1
|
Bao J, He J, Hu N, Xiong H, Chen Y, Huang L. Removal characteristics of heavy metals from polluted river water purified by hybrid constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178162. [PMID: 39708464 DOI: 10.1016/j.scitotenv.2024.178162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Heavy metal pollution in urban rivers has become a global issue. In this study, hybrid constructed wetlands (HCWs) were used to comprehensively evaluate the effectiveness of field wetland projects in removing heavy metals, with evaluation metrics including seasonal variations, plant contributions, and structure compositions. The experimental results showed that the synergistic system of root-microorganism-substrate formed in the combined process well realized the high efficiency of heavy metal removal, in which the removal rate in the warm season was higher than that in the cold season. The average removal rates of Cu, Zn, Cr, and Pb were 44.62 %, 43.12 %, 40.59 % and 45.18 %, respectively. In the effluent, Zn and Cr can better meet the corresponding standards of the US, EU, and CN, and the biotoxicity of Cu and Pb was also greatly reduced. Compared to Cu, Cr, and Pb, the removal of Zn was less affected by influent loads and stable removal was achieved. In HCWs, the primary contribution to heavy metal removal is attributed to sediment deposition, subsequently followed by the uptake by plant roots and stems, with adsorption onto fillers being the least significant. These results of the study show that HCWs can effectively treat heavy metal pollution in water bodies, and are a highly efficient process for ecological remediation of urban river water. Most importantly, HCWs have demonstrated strong adaptability during the operation of actual ecological restoration projects. Additionally, HCWs can adjust the component structure according to the specific conditions of the process to realize the highest efficiency, which provides a new idea for urban river ecological restoration.
Collapse
Affiliation(s)
- Jun'an Bao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Jinke He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Ning Hu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Haifeng Xiong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400716, PR China.
| |
Collapse
|
2
|
Xiong H, Hu N, Liang Y, Wang Q, Jiang C, Yang Z, Huang L. Greenhouse gas emissions from rotating biological contactors combined with hybrid constructed wetlands treating polluted river. BIORESOURCE TECHNOLOGY 2024; 414:131550. [PMID: 39362344 DOI: 10.1016/j.biortech.2024.131550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
The rotating biological contactors combined with hybrid constructed wetlands (R-HCWs) has promising treatment performance, however, concerns persisted regarding greenhouse gases (GHGs) emissions. In this study, GHGs in the R-HCWs was evaluated, and results revealed that R-HCWs facilitated nitrogen conversion and provided alternating oxygen environments, thereby promoting the reduction of N2O and CH4 emissions. Therefore, the comprehensive global warming potential (8.7±2.7 g CO2-eq·m-3·d-1) for handling unit volume of river water was low, thus, greater ecological benefits were achieved. The relative abundance of functional microorganisms such as Bacillus, Acinetobacter, Nitrospira and norank_f__norank_o__SBR1031, increased due to warm season, which promoted the nitrogen cycle and N2O emission reduction. Anammox and denitrifying bacteria showed significantly correlated with N2O and CH4 emissions (p < 0.01). This study provides valuable insights for the potential adoption of biological and ecological integrated treatment approach optimized for improving water and mitigating GHGs emissions.
Collapse
Affiliation(s)
- Haifeng Xiong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Ning Hu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Yinkun Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Qinghua Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Chunli Jiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Zhimin Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400716, PR China.
| |
Collapse
|
3
|
Li X, Ren B, Kou X, Hou Y, Buque AL, Gao F. Recent advances and prospects of constructed wetlands in cold climates: a review from 2013 to 2023. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44691-44716. [PMID: 38965108 DOI: 10.1007/s11356-024-34065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Constructed wetland (CW), a promising, environmentally responsible, and effective green ecological treatment technology, is actively involved in the treatment of various forms of wastewater. Low temperatures will, however, lead to issues including plant dormancy, decreased microbial activity, and ice formation in CWs, which will influence how well CWs process wastewater. Applying CWs successfully and continuously in cold areas is extremely difficult. Therefore, it is crucial to find solutions for the pressing issue of increasing the CWs' ability to process wastewater at low temperatures. This review focuses on the effect of cold climate on CWs (plants, substrates, microorganisms, removal effect of pollutants). It meticulously outlines current strategies to enhance CWs' performance under low-temperature conditions, including modifications for the improvement and optimization of the internal components (i.e., plant and substrate selection, bio-augmentation) and enhancement of the external operation conditions of CWs (such as process combination, effluent recirculation, aeration, heat preservation, and operation parameter optimization). Finally, future perspectives on potential research directions and technological innovations that could strengthen CWs' performance in cold climates are prospected. This review aims to contribute valuable insights into the operation strategies, widespread implementation, and subsequent study of CWs in colder climate regions.
Collapse
Affiliation(s)
- Xiaofeng Li
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Baiming Ren
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China.
