1
|
Wang L, Jing S, Gao J, Xia P, Dou T, Wang W, Zhang M, Qiao W. Enhancement of aerobic sludge granulation by quorum sensing signaling molecules mediated by biomimetic bacterial extracellular vesicles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124342. [PMID: 39884203 DOI: 10.1016/j.jenvman.2025.124342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/12/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
The addition of exogenous quorum sensing signaling molecules to the activated sludge system enables rapid sludge granulation. However, signaling molecules exposed to the environment are easily degraded, and their quorum sensing effects cannot be maintained in the long term. Therefore, they must be frequently added, which leads to an increase in operational costs. In this study, signaling molecules, acylated homoserine lactones (AHLs), were packaged into biomimetic bacterial extracellular vesicles-lipid vesicles (AHLs@ZZT), and the mediating role of lipid vesicles for AHLs was utilized to improve the utilization efficiency of signaling molecules. The results show that packaging of AHLs into vesicles slowed down the release of AHLs and protected them from degradation by porcine renal acylase. Moreover, the chemical properties of lipid vesicles are similar to the structure of bacterial cell walls, making it easier for the packaged AHLs to bind to target bacteria, thereby generating more EPS and accelerating the aggregation of microorganisms. After adding the lipid vesicles loaded with AHLs into the activated sludge system, the sludge granulation process was accelerated. Furthermore, the frequency of AHLs@ZZT addition was reduced by three times compared to that of unpackaged AHLs, resulting in a granular sludge with a smoother and denser surface. High-throughput sequencing of the sludge genome in the system indicated that adding AHLs@ZZT could promote microbial diversity and enrich functional microorganisms. Three-dimensional fluorescence spectra further revealed that the tryptophan and tyrosine proteins in extracellular polymeric substances secreted by these microorganisms facilitated sludge granulation. In summary, the lipid vesicle-mediated signaling molecular strategy can promote the rapid formation of granular sludge and maintain the long-term stability of the granular sludge structure, representing an economic and feasible regulation strategy.
Collapse
Affiliation(s)
- Lianjie Wang
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Siyi Jing
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Jie Gao
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Pengcheng Xia
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Tongtong Dou
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Weiwei Wang
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ming Zhang
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
2
|
Xiao H, Wang K, Wang Y, Zhang T, Wang X. Inhibition of denitrification and enhancement of microbial interactions in the AGS system by high concentrations of quinoline. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122837. [PMID: 39383760 DOI: 10.1016/j.jenvman.2024.122837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/17/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Quinoline represents a highly toxic and structurally stable nitrogen-containing heterocyclic compound in coking wastewater, posing a potential threat to human beings and the ecological environment. In this study, we investigated the impact of gradually elevating quinoline concentration on pollutant removal efficiency, sludge characteristics, microbial community and their interactions in the aerobic granular sludge (AGS) system. The results demonstrated that AGS was capable of effectively degrading quinoline, with a final removal rate of 90 mg/L quinoline reaching 98.54 ± 0.28%. Notably, the denitrification process was significantly impeded in the presence of 90 mg/L quinoline, with the Phase D effluent displaying a notably high NO3--N concentration of 37.09 ± 21.81 mg/L, primarily attributed to the reduced abundance of norank_f_A4b bacteria. As the quinoline concentration increased, the sludge particle size diminished from 3.46 to 2.60 mm, while the settling performance deteriorated significantly, escalating from 31.29 ± 1.63 mL/g to 62.32 ± 2.87 mL/g. Meanwhile, the protein (PN) content in EPS gradually increased (from 19.87 ± 0.88 mg/g MLVSS to 51.22 ± 3.21 mg/g MLVSS), while the polysaccharide (PS) content fluctuated. Quinoline profoundly modified microbial community composition and structure, with deterministic processes dominating community assembly. Network analysis indicated intensified and complex microbial interactions at 90 mg/L quinoline, characterized by significantly higher positive correlations. In addition, rare taxa (RT) dominated the network nodes, with 74 of 93 key species belonging to RT, highlighting their pivotal roles in sustaining system functions and strengthening microbial connections. This study provides new insights into the effects of quinoline on microbial community structure and interactions in AGS system.
