effectiveness in harnessing the substantial biogas production potential from SHW, encompassing key parameters, reactor configurations, and operational conditions that influence the AD process. Moreover, the review interestingly extends its scope to the recovery and management of digestate, the by-product of AD. Along with the digestate composition, strategies for various utilization of this by-product are discussed. This investigation thus underscores, within the principles of the CE, the dual sustainable benefits of SHW processing via AD in biogas production and utilization of the resultant nutrient-rich digestate in various sectors.
Collapse
Affiliation(s)
- Sanae Habchi
- Laboratory of Electronic Systems, Information Processing, Mechanics and Energetics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco.
| | - Jiří Pecha
- Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511, 760 05, Zlin, Czech Republic
| | - Lubomír Šánek
- Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511, 760 05, Zlin, Czech Republic
| | - Fadoua Karouach
- African Sustainable Agriculture Research (ASARI), University Mohammed VI Polytechnic (UM6P), Laâyoune, Morocco
| | - Hassan El Bari
- Laboratory of Electronic Systems, Information Processing, Mechanics and Energetics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
2
|
Hafez RM, Tawfik A, Hassan GK, Zahran MK, Younes AA, Ziembińska-Buczyńska A, Gamoń F, Nasr M. Synergism of floated paperboard sludge cake /sewage sludge for maximizing biomethane yield and biochar recovery from digestate: A step towards circular economy. CHEMOSPHERE 2024; 362:142639. [PMID: 38909865 DOI: 10.1016/j.chemosphere.2024.142639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
Anaerobic digestion of floated paperboard sludge (PS) cake suffers from volatile fatty acids (VFAs) accumulation, nutrient unbalanced condition, and generation of digestate with a risk of secondary pollution. To overcome these drawbacks, sewage sludge (SS) was added to PS cake for biogas recovery improvement under a co-digestion process followed by the thermal treatment of solid fraction of digestate for biochar production. Batch experimental assays were conducted at different SS:PS mixing ratios of 70:30, 50:50, 30:70, and 20:80 (w/w), and their anaerobic co-digestion performances were compared to the mono-digestion systems at 35 ± 0.2 °C for 45 days. The highest methane yield (MY) of 241.68 ± 14.81 mL/g CODremoved was obtained at the optimum SS:PS ratio of 50:50 (w/w). This experimental condition was accompanied by protein, carbohydrate, and VFA conversion efficiencies of 47.3 ± 3.2%, 46.8 ± 3.2%, and 56.3 ± 3.8%, respectively. The synergistic effect of SS and PS cake encouraged the dominance of Bacteroidota (23.19%), Proteobacteria (49.65%), Patescibacteria (8.12%), and Acidovorax (12.60%) responsible for hydrolyzing the complex organic compounds and converting the VFAs into biomethane. Further, the solid fraction of digestate was subjected to thermal treatment at a temperature of 500 °C for 2.0 h, under an oxygen-limited condition. The obtained biochar had a yield of 0.48 g/g dry digestate, and its oxygen-to-carbon (O/C), carbon-to-nitrogen (C/N), and carbon-to-phosphorous (C/P) ratios were 0.55, 10.23, and 16.42, respectively. A combined anaerobic co-digestion/pyrolysis system (capacity 50 m3/d) was designed based on the COD mass balance experimental data and biogenic CO2 market price of 22 USD/ton. This project could earn profits from biogas (12,565 USD/yr), biochar (6641 USD/yr), carbon credit (8014 USD/yr), and COD shadow price (6932 USD/yr). The proposed project could maintain a payback period of 6.60 yr. However, further studies are required to determine the associated life cycle cost model that is useful to validate the batch experiment assumptions.
Collapse
Affiliation(s)
- Rania M Hafez
- Water Pollution Research Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12311, Egypt
| | - Ahmed Tawfik
- Department of Environmental Sciences, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait.
