1
|
Li C, Yuan Q, Hao L, Xu M, Cao J, Liu W. Synergistic reduction of pollution and carbon mitigation in constructed wetlands-microbial fuel cell using sludge-derived biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:172979. [PMID: 38705303 DOI: 10.1016/j.scitotenv.2024.172979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/08/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Integrating microbial fuel cells (MFC) into constructed wetland systems (CW) has been an efficient wastewater treatment to improve the pollutants removal and regenerate power energy. This study fabricated a sludge biochar material (SBM) to sequestrate the carbon of residual sludge. Thereafter used SBM and modified SBM as the substrate materials to construct three groups of CW-MFC for decreasing the greenhouse gas (GHG) emission. The water quality improvement in removal efficiency achieved (2.59 %, 3.10 %, 5.21 % for COD; 3.31 %, 3.60 %, 6.71 % for TN; 1.80 %, 7.38 %, 4.93 % for TP) by the application of MFC, SBM, and modified SBM in wastewater treatment, respectively. Additionally, the reduction in global warming potential (GWP) realized 17.2 %, 42.2 %, and 64.4 % resulting from these applications. The carbon flow and fate diagrams showed MFC shifted the gas phase‑carbon flow from CH4 to CO2, and SBM promoted this shift trends. Microbial diversity indicated enrichment of electrochemically active bacteria (EAB), denitrifying bacteria, and phosphate accumulating organisms (PAOs) by SBM. Metabolic pathways analysis showed that introduction of MFC and SBM exhibited significant increases of key functional genes in metabolic pathway of anaerobic oxidation of methane (AOM). This study highlights the benefit of CW-MFC in and provides a new strategy for removing pollutants and abating GHG emissions in wastewater treatment.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Quan Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Liangshan Hao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Ming Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Weijing Liu
- Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| |
Collapse
|
2
|
Mubashar M, Zulekha R, Cheng S, Xu C, Li J, Zhang X. Carbon-negative and high-rate nutrient recovery from municipal wastewater using mixotrophic Scenedesmus acuminatus. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120360. [PMID: 38377758 DOI: 10.1016/j.jenvman.2024.120360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/10/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
The efficiency of mixotrophic microalgae in enhancing the recovery of waste nutrients has been well established; however, the recovery rate is crucial in meeting the needs of field applications. This study evaluated the impact of media characteristics on nutrient recovery under mixotrophic conditions. The mixotrophic N recovery rate with S. acuminatus in modified BG-11 reached 2.59 mg L-1h-1. A mixotrophic growth optimization strategy was applied to achieve a high-rate nutrient recovery from municipal wastewater treatment plant effluents. The contribution of waste chemical oxygen demand (COD) to nutrient recovery was assessed using secondary effluent (SE) under heterotrophy. The results highlighted a significant increase in total nitrogen (TN) and total phosphorus (TP) recovery rates when glucose was supplied, indicating the additional carbon requirements for efficient nutrient recovery. The TN and TP recovery rates under mixotrophic conditions with the addition of trace metals and high cell density were enhanced by 91.94% and 92.53%, respectively, resulting in recovery rates of 3.43 mg L-1h-1 and 0.30 mg L-1h-1. The same conditions were used for nutrient recovery from primary effluent (PE), and the results were more satisfactory as the TN and TP recovery rates reached 4.79 and 0.55 mg L-1h-1, respectively. Additionally, the study estimated the carbon footprints (C-footprints) and areal footprints of mixotrophy-based nitrogen recovery. The findings revealed carbon footprints and areal footprints of -15.93 ± 4.57 tCO2e t-1 N recovery and 0.53 ± 0.19 m3 m-2d-1 wastewater, respectively. This high-rate nutrient recovery, achieved under a carbon-negative (C-negative) budget through mixotrophy, presents a novel strategy for efficiently recovering resources from municipal wastewater, thus facilitating resource recycling and ensuring environmental sustainability.
