1
|
Yuan N, Wang K, Liang M, Zhou J, Yu R. Exploring the Influence of Biochar-Supported Nano-Iron Oxide on Phosphorus Speciation Transformation and Bacterial Community Structure in Aerobic Pig Manure Composting Processes. Microorganisms 2024; 12:2593. [PMID: 39770795 PMCID: PMC11677891 DOI: 10.3390/microorganisms12122593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Existing studies have demonstrated the positive effects of nano-sized iron oxide on compost maturity, yet the impact of nano-sized iron oxide on phosphorus speciation and bacterial communities during the composting process remains unclear. In this study, pig manure and straw were used as raw materials, with biochar-supported nano-sized iron oxide (BC-Fe3O4NPs) as an additive and calcium peroxide (CaO2) as a co-agent, to conduct an aerobic composting experiment with pig manure. Four treatments were tested: CK (control), F1 (1% BC-Fe3O4NPs), F2 (5% BC-Fe3O4NPs), and F3 (5% BC-Fe3O4NPs + 5% CaO2). Key findings include the following. (1) BC-Fe3O4NPs increased compost temperatures, with F3 reaching 61℃; F1 showed optimal maturity (C/N ratio: 12.90). (2) BC-Fe3O4NPs promoted stable phosphorus forms; Residual-P proportions were higher in F1, F2, and F3 (25.81%, 51.16%, 51.68%) than CK (19.32%). (3) Bacterial phyla Firmicutes, Actinobacteria, and Proteobacteria dominated. BC-Fe3O4NPs altered community composition, especially on day 7. Firmicutes dominated CK, F1, and F3; Proteobacteria dominated F2. At the genus level, day 7 showed Corynebacterium (CK), Clostridum (F1, F3), and Caldibacillus (F2) as predominant. (4) Pearson correlation analysis revealed shifted correlations between phosphorus forms and bacterial phyla after BC-Fe3O4NPs addition. Firmicutes positively correlated with NaOH-OP in F1 during the thermophilic phase, facilitating phosphate release and adsorption by BC-Fe3O4NPs. The significance of correlations diminished with increasing additive concentration; in F3, all phyla positively correlated with various phosphorus forms.
Collapse
Affiliation(s)
- Ning Yuan
- College of Geographic Science, Harbin Normal University, Harbin 150025, China; (N.Y.); (K.W.); (M.L.)
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Kang Wang
- College of Geographic Science, Harbin Normal University, Harbin 150025, China; (N.Y.); (K.W.); (M.L.)
| | - Mengyue Liang
- College of Geographic Science, Harbin Normal University, Harbin 150025, China; (N.Y.); (K.W.); (M.L.)
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jia Zhou
- College of Geographic Science, Harbin Normal University, Harbin 150025, China; (N.Y.); (K.W.); (M.L.)
| | - Rui Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
2
|
Jiao Z, Zhang L, Zhang A, Li R, Zhang K, Wu Z, Kang Z, Wei Y, Zhang L, Wang Y, Shi X, Li J. Mature compost enhanced the harmlessness level in co-composting swine manure and carcasses in large-scale silo reactors. Front Microbiol 2024; 15:1494332. [PMID: 39606114 PMCID: PMC11599618 DOI: 10.3389/fmicb.2024.1494332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
This study aimed to investigate the impact of incorporating mature compost on the harmlessness and maturity level of composting from swine manure and carcasses from industrialized pig farms in continuously running large-scale silo reactor systems. The potential human or animal bacterial pathogens and core bacterial community in composting were analyzed by high-throughput sequencing of 16S rRNA gene amplicons. The results showed that the addition of mature compost in the GD group significantly increased the temperature of all depths, the accumulated temperature of compost, and the germination index (75.43%) compared to that in the HN group without mature compost. High-throughput sequencing revealed that the dominated genera in GD were Ureibacillus, Lactobacillus, Corynebacterium, Staphylococcus, and Jeotgalicoccus, and the addition of mature compost could significantly increase the relative abundance of Ureibacillus (16.82%) that was associated with the biodegradation of organics. A total of 421 potential bacterial pathogens were detected, and the dominated genera of pathogens were Streptococcus, Staphylococcus, and Anaerococcus. The potential pathogen in the GD group with mature compost was reduced from 7.16 to 0.77%, which was significantly lower than that (2.97%) in the HN group. Together, these findings revealed that mature compost addition in large-scale reactor composting could accelerate the harmless and humification process, providing an effective and environmentally friendly scheme to deal with the main organic wastes in intensive pig farms.