Collapse
Affiliation(s)
- Haihe Xiao
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kening Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yulin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, China
| | - Tingting Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
3
|
Li Z, Cheng Y, Zeng M, Luo Y, Hou Y, Wu J, Nie J, Long B. Effect of in situ ultrasonic wave and influent ammonia nitrogen fluctuation on stability of aerobic granular sludge. ENVIRONMENTAL TECHNOLOGY 2024; 45:4791-4804. [PMID: 38008972 DOI: 10.1080/09593330.2023.2283087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/09/2023] [Indexed: 11/28/2023]
Abstract
This study elucidates the impact of fluctuating influent conditions and in situ ultrasonic wave exposure on the stability of aerobic granular sludge (AGS) in the treatment of simulated wastewater emanating from rare earth mining operations. During a stable influent period spanning from Day 1 to Day 95, the seed granules underwent an initial disintegration followed by a re-granulation phase. The secondary granulation was achieved on Day 80 and Day 40 for the ultrasonic reactor (R1) and the control reactor (R2), respectively. Notably, granules formed in R1 exhibited a more porous structure compared to those generated in R2. Subsequently, when the ammonia nitrogen in the influent oscillated between 100 and 500 mg/L during Days 96-140, both reactors yielded compact and densely structured granules. Nitrogen removal profiles were comparable between the two reactors: the removal efficiencies for ammonia nitrogen and total inorganic nitrogen escalated from 95% and 80%, respectively, during Days 1-95, to 95% and 90%, respectively, post-Day 140. A suite of performance metrics indicated that steady-state granules from R1 outperformed those from R2 across several parameters. Specifically, the nitrification/denitrification rates, and relative abundance of denitrifying bacteria were all higher in granules from R1. Conversely, the relative abundance of nitrifying bacteria was comparable between granules from both reactors. However, R1 granules demonstrated lower sludge concentration and smaller average particle size than their R2 counterparts. In conclusion, the AGS system demonstrated robust resilience to fluctuating ammonia nitrogen, and the application of ultrasonic waves significantly enhanced granular activity while achieving in situ sludge reduction.
Collapse
Affiliation(s)
- Zhenghao Li
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Yuanyuan Cheng
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Mingjing Zeng
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Yi Luo
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Yiran Hou
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Junfeng Wu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, People's Republic of China
| | - Jiale Nie
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Bei Long
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| |
Collapse
|
4
|
Wang C, Qi WK, Zhang SJ, Liu LF, Peng YZ. Innovation for continuous aerobic granular sludge process in actual municipal sewage treatment: Self-circulating up-flow fluidized bed process. WATER RESEARCH 2024; 260:121862. [PMID: 38908310 DOI: 10.1016/j.watres.2024.121862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
Aerobic granular sludge (AGS) capable of nitrogen and phosphorus removal is mainly limited to the applications in sequencing batch reactors. This study introduced an innovative continuous self-circulating up-flow fluidized bed process (Zier process) using separate aeration. The process was composed of an anoxic column (Zier-A), aeration column (Zier-OO) and aerobic column (Zier-O), and was used to treat actual municipal sewage continuously for 170 days. The process achieved self-circulation of 20-32 times and an up-flow velocity within the reactor of 7-16 m/h which were accurately controlled with only separate aeration. The larger proportion of self-circulating multiple times contributed to particle formation and stability, providing hydraulic shear conditions, and screened the precipitation performance of the granular sludge (GS). Meanwhile, the dissolved oxygen (DO) of Zier-O was controlled at 0.1-0.3 mg/L, and the DO of Zier-A input water was zero. The accurate oxygen supply enhanced simultaneous nitrification and denitrification (SND) as well as short-cut nitrification and denitrification in Zier-O and improved the COD utilization rate and the nitrogen removal rate in Zier-A. The COD treatment capacity reached 2.46 kg-COD/(m³·d). With a hydraulic retention time of 10 h, the process consistently ensured that the average concentrations of ammonia nitrogen and total nitrogen in the effluent were maintained below 5 and 15 mg/L, respectively. Moreover, the process maintained the shape and stability of GS, the median diameter of GS ranged between 300-1210 μm, the percentage of mass with particle size distribution < 200 μm at a height of 150 cm within Zier-A and Zier-O accounted for as low as 0.04%-0.05%, and showed good settling performance. The suspended solids in effluent can be maintained at 50-80 mg/L. Overall, the unique structural setting and control method of the Zier process provide another approach for the application of continuous AGS treatment for municipal sewage.
