1
|
Zheng S, Lou B, Yang Z, Ou D, Ai N. Enhancing Wastewater Treatment with Aerobic Granular Sludge: Impacts of Tetracycline Pressure on Microbial Dynamics and Structural Stability. Microorganisms 2024; 12:1913. [PMID: 39338587 PMCID: PMC11433931 DOI: 10.3390/microorganisms12091913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
This study evaluated the efficiency of aerobic granular sludge (AGS) technology in treating wastewater contaminated with tetracycline (TC), a common antibiotic. AGS was cultivated under a TC pressure gradient ranging from 5 mg/L to 15 mg/L and compared with conventional wastewater conditions. The results demonstrated that AGS achieved high removal efficiencies and exhibited robust sedimentation performance, with significant differences in average particle sizes observed under both conditions (618.6 μm in TC conditions vs. 456.4 μm in conventional conditions). Importantly, exposure to TC was found to alter the composition and production of extracellular polymeric substances (EPSs), thereby enhancing the structural integrity and functional stability of the AGS. Additionally, the selective pressure of TC induced shifts in the microbial community composition; Rhodanobacter played a crucial role in EPS production and biological aggregation, enhancing the structural integrity and metabolic stability of AGS, while Candida tropicalis demonstrated remarkable resilience and efficiency in nutrient removal under stressful environmental conditions. These findings underscore the potential of AGS technology as a promising solution for advancing wastewater treatment methods, thus contributing to environmental protection and sustainability amid growing concerns over antibiotic contamination.
Collapse
Affiliation(s)
- Shengyan Zheng
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Bichen Lou
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zhonghui Yang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dong Ou
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Ning Ai
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Wen Q, Wang Z, Liu B, Liu S, Huang H, Chen Z. Enrichment performance and salt tolerance of polyhydroxyalkanoates (PHAs) producing mixed cultures under different saline environments. ENVIRONMENTAL RESEARCH 2024; 251:118722. [PMID: 38499223 DOI: 10.1016/j.envres.2024.118722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
The key to the resource recycling of saline wastes in form of polyhydroxyalkanoates (PHA) is to enrich mixed cultures with salt tolerance and PHA synthesis ability. However, the comparison of saline sludge from different sources and the salt tolerance mechanisms of salt-tolerant PHA producers need to be clarified. In this study, three kinds of activated sludge from different salinity environments were selected as the inoculum to enrich salt-tolerant PHA producers under aerobic dynamic feeding (ADF) mode with butyric acid dominated mixed volatile fatty acid as the substrate. The maximum PHA content (PHAm) reached 0.62 ± 0.01, 0.62 ± 0.02, and 0.55 ± 0.03 g PHA/g VSS at salinity of 0.5%, 0.8%, and 1.8%, respectively. Microbial community analysis indicated that Thauera, Paracoccus, and Prosthecobacter were dominant salt-tolerant PHA producers at low salinity, Thauera, NS9_marine, and SM1A02 were dominant salt-tolerant PHA producers at high salinity. High salinity and ADF mode had synergistic effects on selection and enrichment of salt-tolerant PHA producers. Combined correlation network with redundancy analysis indicated that trehalose synthesis genes and betaine related genes had positive correlation with PHAm, while extracellular polymeric substances (EPS) content had negative correlation with PHAm. The compatible solutes accumulation and EPS secretion were the main salt tolerance mechanisms of the PHA producers. Therefore, adding compatible solutes is an effective strategy to improve PHA synthesis in saline environment.
Collapse
Affiliation(s)
- Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zifan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Baozhen Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Shaojiao Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China; School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Haolong Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
3
|
Lou B, Yang Z, Zheng S, Ou D, Hu W, Ai N. Characteristics, Performance and Microbial Response of Aerobic Granular Sludge for Treating Tetracycline Hypersaline Pharmaceutical Wastewater. Microorganisms 2024; 12:1173. [PMID: 38930555 PMCID: PMC11206034 DOI: 10.3390/microorganisms12061173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Salt-tolerant aerobic granular sludge(AGS) was successfully cultivated under the dual stress of tetracycline and 2.5% salinity, resulting in an average particle size of 435.0 ± 0.5 and exhibiting a chemical oxygen demand(COD) removal rate exceeding 80%, as well as excellent sedimentation performance. The analysis of metagenomics technology revealed a significant pattern of succession in the development of AGS. The proportion of Oleiagrimonas, a type of salt-tolerant bacteria, exhibited a gradual increase and reached 38.07% after 42 days, which indicated that an AGS system based on moderate halophilic bacteria was successfully constructed. The expression levels of targeted genes were found to be reduced across the entire AGS process and formation, as evidenced by qPCR analysis. The presence of int1 (7.67 log10 gene copies g-1 in 0 d sludge sample) enabled microbes to horizontally transfer ARGs genes along the AGS formation under the double pressure of TC and 2.5% salinity. These findings will enhance our understanding of ARG profiles and the development in AGS under tetracycline pressure, providing a foundation for guiding the use of AGS to treat hypersaline pharmaceutical wastewater.