Collapse
Affiliation(s)
- Ziwei Jiao
- College of Biological Science and Technology, Yili Normal University, Yining, China
| | - Liping Zhang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Ake Zhang
- Fuyang Agricultural Science Academy, Fuyang, Anhui, China
- College of Agricultural Science and Engineering, Hohai University, Nanjing, Jiangsu, China
| | - Ruoqi Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Kui Zhang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Zhen Wu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Zitong Kang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | | | - Yue Wang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Xiong Shi
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
He L, Huang Y, Tang C, Xu J. Combined use of arbuscular mycorrhizal fungi and alkaline lignin enhance phosphorus nutrition and alleviate cadmium stress in lettuce (Lactuca sativa L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175335. [PMID: 39117195 DOI: 10.1016/j.scitotenv.2024.175335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
The excessive application of phosphorus (P) fertiliser and its poor utilisation efficiency have led to significant amounts of P being retained in agricultural soils in unavailable forms. The application of alkaline lignin to soil and its inoculation with arbuscular mycorrhizal fungi (AMF) have both been shown to improve plant P nutrition. However, their combined effects on soil P transformation remain unclear, particularly in cadmium (Cd)-contaminated soils. A potting experiment was conducted to examine the combined effects of AMF and alkaline lignin on soil P and Cd bioavailability and on the uptake of P and Cd by lettuce (Lactuca sativa L.) that were grown for 56 d in a growth chamber. Combined AMF and alkaline lignin treatment increased soil P availability and alkaline phosphatase activity. It furthermore increased bioavailable Cd concentrations of rhizosphere and bulk soils by 48 % and 72 %, respectively, and the Cd concentration in roots by 85 %, but the Cd concentration was not affected in the edible parts (shoots) of the lettuce. Moreover, the combined treatment increased shoot biomass by 26-70 % and root biomass by 99-164 %. Our findings suggested that the combined use of AMF and alkaline lignin mobilised both P and Cd in soil but did not increase the accumulation of Cd in the shoots of plants growing in Cd-contaminated soils, these results would provide guideline for increasing Cd tolerance of plants and their yield.
Collapse
Affiliation(s)
- Lizhi He
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China; Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Huang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Caixian Tang
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, Vic 3086, Australia
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Dong S, Li R, Zhou K, Wei Y, Li J, Cheng M, Chen P, Hu X. Response of humification process to fungal inoculant in corn straw composting with two different kinds of nitrogen sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174461. [PMID: 38964380 DOI: 10.1016/j.scitotenv.2024.174461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Inoculation is widely used in composting to improve the mineralization process, however, the link of fungal inoculant to humification is rarely proposed. The objective of this study was to investigate the effect of compound fungal inoculation on humification process and fungal community dynamics in corn straw composting with two different kinds of nitrogen sources [pig manure (PM) and urea (UR)]. Structural equation modeling and random forest analysis were conducted to identify key fungi and explore the fungi-mediated humification mechanism. Results showed that fungal inoculation increased the content of humic acids in PM and UR by 71.76 % and 53.01 % compared to control, respectively. High-throughput sequencing indicated that there were more key fungal genera for lignin degradation in PM especially in the later stage of composting, but a more complex fungal (genera) connections with lower humification degree was found in UR. Network analysis and random forest suggested that inoculation promoted dominant genus such as Coprinus, affecting lignocellulose degradation. Structural equation modeling indicated that fungal inoculation could promote humification by direct pathway based on lignin degradation and indirect pathway based on stimulating the indigenous microbes such as Scedosporiu and Coprinus for the accumulation of carboxyl and polyphenol hydroxyl groups. In summary, fungal inoculation is suitable to be used combining with complex nitrogen source such as pig manure in straw composting.