Collapse
Affiliation(s)
- Cong Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China; Beijing Drainage Group Co., Ltd., Beijing 100044, China
| | - Wei-Kang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shu-Jun Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China; Beijing Drainage Group Co., Ltd., Beijing 100044, China
| | - Li-Fang Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yong-Zhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
5
|
Cao Z, Sai A, Jia X, Zhang X. Evaluating the effect of antibiotics on aerobic granular sludge treatment of pharmaceutical wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1280-1289. [PMID: 39215738 DOI: 10.2166/wst.2024.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/21/2024] [Indexed: 09/04/2024]
Abstract
Aerobic granular sludge (AGS) has been widely applied in pharmaceutical wastewater treatment due to its advantages such as high biomass and excellent settling performance. However, the influence of commonly found antibiotics in pharmaceutical wastewater on the operational efficiency of AGS has been poorly explored. This study investigated the effects of tetracycline (TE) on AGS treating pharmaceutical wastewater at room temperature and analyzed the related mechanisms. The results demonstrate a dose-dependent relationship between TE's effects on AGS. At concentrations below the threshold of 0.1 mg/L, the effects are considered trivial. In contrast, TE with more than 2.0 mg/L reduces the performance of AGS. In the 6.0 mg/L TE group, COD, TN, and TP removal efficiencies decreased to 72.6-75.5, 54.6-58.9, and 71.6-75.8%, respectively. High concentrations of TE reduced sludge concentration and the proportion of organic matter in AGS, leading to a decline in sludge settling performance. Elevated TE concentrations stimulated extracellular polymeric substance secretion, increasing polymeric nitrogen and polymeric phosphorus content. Intracellular polymer analysis revealed that high TE concentrations reduced polyhydroxyalkanoates but enhanced glycogen metabolism. Enzyme activity analysis disclosed that high TE concentrations decreased the activity of key enzymes associated with nutrient removal.
Collapse
Affiliation(s)
- Zhenghao Cao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China E-mail:
| | - Anning Sai
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Xiangxiang Jia
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoyu Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
6
|
Zeng M, Li Z, Cheng Y, Luo Y, Hou Y, Wu J, Long B. Stability of aerobic granular sludge for treating inorganic wastewater with different nitrogen loading rates. ENVIRONMENTAL TECHNOLOGY 2024; 45:3898-3911. [PMID: 37470502 DOI: 10.1080/09593330.2023.2237656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/02/2023] [Indexed: 07/21/2023]
Abstract
This paper investigated the effect of nitrogen loading rates (NLRs) on the stability of aerobic granular sludge (AGS) for treating simulated ionic rare earth mine wastewater with high ammonia nitrogen and extremely low organic content. Mature AGS from a sequencing batch reactor (SBR) was seeded into five identical SBRs (R1, R2, R3, R4 and R5). The five reactors were operated with different NLRs (0.2, 0.4, 0.8, 1.2 and 1.6 kg/m3·d). After 30 days of operation, R1, R2 and R5 were dominated by broken granules, while most of the granules in R3 and R4 still maintained a complete structure. The properties of granules from R1, R2, R3, R4 and R5 deteriorated to varying degrees, while the granules from R3 and R4 showed better stability than that from R1, R2 and R5. In R1, R2, R3 and R4, the steady-state ammonia nitrogen removal efficiencies were all greater than 90%, and the steady-state removal efficiencies of total inorganic nitrogen (TIN) were approximately 30%. In R5, the removal efficiencies of ammonia nitrogen and TIN were both approximately 70%. The dominant nitrifying and denitrifying bacterial genera of the granules from the five reactors were Nitrosomonas and Thauera, respectively, and their relative abundance was much higher in granules from R3 and R4. The results demonstrated that a relative equilibrium between the growth and metabolism of nitrifying/denitrifying bacteria was achieved when NLR was between 0.8 and 1.2 kg/m3·d, which could provide technical support for the stability maintenance of AGS in the treatment of ionic rare earth mine wastewater.
Collapse
Affiliation(s)
- Mingjing Zeng
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Zhenghao Li
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Yuanyuan Cheng
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Yi Luo
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Yiran Hou
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Junfeng Wu
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, People's Republic of China
| | - Bei Long
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| |
Collapse
|
7
|
Song W, Kim C, Lee J, Han J, Jiang Z, Kim J, An S, Park Y, Kweon J. Low-biofouling membrane bioreactor: Effects of cis-2-Decenoic acid addition on EPS and biofouling mitigation. CHEMOSPHERE 2024; 358:142110. [PMID: 38657688 DOI: 10.1016/j.chemosphere.2024.142110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Biofouling is inevitable in the membrane process, particularly in membrane bioreactors (MBR) combined with activated sludge processes. Regulating microbial signaling systems with diffusible signal factors such as cis-2-Decenoic acid (CDA) can control biofilm formation without microbial death or growth inhibition. This study assessed the effectiveness of CDA in controlling biofouling in membrane bioreactors (MBRs), essential for wastewater treatment. By modulating microbial signaling, CDA mitigated biofilm formation without hindering microbial growth. Analysis using Confocal Laser Scanning Microscopy (CLSM) revealed structural alterations in the biofilm, reducing biomass and thickness upon CDA application. Moreover, examination of extracellular polymeric substances (EPS) highlighted a decrease in total EPS, particularly effective polysaccharides. In addition, the possibility of shifting from high molecular weight EPS to low molecular weight EPS was revealed through the change in dispersion activity. The 56% extension of MBR operational lifespan resulting from the reduction in EPS is anticipated to offer potential cost savings and improved performance. Despite these results, further investigation is crucial to validate any potential environmental risks associated with CDA and to comprehend its long-term effects at various conditions.
