1
|
Wang L, Xiao W, Qiu T, Zhang H, Zhang J, Chen X. Enhanced Natamycin production in Streptomyces gilvosporeus through phosphate tolerance screening and transcriptome-based analysis of high-yielding mechanisms. Microb Cell Fact 2025; 24:79. [PMID: 40176084 PMCID: PMC11963449 DOI: 10.1186/s12934-025-02696-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/13/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Natamycin is a natural antibiotic with broad-spectrum antifungal activity, widely used in food preservation, medicine, and biological control. However, the relatively low biosynthetic capacity of producing strains limits further industrialization and broader applications of natamycin. Due to the complexity of cellular metabolism, evolutionary engineering is required for developing strains with enhanced natamycin biosynthetic capacity. RESULTS Here, protoplast fusion combined with phosphate tolerance screening was employed for the first time to enhance natamycin production of Streptomyces gilvosporeus. A high-yielding strain, GR-2, was obtained, with natamycin production twice that of the original strain. Transcriptomic analysis revealed that the natamycin biosynthetic gene cluster and several primary metabolic pathways were significantly upregulated in GR-2, likely contributing to its high production performance. Further experiments, including amino acid addition and reverse engineering, confirmed that branched-chain amino acid, nitrogen, and phosphate metabolism play crucial roles in promoting natamycin production. Silencing of the phosphate metabolism transcriptional regulators PhoP and PhoR led to a decreased expression of natamycin biosynthetic genes and significantly reduced natamycin production, highlighting the key role of these regulators in S. gilvosporeus. Based on omics data, co-expression of phoP and phoR in GR-2 resulted in the engineered strain GR2-P3, which exhibited a 25% increase in natamycin production in shake flasks. In a 5 L fermenter, GR2-P3 achieved a natamycin production of 12.2 ± 0.6 g·L⁻¹, the highest yield reported for S. gilvosporeus to date. CONCLUSIONS Our findings suggest that the high production performance of GR-2 is primarily due to the upregulation of the natamycin biosynthetic gene cluster and genes related to precursor supply. Increasing the intracellular supply of valine and glutamate significantly enhanced natamycin production. Additionally, the natamycin biosynthetic gene cluster is likely positively regulated by PhoP and PhoR. Our work presents a novel strategy for strain screening and evolution to improve natamycin production and identifies novel molecular targets for metabolic engineering.
Collapse
Affiliation(s)
- Liang Wang
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wen Xiao
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Ting Qiu
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Hongjian Zhang
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jianhua Zhang
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xusheng Chen
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Bombaywala S, Bajaj A, Dafale NA. Deterministic effect of oxygen level variation on shaping antibiotic resistome. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133047. [PMID: 38000281 DOI: 10.1016/j.jhazmat.2023.133047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/23/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
An increase in acquisition of antibiotic resistance genes (ARGs) by pathogens under antibiotic selective pressure poses public health threats. Sub-inhibitory antibiotics induce bacteria to generate reactive oxygen species (ROS) dependent on dissolved oxygen (DO) levels, while molecular connection between ROS-mediated ARG emergence through DNA damage and metabolic changes remains elusive. Thus, the study investigates antibiotic resistome dynamics, microbiome shift, and pathogen distribution in hyperoxic (5-7 mg L-1), normoxic (2-4 mg L-1), and hypoxic (0.5-1 mg L-1) conditions using lab-scale bioreactor. Composite inoculums in the reactor were designed to represent comprehensive microbial community and AR profile from selected activated sludge. RT-qPCR and metagenomic analysis showed an increase in ARG count (100.98 ppm) with enrichment of multidrug efflux pumps (acrAB, mexAB) in hyperoxic condition. Conversely, total ARGs decreased (0.11 ppm) under hypoxic condition marked by a major decline in int1 abundance. Prevalence of global priority pathogens increased in hyperoxic (22.5%), compared to hypoxic (0.9%) wherein major decrease were observed in Pseudomonas, Shigella, and Borrelia. The study observed an increase in superoxide dismutase (sodA, sodB), DNA repair genes (nfo, polA, recA, recB), and ROS (10.4 µmol L-1) in adapted biomass with spiked antibiotics. This suggests oxidative damage that facilitates stress-induced mutagenesis providing evidence for observed hyperoxic enrichment of ARGs. Moreover, predominance of catalase (katE, katG) likely limit oxidative damage that deplete ARG breeding in hypoxic condition. The study proposes a link between oxygen levels and AR development that offers insights into mitigation and intervention of AR by controlling oxygen-related stress and strategic selection of bacterial communities.