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, People's Republic of China.
| | - Xiaomei Kou
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi'an, 710065, People's Republic of China
- Power China Northwest Engineering Corporation Limited, Xi'an, 710065, People's Republic of China
| | - Yunjie Hou
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Arsenia Luana Buque
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Fan Gao
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi'an, 710065, People's Republic of China
- Power China Northwest Engineering Corporation Limited, Xi'an, 710065, People's Republic of China
| |
Collapse
|
4
|
Zhao C, Li W, Shang D, Ma Q, Liu L, Xu J, Meng J, Zhang T, Wang Q, Wang X, Zhang J, Kong Q. Influence of nitrogen sources on wastewater treatment performance by filamentous algae in constructed wetland system. ENVIRONMENTAL RESEARCH 2023; 235:116638. [PMID: 37442256 DOI: 10.1016/j.envres.2023.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Although filamentous algae have the characteristics of high nutrient assimilation ability, and adaptation to different conditions, studies on their role in water purification of constructed wetlands (CWs) are limited. In this study, the wastewater treatment capacity under different nitrogen sources was explored by constructing a filamentous algal CW (FACW) system. Results confirmed the fast and stable operation efficiency of the FACW system. Ammonia nitrogen was preferred in Cladophora sp. absorption and assimilation. The nutrient consumption rate (NCR) for total nitrogen (TN) of AG was 2.65 mg g-1 d-1, much higher than that of nitrate nitrogen (NG) (0.89 mg g-1 d-1). The symbiosis of bacteria and Cladophora sp. Contributed to pollutant removal. A stable and diverse community of microorganisms was found on Cladophora sp. Surface, which revealed different phylogenetic relationships and functional bacterial proportions with those attached on sediment surface. In addition, temperature and light intensity have great influence on the purification ability of plants, and low hydraulic retention time is beneficial to the cost-effective operation of the system. This study provides a method to expand the utilization of wetland plants and apply large filamentous algae to the purification of wetland water quality.
Collapse
Affiliation(s)
- Congcong Zhao
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China; Dongying Institute, Shandong Normal University, Dongying 257092, Shandong, PR China
| | - Wenying Li
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Dawei Shang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Qilong Ma
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Luxing Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Jiashuo Meng
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Tao Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Qian Wang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Xiaofei Wang
- Shandong Academy of Environmental Sciences CO., LTD, No. 50, Lishan Road, Lixia District, Jinan City, Shandong Province, PR China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China; Dongying Institute, Shandong Normal University, Dongying 257092, Shandong, PR China.
| |
Collapse
|
5
|
Luan YN, Xu Y, Guo Z, Yin Y, Wang Q, Zhang F, Xiao Y, Liu C, Jiang S. Enhanced nitrogen removal in immersed rotating self-aerated biofilm reactor: nitrogen removal pathway and microbial mechanism. BIORESOURCE TECHNOLOGY 2023; 385:129426. [PMID: 37392965 DOI: 10.1016/j.biortech.2023.129426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
To achieve energy-efficient treatment of the rural wastewater with satisfying performance, a novel immersed rotating self-aerated biofilm reactor (iRSABR) was proposed in this study. The iRSABR system showed better biofilm renewal performance and higher microbial activity. The effect of different regulation strategies on the iRSABR system was investigated in this study. The 70% immersion ratio and 4 r/min rotation speed (stage III) exhibited the best performance, with a total nitrogen removal efficiency of 86% and a simultaneous nitrification-denitrification (SND) rate of 76%, along with the highest electron transport system activity. The nitrogen removal pathway revealed that the SND was achieved through autotrophic/heterotrophic nitrification and aerobic/anoxic denitrification. The regulation strategy in the iRSABR system established a synergistic microbial community with main functional bacteria of nitrification (Nitrosomonas), anoxic denitrification (Flavobacterium, Pseudoxanthomonas), and aerobic denitrification (Thauera). This study highlighted the feasibility and adaptability of the iRSABR system toward energy-efficient rural wastewater treatment.
Collapse
Affiliation(s)
- Ya-Nan Luan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Yanming Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Zhonghong Guo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Yue Yin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Qing Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Feng Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Yihua Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China.
| | - Shaojun Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| |
Collapse
|
6
|
Huang L, Xiong H, Jiang C, He J, Lyu W, Chen Y. Pathways and biological mechanisms of N 2O emission reduction by adding biochar in the constructed wetland based on 15N stable isotope tracing. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118359. [PMID: 37311348 DOI: 10.1016/j.jenvman.2023.118359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
Constructed wetlands (CWs) added with biochar were built to study pollutant removal efficiencies, nitrous oxide (N2O) emission characteristics, and biological mechanisms in nitrogen transformation. The results showed that biochar addition enhanced the average removal rates of ammonium (NH4+-N), total nitrogen, and chemical oxygen demand by 4.03-18.5%, 2.90-4.99%, and 2.87-5.20% respectively while reducing N2O emissions by 25.85-83.41%. Based on 15N stable isotope tracing, it was found that nitrification, denitrification, and simultaneous nitrification and denitrification were the main processes contributing to N2O emission. The addition of biochar resulted in maximum reduction rates of 71.50%, 80.66%, and 73.09% for these three processes, respectively. The relative abundance of nitrogen-transforming microbes, such as Nitrospira, Dechloromonas, and Denitratisoma, increased after the addition of biochar, promoting nitrogen removal and reducing N2O emissions. Adding biochar could increase the functional gene copy number and enzyme activity responsible for nitrogen conversion, which helped achieve efficient NH4+-N oxidation and eliminate nitrite accumulation, thereby reducing N2O emissions.
Collapse
Affiliation(s)
- Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400716, PR China.
| | - Haifeng Xiong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China
| | - Chunli Jiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China
| | - Jinke He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China
| | - Wanlin Lyu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400716, PR China
| |
Collapse
|