Collapse
Affiliation(s)
- Wonjung Song
- The Academy of Applied Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Chehyeun Kim
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea
| | - Jihoon Lee
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea
| | - Jiwon Han
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea
| | - Zikang Jiang
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea
| | - Jaehyeok Kim
- Environmetal & Bio Department, FITI Testing & Research Institute Cheongju-si, Chungcheongbuk-do, 28115, Republic of Korea
| | - Sunkyung An
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea
| | - Yongmin Park
- Operation Business Division, EPS Solution Co.,Ltd, Anyang-si, Gyeonggi-do, 14059, Republic of Korea
| | - Jihyang Kweon
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
8
|
Yang J, Qian M, Wu S, Liao H, Yu F, Zou J, Li J. Insight into the role of chitosan in rapid recovery and re-stabilization of disintegrated aerobic granular sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120613. [PMID: 38547824 DOI: 10.1016/j.jenvman.2024.120613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/16/2024] [Accepted: 03/10/2024] [Indexed: 04/07/2024]
Abstract
The disintegration and instability of aerobic granular sludge (AGS) systems during long-term operation pose significant challenges to its practical implementation, and rapid recovery strategies for disintegrated AGS are gaining more attention. In this study, the recovery and re-stabilization of disintegrated AGS was investigated by adding chitosan to a sequencing batch reactor and simultaneously adjusting the pH to slightly acidic condition. Within 7 days, chitosan addition under slight acidity led to the re-aggregation of disintegrated granules, increasing the average particle size from 166.4 μm to 485.9 μm. Notably, sludge volume indexes at 5 min (SVI5) and 30 min (SVI30) decreased remarkably from 404.6 mL/g and 215.1 mL/g (SVI30/SVI5 = 0.53) to 49.1 mL/g and 47.6 mL/g (SVI30/SVI5 = 0.97), respectively. Subsequent operation for 43 days successfully re-stabilized previous collapsed AGS system, resulting in an average particle size of 750.2 μm. These mature and re-stabilized granules exhibited characteristics of large particle size, excellent settleability, compact structure, and high biomass retention. Furthermore, chitosan facilitated the recovery of COD and nitrogen removal performances within 17-23 days of operation. It effectively facilitated the rapid aggregation of disintegrated granules by charge neutralization and bridging effects under a slightly acidic environment. Moreover, the precipitated chitosan acted as carriers, promoting the adhesion of microorganisms once pH control was discontinued. The results of batch tests and microbial community analysis confirmed that chitosan addition increased sludge retention time, enriching slow-growing microorganisms and enhancing the stability and pollutant removal efficiency of the AGS system.
Collapse
Affiliation(s)
- Jiaqi Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mengjie Qian
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuyun Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hanglei Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fengfan Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jinte Zou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing, 312000, China.
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
9
|
Wei Z, Qin Y, Li X, Gao P. Resource recovery of high value-added products from wastewater: Current status and prospects. BIORESOURCE TECHNOLOGY 2024; 398:130521. [PMID: 38432547 DOI: 10.1016/j.biortech.2024.130521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Wastewater resource recovery not only allows the extraction of value-added products and offsets the operational costs of wastewater treatment, but it is also conducive to alleviating adverse environmental issues due to energy and chemical inputs and associated emissions. A number of attractive compounds such as alginate-like polymers, struvite, polyhydroxyalkanoates, and sulfated polysaccharides, were found and successfully obtained from wastewater and have a wide range of application prospects. The aim of this work is to provide a comprehensive review of recent advances in recovery of these popular products from wastewater, and their physicochemical properties, main sources, and current recovery status are summarized. Various factors influencing the recovery performance of these materials are thoroughly discussed. Moreover, the research needs and future directions towards wastewater resource recovery are highlighted. This study can provide valuable insights for future research endeavors aiming to improve wastewater resource recovery through the retrieval of high value-added products.