Collapse
Affiliation(s)
- Muhammad Mubashar
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Rabail Zulekha
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaozhe Cheng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Cong Xu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jing Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xuezhi Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
3
|
Hu L, Li Z, Kong L, Wei J, Chang J, Shi W. Reassessing the greenhouse effect of biogenic carbon emissions in constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120263. [PMID: 38387360 DOI: 10.1016/j.jenvman.2024.120263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Biogenic carbon emissions, including carbon dioxide (CO2) and methane (CH4), have emerged as a major concern during organic pollutant degradation within constructed wetlands (CWs). Since these organic compounds primarily originate from the photosynthetic fixation of atmospheric CO2, it potentially introduces uncertainty when assessing the greenhouse effect of biogenic carbon emissions in CWs based on direct field observations. To objectively assessing this effect, this study proposed a new strategy by quantifying CO2-equivalent (CO2-eq) changes as carbon passes through CWs and tested it in various types of CWs based on 64 literature records. The findings reveal that CWs can contribute to CO2-eq additions, yet are only responsible for 15.6% derived from direct field observations. The type of CWs plays a crucial role in these CO2-eq additions, with vertical flow CWs causing the lowest levels (6.8%), followed by surface flow CWs (14.2%). In contrast, horizontal flow CWs are associated with the strongest CO2-eq addition (25.7%). The findings provide new insights for the objective assessment of the greenhouse effect of biogenic carbon emissions in CWs, which will be beneficial for future life cycle assessment.
Collapse
Affiliation(s)
- Liping Hu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ziqian Li
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Lingwei Kong
- Key Laboratory of Coastal Environmental and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 320024, China
| | - Jun Wei
- Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China
| | - Junjun Chang
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Wenqing Shi
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
4
|
Junaidi A, Zulfiani U, Khomariyah S, Gunawan T, Widiastuti N, Sazali N, Salleh WNW. Utilization of polyphenylene sulfide as an organic additive to enhance gas separation performance in polysulfone membranes. RSC Adv 2024; 14:2311-2319. [PMID: 38213981 PMCID: PMC10782222 DOI: 10.1039/d3ra06136a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/10/2023] [Indexed: 01/13/2024] Open
Abstract
Many studies have shown that sulfur-containing compounds significantly affect the solubility of carbon dioxide (CO2) in adsorption processes. However, limited attention has been devoted to incorporating organic fillers containing sulfur atoms into gas separation membrane matrices. This study addressed the gap by developing a new membrane using a polysulfone (PSf) polymer matrix and polyphenylene sulfide (PPs) filler material. This membrane could be used to separate mixtures of H2/CH4 and CO2/CH4 gases. Our study investigated the impact of various PPs loadings (1%, 5%, and 10% w/w) relative to PSf on membrane properties and gas separation efficiency. Comprehensive characterization techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM), were employed to understand how adding PPs and coating with polydimethylsiloxane (PDMS) changed the structure of our membranes. XRD and FTIR analysis revealed distinct morphological disparities and functional groups between pure PSf and PSf/PPs composite membranes. SEM results show an even distribution of PPs on the membrane surface. The impact of adding PPs on gas separation was significant. CO2 permeability increased by 376.19%, and H2 permeability improved by 191.25%. The membrane's gas selection ability significantly improved after coating the surface with PDMS. CO2/CH4 separation increased by 255.06% and H2/CH4 separation by 179.44%. We also considered the Findex to assess the overall performance of the membrane. The 5% and 10% PPs membranes were exceptional. Adding PPs to membrane technology may greatly enhance gas separation processes.
Collapse
Affiliation(s)
- Afdhal Junaidi
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Sukolilo Surabaya 60111 Indonesia
| | - Utari Zulfiani
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Sukolilo Surabaya 60111 Indonesia
| | - Siti Khomariyah
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Sukolilo Surabaya 60111 Indonesia
| | - Triyanda Gunawan
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Sukolilo Surabaya 60111 Indonesia
| | - Nurul Widiastuti
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Sukolilo Surabaya 60111 Indonesia
| | - Norazlianie Sazali
- Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang Al-Sultan Abdullah Lebuhraya Tun Razak Gambang 26300 Kuantan Pahang Malaysia
| | - Wan Norharyati Wan Salleh
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia 81310 Skudai Johor Darul Takzim Malaysia
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| |
Collapse
|