Collapse
Affiliation(s)
| | - Ruoqi Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Kaiyun Zhou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| | - Jun Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Meidi Cheng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Peizhen Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaomei Hu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Su J, Zhou K, Chen W, Xu S, Feng Z, Chang Y, Ding X, Zheng Y, Tao X, Zhang A, Wang Y, Li J, Ding G, Wei Y. Enhanced organic degradation and microbial community cooperation by inoculating Bacillus licheniformis in low temperature composting. J Environ Sci (China) 2024; 143:189-200. [PMID: 38644016 DOI: 10.1016/j.jes.2023.08.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 04/23/2024]
Abstract
Microbial activity and interaction are the important driving factors in the start-up phase of food waste composting at low temperature. The aim of this study was to explore the effect of inoculating Bacillus licheniformis on the degradation of organic components and the potential microbe-driven mechanism from the aspects of organic matter degradation, enzyme activity, microbial community interaction, and microbial metabolic function. The results showed that after inoculating B. licheniformis, temperature increased to 47.8°C on day 2, and the degradation of readily degraded carbohydrates (RDC) increased by 31.2%, and the bioheat production increased by 16.5%. There was an obvious enhancement of extracellular enzymes activities after inoculation, especially amylase activity, which increased by 7.68 times on day 4. The inoculated B. licheniformis colonized in composting as key genus in the start-up phase. Modular network analysis and Mantel test indicated that inoculation drove the cooperation between microbial network modules who were responsible for various organic components (RDC, lipid, protein, and lignocellulose) degradation in the start-up phase. Metabolic function prediction suggested that carbohydrate metabolisms including starch and sucrose metabolism, glycolysis / gluconeogenesis, pyruvate metabolism, etc., were improved by increasing the abundance of related functional genes after inoculation. In conclusion, inoculating B. licheniformis accelerated organic degradation by driving the cooperation between microbial network modules and enhancing microbial metabolism in the start-up phase of composting.
Collapse
Affiliation(s)
- Jing Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Kaiyun Zhou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Wenjie Chen
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Shaoqi Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Ziwei Feng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yuan Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Xiaoyan Ding
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yi Zheng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Xingling Tao
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Ake Zhang
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; Fuyang Academy of Agricultural Sciences, Fuyang 236065, China
| | - Yue Wang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Guochun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
6
|
Yan B, Lan T, Lv Y, Xing C, Liang Y, Wang H, Wu Q, Guo L, Guo WQ. Enhancing simultaneous nitrogen and phosphorus availability through biochar addition during Chinese medicinal herbal residues composting: Synergism of microbes and humus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172515. [PMID: 38642759 DOI: 10.1016/j.scitotenv.2024.172515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
The disposal of Chinese medicinal herbal residues (CMHRs) derived from Chinese medicine extraction poses a significant environmental challenge. Aerobic composting presents a sustainable treatment method, yet optimizing nutrient conversion remains a critical concern. This study investigated the effect and mechanism of biochar addition on nitrogen and phosphorus transformation to enhance the efficacy and quality of compost products. The findings reveal that incorporating biochar considerably enhanced the process of nutrient conversion. Specifically, biochar addition promoted the retention of bioavailable organic nitrogen and reduced nitrogen loss by 28.1 %. Meanwhile, adding biochar inhibited the conversion of available phosphorus to non-available phosphorus while enhancing its conversion to moderately available phosphorus, thereby preserving phosphorus availability post-composting. Furthermore, the inclusion of biochar altered microbial community structure and fostered organic matter retention and humus formation, ultimately affecting the modification of nitrogen and phosphorus forms. Structural equation modeling revealed that microbial community had a more pronounced impact on bioavailable organic nitrogen, while humic acid exerted a more significant effect on phosphorus availability. This research provides a viable approach and foundation for regulating the levels of nitrogen and phosphorus nutrients during composting, serving as a valuable reference for the development of sustainable utilization technologies pertaining to CMHRs.