Collapse
Affiliation(s)
- Zihan Wei
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yan Qin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
10
|
Pan Z, Wei H, Qiu C, Yang Q, Liang Y, Huang Z, Li J. Two-stage sequencing batch reactors with added iron shavings for nutrient removal and aerobic sludge granulation treating real wastewater with low carbon to nitrogen ratios. BIORESOURCE TECHNOLOGY 2024; 396:130380. [PMID: 38281551 DOI: 10.1016/j.biortech.2024.130380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
In response to the challenges of limited nutrient removal and the difficulty in forming aerobic granular sludge (AGS) with low carbon to nitrogen (C/N) ratios, a novel two-stage sequencing batch reactors (SBRs) (R1 and R2) system with added iron shavings was proposed and established. The results showed that AGS was developed and nitrogen (82.8 %) and phosphorus (94.7 %) were effectively removed under a C/N ratio at 1.7 ± 0.5. The average size of R1 and R2 increased from 45.3 μm to 138.7 μm and 132.8 μm. Under high biological selective pressure, phosphorus accumulating organisms like Comamonadaceae (14.8 %) and Chitinophagales (5.7 %) experienced enrichment in R1. Furthermore, R2 exhibited an increased abundance of nitrifying bacteria (2.3 %) and a higher proportion of nitrogen removal through autotrophic denitrification (>17.5 %). Overall, this study introduces an innovative two-stage SBRs with added iron shavings, offering a novel approach for the treatment of low C/N ratios wastewater.
Collapse
Affiliation(s)
- Zengrui Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongtang Wei
- Zhejiang Shuanglin Environment Co., Ltd., Hangzhou 311100, China
| | - Chong Qiu
- Zhejiang Shuanglin Environment Co., Ltd., Hangzhou 311100, China
| | - Qianjin Yang
- Zhejiang Shuanglin Environment Co., Ltd., Hangzhou 311100, China
| | - Yifan Liang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zuchao Huang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
11
|
Liu C, Shen Y, Li Y, Huang F, Wang S, Li J. Aerobic granular sludge for complex heavy metal-containing wastewater treatment: characterization, performance, and mechanisms analysis. Front Microbiol 2024; 15:1356386. [PMID: 38357352 PMCID: PMC10864496 DOI: 10.3389/fmicb.2024.1356386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Complex heavy metal (HM)-containing wastewater discharges pose substantial risks to global water ecosystems and human health. Aerobic granular sludge (AGS) has attracted increased attention as an efficient and low-cost adsorbent in HM-containing wastewater treatment. Therefore, this study systematically evaluates the effect of Cu(II), Ni(II), and Cr(III) addition on the characteristics, performance and mechanism of AGS in complex HM-containing wastewater treatment process by means of fourier transform infrared spectroscopy, inductively coupled plasma spectrocopcy, confocal laser scanning microscopy, extracellular polymeric substances (EPS) fractions detection and scanning electron microscope-energy dispersive X-ray. The results showed that AGS efficiently eliminated Cu(II), Ni(II), and Cr(III) by the orchestrated mechanisms of ion exchange, three-layer EPS adsorption [soluble microbial products EPS (SMP-EPS), loosely bound EPS (LB-EPS), tightly bound EPS (TB-EPS)], and inner-sphere adsorption; notably, almost 100% of Ni(II) was removed. Three-layer EPS adsorption was the dominant mechanism through which the HM were removed, followed by ion exchange and inner-sphere adsorption. SMP-EPS and TB-EPS were identified as the key EPS fractions for adsorbing Cr(III) and Cu(II), respectively, while Ni(II) was adsorbed evenly on SMP-EPS, TB-EPS, and LB-EPS. Moreover, the rates at which the complex HM penetrated into the granule interior and their affinity for EPS followed the order Cu(II) > Ni(II) > Cr(III). Ultimately, addition of complex HM stimulated microorganisms to excrete massive phosphodiesterases (PDEs), leading to a pronounced decrease in cyclic diguanylate (c-di-GMP) levels, which subsequently suppressed EPS secretion due to the direct linkage between c-di-GMP and EPS. This study unveils the adaptability and removal mechanism of AGS in the treatment of complex HM-containing wastewater, which is expected to provide novel insights for addressing the challenges posed by intricate real wastewater scenarios.