Collapse
Affiliation(s)
- Bichen Lou
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China; (B.L.)
| | - Zhonghui Yang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China; (B.L.)
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shengyan Zheng
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China; (B.L.)
| | - Dong Ou
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China; (B.L.)
| | - Wanpeng Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China; (B.L.)
| | - Ning Ai
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China; (B.L.)
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
4
|
Chen X, Gong Y, Li Z, Guo Y, Zhang H, Hu B, Yang W, Cao Y, Mu R. Key function of Kouleothrix in stable formation of filamentous aerobic granular sludge at low superficial gas velocity with polymeric substrates. BIORESOURCE TECHNOLOGY 2024; 397:130466. [PMID: 38373501 DOI: 10.1016/j.biortech.2024.130466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Forming and maintaining stable aerobic granular sludge (AGS) at a low superficial gas velocity (SGV) is challenging, particularly with polymeric substrates. This study cultivated filamentous aerobic granular sludge (FAGS) with filamentous Kouleothrix (Type 1851) at low SGV (0.15 cm/s) utilizing mixed acetate-soluble starch. Within approximately 260 days, notable increases in the relative abundance of Kouleothrix (from 4 % to 10 %) and Ca. Competibacter (from 1 % to 26 %) were observed through 16S rRNA gene analysis. Metagenomic analysis revealed increased expression of functional genes involved in volatile fatty acid (VFA) production (e.g., ackA and pta) and polyhydroxyalkanoate synthesis (e.g., phbB and phbC). Kouleothrix acted as a skeleton for bacterial attachment and was the key fermenting bacteria promoting granulation and maintaining granule stability. This study provides insight into the formation of FAGS with low-energy and non-VFA substrates.
Collapse
Affiliation(s)
- Xi Chen
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China.
| | - Yanzhe Gong
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yingming Guo
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Hongjiang Zhang
- North China Electric Power Research Institute Co., Ltd, Beijing 100045, China
| | - Bin Hu
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Wenhao Yang
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Yinhuan Cao
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Ruihua Mu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| |
Collapse
|
5
|
Yan H, Xu L, Su J, Wei H, Li X. Synergistic promotion of sludge reduction by surfactant-producing and lysozyme-producing bacteria: Optimization and effect of Na . BIORESOURCE TECHNOLOGY 2024; 393:130065. [PMID: 37984671 DOI: 10.1016/j.biortech.2023.130065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
To improve the efficiency of aerobic digestion, this investigation utilized the synergistic effect of lysozyme-producing strain YH14 and surfactant-producing strain ZXY4 to promote sludge hydrolysis, and added NaCl to enhance this promoting effect. The best performance in promoting sludge hydrolysis was achieved when the inoculum of functional bacteria was 12 % (inoculum ratio of strain YH14: strain ZXY4 = 1:3) and the dosage of NaCl was 5 g L-1, which caused an increase of 19.25 % in the SS removal rate and 2588.21 mg L-1 in the SCOD release, as compared with the control. Fluorescence region integral analysis shows that the synergy of two functional bacteria and NaCl can enhance the biodegradability of sludge. Protein secondary structure analysis shows that strain ZXY4 and Na+ cause the EPS structure to loosen, increasing the chances of lysozyme lysis of bacteria. Nucleotide metabolism, metabolism of other amino acids and membrane transport enhanced in a co-processing system.
Collapse
Affiliation(s)
- Huan Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Hao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
6
|
Peng SM, Luo HC, Wang ZH, Yang SS, Guo WQ, Ren NQ. Enhanced in-situ sludge reduction of the side-stream process via employing micro-aerobic approach in both mainstream and side-stream. BIORESOURCE TECHNOLOGY 2023; 377:128914. [PMID: 36940881 DOI: 10.1016/j.biortech.2023.128914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Side-stream reactor (SSR), as an in-situ sludge reduction process with high sludge reduction efficiency (SRE) and less negative impact on effluent, has been widely researched. In order to reduce cost and promote large-scale application, the anaerobic/anoxic/micro-aerobic/oxic bioreactor coupled with micro-aerobic SSR (AAMOM) was used to investigate nutrient removal and SRE under short hydraulic retention time (HRT) of SSR. When HRT of SSR was 4 h, AAMOM system achieved 30.41% SRE, while maintaining carbon and nitrogen removal efficiency. Micro-aerobic in mainstream accelerated the hydrolysis of particulate organic matter (POM) and promoted denitrification. Micro-aerobic in side-stream increased cell lysis and ATP dissipation, thus increasing SRE. Microbial community structure indicated that the cooperative interactions among hydrolytic, slow growing, predatory and fermentation bacteria played key roles in improving SRE. This study confirmed that SSR coupled micro-aerobic was a promising and practical process, which could benefit nitrogen removal and sludge reduction in municipal wastewater treatment plants.
Collapse
Affiliation(s)
- Si-Mai Peng
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hai-Chao Luo
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Han Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|