Collapse
Affiliation(s)
- Bo Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tian Lan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang Lv
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuanming Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yongqi Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liang Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
7
|
Guo T, Zhang S, Song C, Zhao R, Jia L, Wei Z. Response of phosphorus fractions transformation and microbial community to carbon-to-phosphorus ratios during sludge composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121145. [PMID: 38788406 DOI: 10.1016/j.jenvman.2024.121145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/20/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Phosphorus (P) is one of the essential nutrient elements for plant growth and development. Sludge compost products can be used as an important source of soil P to solve the shortage of soil P. The difference in the initial carbon-to-phosphorus ratio (C/P) will lead to difference in the bacterial community, which would affect the biological pathway of P conversion in composting. However, few studies have been reported on adjusting the initial C/P of composting to explore P conversion. Therefore, this study investigated the response of P component transformations, bacterial community and P availability to C/P during sludge composting by adjusting initial C/P. The results showed that increasing C/P promoted the mineralization of organic P and significantly increased the content of the labile P. High C/P also increased the relative content of available P, especially when the C/P was at 45 and 60, it reached 60.51% and 60.47%. High C/P caused differences in the community structure, and improved the binding ability of microbial network modules and the competitiveness of microbial communities. Additionally, high C/P strengthened the effect of microbial communities on the transformation of P components. Finally, the study showed that C/P was the main contributor to P content variation (64.7%) and indirectly affected P component conversion by affecting the microbial community. Therefore, adjusting the C/P is crucial to improve the P utilization rate of composting products.
Collapse
Affiliation(s)
- Tong Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Shubo Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Ran Zhao
- Heilongjiang Province Environment Monitoring Centre, Harbin, 150056, China
| | - Liming Jia
- Heilongjiang Province Environment Monitoring Centre, Harbin, 150056, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
8
|
Yang K, Li S, Sun Y, Cartmill AD, López IF, Ma C, Zhang Q. Effects of combined nitrogen and phosphorus application on soil phosphorus fractions in alfalfa ( Medicago sativa L.) production in China. FRONTIERS IN PLANT SCIENCE 2024; 15:1380738. [PMID: 38863550 PMCID: PMC11165086 DOI: 10.3389/fpls.2024.1380738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Nitrogen (N) and phosphorus (P) fertilizers change the morphological structure and effectiveness of P in the soil, which in turn affects crop growth, yield, and quality. However, the effects and mechanism of combined N and P application on the content of P fractions and the transformation of effective forms in alfalfa (Medicago sativa L.) production is unclear. This experiment was conducted with four levels of N: 0 (N0), 60 (N1), 120 (N2) and 180 kg·ha-1 (N3); and two levels of P (P2O5): 0 (P0) and 100 kg·ha-1 (P1). The results indicated that, under the same N level, P application significantly increased soil total N, and total P, available P, and content of various forms of inorganic P when compared to no P application, while decreasing the content of various forms of organic P and pH value. In general, under P0 conditions, soil total N content tended to increase with increasing N application, while total P, available P content, pH, inorganic P content in all forms, and organic P content in all forms showed a decreasing trend. When compared to no N application, insoluble P (Fe-P, O-P, Ca10-P) of the N application treatments was reduced 2.80 - 22.72, 2.96 - 20.42, and 5.54 - 20.11%, respectively. Under P1 conditions, soil total N and O-P tended to increase with increasing N application, while, pH, Ca2-P, Al-P, Fe-P, Ca10-P, and organic P content of each form tended to decrease. Total P, available P, and labile organic P (LOP) of N application reduced 0.34 - 8.58, 4.76 - 19.38, and 6.27 - 14.93%, respectively, when compared to no application. Nitrogen fertilization reduced the soil Ca2-P ratio, while P fertilization reduced soil Fe-P, moderately resistant organic P (MROP), and highly resistant P (HROP) ratios, and combined N and P elevated the Ca8-P to LOP ratio. The results of redundancy analysis showed that soil total N content, available P content, and pH were the key factors affecting the conversion of P fractions in the soil. Nitrogen and P reduced the proportion of soil insoluble P, promoted the activation of soil organic P, resulting in accumulation of slow-acting P in the soil, thereby improving the efficiency of soil P in alfalfa production.