Collapse
Affiliation(s)
- Chong Liu
- Key Laboratory of Embalming Methodology and Cosmetology of Cadavers of the Ministry of Civil Affairs, 101 Institute of the Ministry of Civil Affairs, Beijing, China
| | - Yao Shen
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Yuguang Li
- Key Laboratory of Embalming Methodology and Cosmetology of Cadavers of the Ministry of Civil Affairs, 101 Institute of the Ministry of Civil Affairs, Beijing, China
| | - Fengguang Huang
- Key Laboratory of Embalming Methodology and Cosmetology of Cadavers of the Ministry of Civil Affairs, 101 Institute of the Ministry of Civil Affairs, Beijing, China
| | - Shuo Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, China
- Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, China
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, China
- Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, China
| |
Collapse
|
12
|
Wang C, Lu B, Chen H, Chen H, Li T, Lu W, Chai X. Strengthen high-loading operation of wastewater treatment plants by composite micron powder carrier: Microscale control of carbon, nitrogen, and sulfur metabolic pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166593. [PMID: 37634713 DOI: 10.1016/j.scitotenv.2023.166593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
The concentration of activated sludge is a crucial factor influencing the capacity and efficiency of sewage wastewater treatment plants (WWTPs). However, high sludge concentrations can lead to sludge loss in the secondary sedimentation tank, resulting in reduced processing capacity, particularly during low-temperature stages and sludge bulking. This study investigated the impact of adding composite micron powder carriers (CMPC) in high-concentration powder carrier biofluidized bed (HPB) technology to the biochemical units of WWTPs on sludge concentration and settling performance. For the traditional activated sludge method (ASM), its hydraulic retention time (HRT) was 8 h, with an average effluent total nitrogen (TN) of 15.14 mg/L. Sludge bulking was prone to occur in low-temperature environments, resulting in a high average sludge volume index (SVI) of 560 mL/g. Conversely, with a CMPC dosage of 4 g/L, the HRT of HPB technology was 4.8 h, and the average effluent TN was 11.40 mg/L, with a removal efficiency of 67.43 %. During operation of HPB technology under high sludge concentration conditions (8 g/L), the average SVI remained at 85 mL/g, indicating excellent settling characteristics. Moreover, in the sequencing batch reactor (SBR), the SVI value of bulking sludge decreased from the original 695 to 111 mL/g by the 9th day of operation with the CMPC dosage of 2 g/L. At the same time, the filamentous bacteria almost disappeared, suggesting that CMPC inhibit the growth of filamentous bacteria. Metagenomic analysis demonstrated that CPMC enhance the utilization of small molecular fatty acids in activated sludge and promote electron transfer between nitrate and nitrite, thereby improving wastewater treatment capacity. Additionally, CMPC enhanced the relative abundance of Saprospiraceae in sludge, which accelerate the degradation of polysaccharides in extracellular polymeric substances, weaken sludge's hydrophilic properties, and improve sludge's settling performance. Overall, these findings suggested that CMPC effectively strengthen the high-loading operation of WWTPs by improving sludge concentration and sedimentation performance.
Collapse
Affiliation(s)
- ChengXian Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Bin Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Hao Chen
- Changsha Urban Research Institute of Construction Science, Changsha 410006, China
| | - Huizhen Chen
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha 410205, China
| | - Tingting Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wei Lu
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
13
|
Liu S, Su C, Lu Y, Xian Y, Chen Z, Wang Y, Deng X, Li X. Effects of microplastics on the properties of different types of sewage sludge and strategies to overcome the inhibition: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166033. [PMID: 37543332 DOI: 10.1016/j.scitotenv.2023.166033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/20/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Microplastics have been identified as an emerging pollutant. When microplastics enter wastewater treatment plants, the plant traps most of the microplastics in the sludge during sewage treatment. Therefore, the effects of microplastics on sludge removal performance, and on the physical and chemical properties and microbial communities in sludge, have attracted extensive attention. This review mainly describes the presence of microplastics in wastewater treatment plants, and the effects of microplastics on the decontamination efficiency and physicochemical properties of activated sludge, aerobic granular sludge, anaerobic granular sludge and anaerobic ammonium oxidation sludge. Further, the review summarizes the effects of microplastics on microbial activity and microbial community dynamics in various sludges in terms of type, concentration, and contact time. The mechanisms used to strengthen the reduction of microplastics, such as biochar and hydrochar, are also discussed. This review summarizes the mechanism by which microplastics influence the performance of different types of sludge, and proposes effective strategies to mitigate the inhibitive effect of microplastics on sludge and discusses removal technologies of microplastics in sewage. Biochar and hydrochar are one of the effective measures to overcome the inhibition of microplastics on sludge. Meanwhile, constructed wetland may be one of the important choice for the future removal of microplastics from sewage. The goal is to provide theoretical support and insights for ensuring the stable operation of wastewater treatment plants and reducing the impact of microplastics on the environment.
Collapse
Affiliation(s)
- Shengtao Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; College of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Yiying Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yunchuan Xian
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Zhengpeng Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yuchen Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xue Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xinjuan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
14
|
Liu J, Han X, Zhu X, Li J, Zhong D, Wei L, Liang H. A systemic evaluation of aerobic granular sludge among granulation, operation, storage, and reactivation processes in an SBR. ENVIRONMENTAL RESEARCH 2023; 235:116594. [PMID: 37467940 DOI: 10.1016/j.envres.2023.116594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
As a biological promising wastewater treatment technology, aerobic granular sludge (AGS) technology had been widely studied in sequencing batch reactors (SBRs) for the decades. Presently, the whole processes of its granulation, long-term operation, storage, and reactivation have not been thoroughly evaluated, and also the relationships among microbial diversity, granular size, and characteristics were still not that clear. Hence, they were systematically evaluated in an AGS-SBR in this work. The results demonstrated that Proteobacteria and Bacteroidetes were the dominant phyla, Flavobacterium, Acinetobacter, Azoarcus, and Chryseobacterium were the core genera with discrepant abundances in diverse stages or granular size. Microbial immigration was significant in various stages due to microbial diversity had a line relationship with COD/MLVSS ratio (R2 = 0.367). However, microbial diversity had no line relationship with granular size (R2 = 0.001), indicating the microbial diversity in different-sized AGS was similar, although granular size had a line relationship with settleability (R2 = 0.978). Overall, compared to sludge traits (e.g., sludge size, settleability), COD/MLVSS played a key role on microbial evolution. This study revealed the relationships between granule characteristics and microbial community, and contributed to the future AGS-related studies.