| | - Gamal K Hassan
- Water Pollution Research Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12311, Egypt
| | - Magdy Kandil Zahran
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, 11795, Egypt
| | - Ahmed A Younes
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, 11795, Egypt
| | | | - Filip Gamoń
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 11/12 Narutowicza St, Gdansk, 80-233, Poland
| | - Mahmoud Nasr
- Sanitary Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt
| |
Collapse
|
3
|
Onadeji A, Sani BS, Abubakar UA. Response surface methodology optimization of the effect of pH, contact time, and microbial concentration on chemical oxygen removal potential of vegetable oil industrial effluents. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10963. [PMID: 38200640 DOI: 10.1002/wer.10963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024]
Abstract
The vegetable oil refinery industry generates highly polluted effluents during oil production, necessitating proper treatment before discharge to prevent environmental hazards. Treating such wastewater has become a major environmental concern in developing countries. Chemical oxygen demand (COD) is a key parameter in assessing the wastewater's organic pollutant load. High COD levels can lead to reduced dissolved oxygen in water bodies, negatively affecting aquatic life. Various technologies have been employed to treat oily wastewater, but microbial degradation has gained attention due to its potential to remove organic pollutants efficiently. This study aims to optimize the biodegradation treatment process for vegetable oil industrial effluent using response surface methodology (RSM). The wastewater's physicochemical properties were characterized to achieve this, and COD removal was analyzed. Furthermore, RSM was used to investigate the combined effects of pH, contact duration, and microbial concentration on COD removal efficiency. The result showed that the microbial strain used recorded a maximum COD removal of 92%. Furthermore, a quadratic model was developed to predict COD removal based on the experimental variables. From the analysis of variance (ANOVA) analysis, the model was found to be significant at p < 0.0004 and accurately predicted COD removal rates within the experimental region, with an R2 value of 90.99% and adjusted R2 value of 82.89%. Contour plots and statistical analysis revealed the importance of contact duration and microbial concentration on COD removal. PRACTITIONER POINTS: Response surface methodology (RSM) optimization achieved a significant chemical oxygen demand (COD) removal efficiency of 92% in vegetable oil industrial effluents. The study's success in optimizing COD removal using RSM highlights the potential for efficient and environmentally friendly wastewater treatment. Practitioners can benefit from the identified factors (pH, contact time, and microbial concentration) to enhance the operation of treatment systems. The developed predictive model offers a practical tool for plant operators and engineers to tailor wastewater treatment processes. This research underscores the importance of sustainable practices in wastewater treatment, emphasizing the role of microbial degradation in addressing organic pollutant loads.
Collapse
Affiliation(s)
- Abiodun Onadeji
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Zaria, Nigeria
| | - Badruddeen Saulawa Sani
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Zaria, Nigeria
| | - Umar Alfa Abubakar
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
4
|
Zahra K, Farhan M, Kanwal A, Sharif F, Hayyat MU, Shahzad L, Ghafoor GZ. Investigating the role of bulking agents in compost maturity. Sci Rep 2023; 13:16003. [PMID: 37749113 PMCID: PMC10520060 DOI: 10.1038/s41598-023-41891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/01/2023] [Indexed: 09/27/2023] Open
Abstract
Kitchen waste is increasing globally, similarly in Pakistan bulk of municipal solid waste comprises of kitchen waste specifically, tea waste. Composting of kitchen waste is one of the promising ways to convert waste into useful product, resulting into zero waste. This study is aimed to convert waste (kitchen waste) in to a resource (compost) using bulking agents (tea waste and biochar) for reducing maturity time. Secondly, compost application on Solanum lycopersicum (tomato) was also tested. Four compost treatments were designed under aerobic composting conditions for 30 days. Tea waste and biochar have accelerated the maturity rate and produced a nutrient rich compost. Final compost had Electrical Conductivity of 2mS/cm, Carbon Nitrogen ration of 15, 54% of organic matter, 15% of moisture content, 48% of cellulose content, and 28% of Lignin content. With the use of Co-compost the Solanum lycopersicum showed 133% germination index, 100% germination, 235% Munoo-Liisa Vitality Index and 1238% seed vigor index. Co-compost also improved the soil total nitrogen by 1.4%, total phosphorous by 2%, total potassium by 2.1% and bulk density by 2.6 gcm-3. This study successfully used tea waste and biochar as bulking agents to reduce maturation time to 30 days. Tea waste and biochar enhanced the organic matter degradation, lignocellulose degradation, water holding capacity, porosity, seed's vigor, germination index. This research can be helpful in developing home composting and home gardening to combat solid waste management and food security issue in developing countries.
Collapse
Affiliation(s)
- Khadija Zahra
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| | - Muhammad Farhan
- Sustainable Development Study Center, Government College University, Lahore, Pakistan.
| | - Amina Kanwal
- Department of Botany, Government College Women University Sialkot, Sialkot, Pakistan
| | - Faiza Sharif
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| | - Muhammad Umar Hayyat
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| | - Laila Shahzad
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| | - Gul Zareen Ghafoor
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| |
Collapse
|
5
|
Mikulčić H, Wang X, Duić N, Dewil R. Climate crisis and recent developments in bio-based restoration of ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117417. [PMID: 36739775 DOI: 10.1016/j.jenvman.2023.117417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Over the years, due to the climate crisis, sustainable economic growth and biodiversity protection have been increasingly promoted. Scientists, researchers, and experts in the field of sustainable development highlighted that bio-based restoration of ecosystems and responsible management of existing resources are needed to meet the needs of future generations. This paper discusses some of the latest developments in three main areas of sustainability, i.e., energy, water and environment, that emerged from the "16th Sustainable Development of Energy, Water and Environment Systems Conference - SDEWES 2021". The purpose of this introduction article is to briefly review the articles included in this Virtual Special Issue. As such, it acts as an editorial paper for the virtual special issue of the Journal of Environmental Management, dedicated to the SDEWES 2021 conference.