Collapse
Affiliation(s)
- Kaixin Yang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Shengyi Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yanliang Sun
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Andrew D. Cartmill
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Ignacio F. López
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Chunhui Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Qianbing Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
9
|
Liu Y, Wang H, Zhang H, Tao Y, Chen R, Hang S, Ding X, Cheng M, Ding G, Wei Y, Xu T, Li J. Synergistic effects of chemical additives and mature compost on reducing H 2S emission during kitchen waste composting. J Environ Sci (China) 2024; 139:84-92. [PMID: 38105080 DOI: 10.1016/j.jes.2023.05.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 12/19/2023]
Abstract
Additives could improve composting performance and reduce gaseous emission, but few studies have explored the synergistic of additives on H2S emission and compost maturity. This research aims to make an investigation about the effects of chemical additives and mature compost on H2S emission and compost maturity of kitchen waste composting. The results showed that additives increased the germination index value and H2S emission reduction over 15 days and the treatment with both chemical additives and mature compost achieved highest germination index value and H2S emission reduction (85%). Except for the treatment with only chemical additives, the total sulfur content increased during the kitchen waste composting. The proportion of effective sulfur was higher with the addition of chemical additives, compared with other groups. The relative abundance of H2S-formation bacterial (Desulfovibrio) was reduced and the relative abundance of bacterial (Pseudomonas and Paracoccus), which could convert sulfur-containing substances and H2S to sulfate was improved with additives. In the composting process with both chemical additives and mature compost, the relative abundance of Desulfovibrio was lowest, while the relative abundance of Pseudomonas and Paracoccus was highest. Taken together, the chemical additives and mature compost achieved H2S emission reduction by regulating the dynamics of microbial community.
Collapse
Affiliation(s)
- Yongdi Liu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Haihou Wang
- Suzhou Academy of Agricultural Sciences, Institute of Agricultural Sciences in Taihu Lake District, Suzhou 215155, China
| | - Hao Zhang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Yueyue Tao
- Suzhou Academy of Agricultural Sciences, Institute of Agricultural Sciences in Taihu Lake District, Suzhou 215155, China
| | - Rui Chen
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Sheng Hang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Xiaoyan Ding
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Meidi Cheng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Guochun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| | - Ting Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| |
Collapse
|
10
|
Zhong S, Yu Z, Liu X, Zhao M, Rong H. The influence of biochar from animal and plant on the transformation of phosphorus during paper mill sludge composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33121-3. [PMID: 38561530 DOI: 10.1007/s11356-024-33121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Biochar has effect on phosphorus adsorption, release, and transformation. This study compared the influence of biochar derived from animal (AB) and plant (PB) during paper mill sludge composting. Results indicated AB not only accelerated sludge decomposition but also had significantly higher levels of available phosphorus (AP) than PB and CK (no biochar), with AP contents in the order of AB > PB > CK. Compared to CK, AB was found to increase the relative abundance of thermophilic bacteria, and PB diversified the microbial community. Based on Pearson and RDA results, TOC/TN ratio (C/N) and organic matter (OM) explained above 50% of the variance in microbial community and phosphorus fractions. Thermophilic bacteria with high levels of OM and C/N promoted the conversion among labile and moderately labile organic phosphorus, moderately labile inorganic phosphorus, and AP. Biochar could enhance the AP conversion pathway, leading to increased levels of AP.