Collapse
Affiliation(s)
- Jun Liu
- School of Modern Agriculture, Jiaxing Vocational & Technical College, Jiaxing, 314036, PR China; Department of Civil Engineering, Tongji Zhejiang College, Jiaxing, 314051, PR China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Jun Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
15
|
Li Z, Wang Z, Cai S, Lin L, Huang G, Hu Z, Jin W, Zheng Y. Effects of light intensity and salinity on formation and performance of microalgal-bacterial granular sludge. BIORESOURCE TECHNOLOGY 2023; 386:129534. [PMID: 37488013 DOI: 10.1016/j.biortech.2023.129534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Photosynthetic microorganisms in microalgal-bacterial granular sludge offer advantages in wastewater treatment processes. This study examined the effects of light intensity and salinity on microalgal-bacterial granular sludge formation and microbial changes. Activated sludge was inoculated into three bioreactors and operated in batch treatment mode for 100 days under different light intensities (0, 60, and 120 μmol m-2 s-1) and staged increases in salinity concentration (0, 1, 2, and 3%). Results showed that microalgal-bacterial granular sludge was successfully formed within 30 days, and high light exposure increased algal particle stability and inorganic nitrogen removal (63, 66, 71%), while chemical oxygen demand removal (>95%) was similar across groups. High-throughput sequencing results showed that the critical algae were Chlorella and diatoms, while the main bacteria included Paracoccus and Xanthomarina with high extracellular polymeric substance production. This study aims to enhance the comprehension of MBGS processes in saline wastewater treatment under varying light intensities.
Collapse
Affiliation(s)
- Ze Li
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ziyan Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Si Cai
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Langli Lin
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Guanqin Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhangli Hu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Wenbiao Jin
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Yihong Zheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
16
|
Song W, Ryu J, Jung J, Yu Y, Choi S, Kweon J. Dispersive biofilm from membrane bioreactor strains: effects of diffusible signal factor addition and characterization by dispersion index. Front Microbiol 2023; 14:1211761. [PMID: 37560518 PMCID: PMC10409479 DOI: 10.3389/fmicb.2023.1211761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
INTRODUCTION Biofilm occurs ubiquitously in water system. Excessive biofilm formation deteriorates severely system performance in several water and wastewater treatment processes. Quorum sensing systems were controlled in this study with a signal compound cis-2-Decenoic acid (CDA) to regulate various functions of microbial communities, including motility, enzyme production, and extracellular polymeric substance (EPS) production in biofilm. METHODS The addition of CDA to six strains extracted from membrane bioreactor sludge and the Pseudomonas aeruginosa PAO1 strain was examined for modulating biofilm development by regulating DSF expression. RESULTS AND DISCUSSION As the CDA doses increased, optical density of the biofilm dispersion assay increased, and the decrease in EPS of the biofilm was obvious on membrane surfaces. The three-dimensional visual images and quantitative analyses of biofilm formation with CDA proved thinner, less massive, and more dispersive than those without; to evaluate its dispersive intensity, a dispersion index was proposed. This could compare the dispersive effects of CDA dosing to other biofilms or efficiencies of biofouling control practices such as backwashing or new cleaning methods.