Collapse
Affiliation(s)
- Hrvoje Mikulčić
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China; University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10000, Zagreb, Croatia.
| | - Xuebin Wang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Neven Duić
- University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10000, Zagreb, Croatia.
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Jan De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium; University of Oxford, Department of Engineering Science, Parks Road, Oxford, OX1 3PJ, United Kingdom.
| |
Collapse
|
6
|
Jiang FZ, Hao HC, Hu ZY, Chen S, Li ZY. Immobilization effect of heavy metals in biochar via the copyrolysis of sewage sludge and apple branches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117073. [PMID: 36549065 DOI: 10.1016/j.jenvman.2022.117073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The excess sludge produced by sewage treatment plants can be recycled into energy through pyrolysis, and the byproduct biochar can be used for soil remediation. However, the heavy metals in sludge are retained in biochar after pyrolysis and may cause secondary pollution during its soil application. Herein, a fast copyrolysis method of activated sludge (AS) and apple branches (AT) was proposed to immobilize heavy metals while improving bio-oil yield. The results showed that the heavy metal release from the copyrolyzed biochar was markedly reduced compared with that from the biochar produced through the pyrolysis of AS alone (78% for Cr and 28% for Pb). The kinetic behavior of ion release from different biochars could be described by a first-order kinetic model. The excellent fixation of heavy metals was attributed to complexation by abundant oxygen-containing surface functional groups (-O-, =O, and -CHO) that were mainly donated by AT. Furthermore, high-temperature pyrolysis was conducive to the fixation of metals, and the release of Pb2+ and Cr3+ from the biochar pyrolyzed at 600 °C was approximately 2/3 and 1/10 of that from the biochar pyrolyzed at 400 °C, respectively. A growth experiment on Staphylococcus aureus and Escherichia coli revealed that the toxicity of the copyrolyzed biochar was greatly reduced. This work can provide a method for heavy metal fixation and simultaneous resource recovery from organic wastes.
Collapse
Affiliation(s)
- Fang-Zhou Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Hong-Chao Hao
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zi-Ying Hu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shuo Chen
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| | - Zi-Yan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
7
|
Angeloni C, Malaguti M, Prata C, Freschi M, Barbalace MC, Hrelia S. Mechanisms Underlying Neurodegenerative Disorders and Potential Neuroprotective Activity of Agrifood By-Products. Antioxidants (Basel) 2022; 12:94. [PMID: 36670956 PMCID: PMC9854890 DOI: 10.3390/antiox12010094] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Neurodegenerative diseases, characterized by progressive loss in selected areas of the nervous system, are becoming increasingly prevalent worldwide due to an aging population. Despite their diverse clinical manifestations, neurodegenerative diseases are multifactorial disorders with standard features and mechanisms such as abnormal protein aggregation, mitochondrial dysfunction, oxidative stress and inflammation. As there are no effective treatments to counteract neurodegenerative diseases, increasing interest has been directed to the potential neuroprotective activities of plant-derived compounds found abundantly in food and in agrifood by-products. Food waste has an extremely negative impact on the environment, and recycling is needed to promote their disposal and overcome this problem. Many studies have been carried out to develop green and effective strategies to extract bioactive compounds from food by-products, such as peel, leaves, seeds, bran, kernel, pomace, and oil cake, and to investigate their biological activity. In this review, we focused on the potential neuroprotective activity of agrifood wastes obtained by common products widely produced and consumed in Italy, such as grapes, coffee, tomatoes, olives, chestnuts, onions, apples, and pomegranates.
Collapse
Affiliation(s)
- Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Michela Freschi
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
8
|
Simonič M. Nanofiltration of the Remaining Whey after Kefir Grains' Cultivation. MEMBRANES 2022; 12:993. [PMID: 36295752 PMCID: PMC9611682 DOI: 10.3390/membranes12100993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Acid whey is derived from fresh cheese. The proteins were isolated by a monolithic ion-exchange column. The remaining whey fraction was used as a starter culture substrate of kefir grains. The aim of this work was, firstly, to study the possibility of column replacement by a UF membrane. If we succeeded, the concentrate would be used as a starter culture substrate of kefir grains. The second part of the research was to purify the remaining solution. The idea was to separate this solution to the permeate and the concentrate by nanofiltration. Further application of both filtration streams was tested as aqueous solutions or dried matter. Chemical and microbiological analyses were performed of both the permeate and the concentrate. The permeate analyses showed that lactose had been fully removed. The aqueous permeate was not stable, mainly due to an increase of total bacteria from 103 to 106 CFU/mL. Therefore, the permeate was spray-dried. The dry permeate was added to the moisture solution in different concentrations. The results showed that up to 0.5% of the dry permeate could be added to the moisturizing solution, with negligible changes in properties having the ability to inhibit acne growth. Anaerobic digestion of industrial sludge was performed with the addition of an aqueous concentrate, which showed improvement in anaerobic fermentation.
Collapse
Affiliation(s)
- Marjana Simonič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| |
Collapse
|