Collapse
Affiliation(s)
- Sakina Bombaywala
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhay Bajaj
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Indian Institute of Toxicology Research, 31 Mahatma Gandhi Marg, Lucknow 226001, India
| | - Nishant A Dafale
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Liu X, Liu Q, Sheng Y. Nutrients in overlying water affect the environmental behavior of heavy metals in coastal sediments. ENVIRONMENTAL RESEARCH 2023; 238:117135. [PMID: 37714367 DOI: 10.1016/j.envres.2023.117135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Excessive nutrients in aquatic ecosystems are the main driving factors for eutrophication and water quality deterioration. However, the influence of nutrients in overlying water on sediment heavy metals is not well understood. In this study, the effects of nitrate nitrogen (NO3-N) addition and phosphate addition in the overlying water on the environmental behaviors of chromium (Cr), copper (Cu), and cadmium (Cd) in coastal river sediments were investigated. Fresh estuary sediments and synthetic saltwater were used in microcosm studies conducted for 13 d. To determine the biological effect, unsterilized and sterilized treatments were considered. The results showed that the diffusion of Cr and Cu was inhibited in the unsterilized treatments with increased NO3-N. However, under the NO3-N sterilized treatments, Cr and Cu concentrations in the overlying water increased. This was mostly related to changes in the microbial regulation of dissolved organic carbon and pH in the unsterilized treatments. Further, in the unsterilized treatments, NO3-N addition considerably increased the concentrations of the acid-soluble (Cr, Cu, and Cd increased by 5%-8%, 29%-41%, and 31%-42%, respectively) and oxidizable (Cr, Cu, and Cd increased by 10%, 5%, and 14%, respectively) fractions. Additionally, compared with that in the unsterilized treatments, Cu and Cd concentrations in P-3 treatments decreased by 7% and 63%, respectively. By producing stable metal ions, microorganisms reduced the amount of unstable heavy metals in the sediment and heavy metal concentration in the overlying water, by considerably enhancing the binding ability of phosphate and heavy metal ions. This study provides a theoretical basis for investigating the coupling mechanisms between heavy metals and nutrients.
Collapse
Affiliation(s)
- Xiaozhu Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qunqun Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Yanqing Sheng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| |
Collapse
|
4
|
Cui J, Li J, Cui J, Ruan Y, Liang Y, Wu Y, Chang Y, Liu X, Yao D. Hippuris vulgaris could replace Myriophyllum aquaticum for efficiently removing water phosphorus under low temperature conditions in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117886. [PMID: 37084539 DOI: 10.1016/j.jenvman.2023.117886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Phytoremediation is widely used for the restoration of aquatic environments. However, the phytoremediation effects and mechanisms of special submerged species of native aquatic plants, especially under low-temperature conditions, are not yet clear. In this study, two typical submerged plants, Myriophyllum aquaticum (M. aquaticum; an exotic species) and Hippuris vulgaris (H. vulgaris; a native species), in China were investigated for their phosphorus (P) removal efficiencies (REp) and the related mechanisms of phytophysiology and microorganisms in a low-temperature incubator (10 °C during the day and 2 °C at night). At an initial P level of 0.5 mg L-1, the two plants exhibited similar REp, with the highest values (73.5%-92.1%) observed on days 3-6. After 18 days, the residual P concentration in the water was less than the Grade III limit value (0.2 mg L-1; GB 3838-2002). However, M. aquaticum had a faster REp velocity than H. vulgaris at an initial P level of 3.0 mg L-1, which was attributed to the mechanisms of plant and its interactions with microorganisms. Compared to the control group, the superoxide dismutase activity of H. vulgaris was significantly increased and its catalase activity was decreased, whereas for that of M. aquaticum was the opposite. Micro region X-ray fluorescence analysis revealed that there may be synergic absorption effects between P, S, and K, and antagonistic absorption action between P and Mn in H. vulgaris. In addition, Acinetobacter, Novosphingobium and Pseudomonas were enriched at 3.0 mg L-1 P level with these two plants, but Chlorophyta only accumulated with H. vulgaris, respectively. Overall, the native species, H. vulgaris, could replace the exotic M. aquaticum to efficiently remove P from polluted water at low temperatures. These findings provide a theoretical foundation for submerged plants P removal capabilities, and the protection of local ecosystem diversity at low temperatures.
Collapse
Affiliation(s)
- Jianwei Cui
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Jinfeng Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Jian Cui
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China.
| | - Yang Ruan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Yu Liang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Yue Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Yajun Chang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Xiaojing Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Dongrui Yao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China.
| |
Collapse
|