Collapse
Affiliation(s)
- Wonjung Song
- The Academy of Applied Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Junhee Ryu
- Department of Civil and Environmental Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jaehyun Jung
- HANSU Technical Service Ltd, Sungnam-si, Gyeonggi-do, Republic of Korea
| | - Youngjae Yu
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, United States
| | - Suyoung Choi
- The Academy of Applied Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Jihyang Kweon
- Department of Environmental Engineering Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Liu S, Zhou M, Daigger GT, Huang J, Song G. Granule formation mechanism, key influencing factors, and resource recycling in aerobic granular sludge (AGS) wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117771. [PMID: 37004484 DOI: 10.1016/j.jenvman.2023.117771] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
The high-efficiency and additionally economic benefits generated from aerobic granular sludge (AGS) wastewater treatment have led to its increasing popularity among academics and industrial players. The AGS process can recycle high value-added biomaterials including extracellular polymeric substances (EPS), sodium alginate-like external polymer (ALE), polyhydroxyfatty acid (PHA), and phosphorus (P), etc., which can serve various fields including agriculture, construction, and chemical while removing pollutants from wastewaters. The effects of various key operation parameters on formation and structural stability of AGS are comprehensively summarized. The degradable metabolism of typical pollutants and corresponding microbial diversity and succession in the AGS wastewater treatment system are also discussed, especially with a focus on emerging contaminants removal. In addition, recent attempts for potentially effective production of high value-added biomaterials from AGS are proposed, particularly concerning improving the yield, quality, and application of these biomaterials. This review aims to provide a reference for in-depth research on the AGS process, suggesting a new alternative for wastewater treatment recycling.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China; Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Miao Zhou
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Jianping Huang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China.
| |
Collapse
|
18
|
Kazimierowicz J, Dębowski M, Zieliński M. Technological, Ecological, and Energy-Economic Aspects of Using Solidified Carbon Dioxide for Aerobic Granular Sludge Pre-Treatment Prior to Anaerobic Digestion. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4234. [PMID: 36901245 PMCID: PMC10002249 DOI: 10.3390/ijerph20054234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
The technology of aerobic granular sludge (AGS) seems prospective in wastewater bio-treatment. The characteristics as well as compactness and structure of AGS have been proved to significantly affect the effectiveness of thus far deployed methods for sewage sludge processing, including anaerobic digestion (AD). Therefore, it is deemed necessary to extend knowledge on the possibilities of efficient AGS management and to seek viable technological solutions for methane fermentation of sludge of this type, including by means of using the pre-treatment step. Little is known about the pre-treatment method with solidified carbon dioxide (SCO2), which can be recovered in processes of biogas upgrading and enrichment, leading to biomethane production. This study aimed to determine the impact of AGS pre-treatment with SCO2 on the efficiency of its AD. An energy balance and a simplified economic analysis of the process were also carried out. It was found that an increasing dose of SCO2 applied in the pre-treatment increased the concentrations of COD, N-NH4+, and P-PO43- in the supernatant in the range of the SCO2/AGS volume ratios from 0.0 to 0.3. No statistically significant differences were noted above the latter value. The highest unit yields of biogas and methane production, reaching 476 ± 20 cm3/gVS and 341 ± 13 cm3/gVS, respectively, were obtained in the variant with the SCO2/AGS ratio of 0.3. This experimental variant also produced the highest positive net energy gain, reaching 1047.85 ± 20 kWh/ton total solids (TS). The use of the higher than 0.3 SCO2 doses was proved to significantly reduce the pH of AGS (below 6.5), thereby directly diminishing the percentage of methanogenic bacteria in the anaerobic bacterial community, which in turn contributed to a reduced CH4 fraction in the biogas.
Collapse
Affiliation(s)
- Joanna Kazimierowicz
- Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Marcin Dębowski
- Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
| | - Marcin Zieliński
- Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
| |
Collapse
|
19
|
Zhao K, Zhang T, Tian Y, Li H, Wan J, Wang Y. Efficient partial nitrification with hybrid nitrifying granular sludge based on a simultaneous fill/draw SBR mode. CHEMOSPHERE 2023; 313:137579. [PMID: 36529172 DOI: 10.1016/j.chemosphere.2022.137579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/29/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
In this study, a simultaneous fill/draw SBR was applied to investigate the feasibility of partial nitrification process with inoculation of matured aerobic granular sludge. The system operated stably over 120 days with the relatively high ammonium removal efficiency (≥ 98.83%) and nitrite accumulation rate (≥ 89.60%). Moreover, a hybrid flocs/granules system was formed stably after long-term operation. The nitrite-oxidizing bacteria (NOB) was suppressed effectively because of the combined effect of simultaneous fill/draw mode and intermittent aeration conditions. Furthermore, batch tests were separately tested with isolated granules (> 200 μm) and flocs (< 200 μm), showing that the specific ammonia oxidation rate of granules and flocs were 15.94 ± 2.85 and 66.77 ± 0.83 mg N/(g MLSS·h), respectively. Correspondingly, the abundance of Nitrosomonas as a typical AOB in granules (6.24%) and flocs (11.94%) was obtained via the microbial diversity analysis, while NOB was almost hardly detected in granules and flocs.
Collapse
Affiliation(s)
- Kaige Zhao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Tianyi Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Yixing Tian
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Jiangsu University, School Environment & Safety Engineering, Zhenjiang, 212013, PR China
| | - Haisong Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Junfeng Wan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Yan Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China
| |
Collapse
|