Collapse
Affiliation(s)
- Siming Zhong
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Zhen Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Xiaoming Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Meihua Zhao
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
11
|
Wang F, Kang Y, Fu D, Singh RP. Effect evaluation of different green wastes on food waste digestate composting and improvement of operational conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32386-y. [PMID: 38361099 DOI: 10.1007/s11356-024-32386-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
This study attempted to determine the influence of diverse green wastes on food waste digestate composting and the improvement of operational conditions. Various effects of the green wastes (GW), with different types and sizes, initial substrate mixture C/N ratios, compost pile heights, and turning frequencies on the food waste digestate (FWD) composting were examined in the current work. The findings showed that the use of street sweeping green waste (SSGW) as an additive can maintain the thermophilic stage of the FWD composting for 28 days, while the end-product contained the greatest amounts of total phosphorus (TP, 2.29%) and total potassium (TK, 4.61%) and the lowest moisture content (14.8%). Crushed SSGW (20 mm) enabled the FWD composting to maintain the longest thermophilic period (28 days), achieving the highest temperature (70.2 °C) and seed germination index (GI, 100%). Adjusting the initial substrate mixture C/N ratio to 25, compost pile height to 30 cm, and turning frequency to three times a day could enhance the efficiency and improve the fertilizer quality of the co-composting of the FWD and SSGW. This study suggested that co-composting of FWD and SSGW (FWD/SSGW = 2.3, wet weight) is a promising technique for the treatment of municipal solid waste and provided significant theoretical data for the application of composting.
Collapse
Affiliation(s)
- Fei Wang
- School of Civil Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Yangtianrui Kang
- School of Civil Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Dafang Fu
- School of Civil Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Rajendra Prasad Singh
- School of Civil Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| |
Collapse
|
12
|
Zhou L, Sun J, Xu X, Ma M, Li Y, Chen Q, Su H. Full quantitative resource utilization of raw mustard waste through integrating a comprehensive approach for producing hydrogen and soil amendments. Microb Cell Fact 2024; 23:27. [PMID: 38238808 PMCID: PMC10797975 DOI: 10.1186/s12934-023-02293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/30/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Pickled mustard, the largest cultivated vegetable in China, generates substantial waste annually, leading to significant environmental pollution due to challenges in timely disposal, leading to decomposition and sewage issues. Consequently, the imperative to address this concern centers on the reduction and comprehensive resource utilization of raw mustard waste (RMW). To achieve complete and quantitative resource utilization of RMW, this study employs novel technology integration for optimizing its higher-value applications. RESULTS Initially, subcritical hydrothermal technology was applied for rapid decomposition, with subsequent ammonia nitrogen removal via zeolite. Thereafter, photosynthetic bacteria, Rhodopseudomonas palustris, were employed to maximize hydrogen and methane gas production using various fermentation enhancement agents. Subsequent solid-liquid separation yielded liquid fertilizer from the fermented liquid and soil amendment from solid fermentation remnants. Results indicate that the highest glucose yield (29.6 ± 0.14) was achieved at 165-173℃, with a total sugar content of 50.2 g/L and 64% glucose proportion. Optimal ammonia nitrogen removal occurred with 8 g/L zeolite and strain stable growth at 32℃, with the highest OD600 reaching 2.7. Several fermentation promoters, including FeSO4, Neutral red, Na2S, flavin mononucleotide, Nickel titanate, Nickel oxide, and Mixture C, were evaluated for hydrogen production. Notably, Mixture C resulted in the maximum hydrogen production (756 mL), a production rate of 14 mL/h, and a 5-day stable hydrogen production period. Composting experiments enhanced humic acid content and organic matter (OM) by 17% and 15%, respectively. CONCLUSIONS This innovative technology not only expedites RMW treatment and hydrogen yield but also substantially enriches soil fertility. Consequently, it offers a novel approach for low-carbon, zero-pollution RMW management. The study's double outcomes extend to large-scale RMW treatment based on the aim of full quantitative resource utilization of RMW. Our method provides a valuable reference for waste management in similar perishable vegetable plantations.
Collapse
Affiliation(s)
- Ling Zhou
- Sichuan Communication Surveying and Design Institute Co., LTD, 35 Taisheng North Road, Qingyang District, Chengdu City, Sichuan Province, China
| | - JiaZhen Sun
- China railway academy Co., LTD, No, 118 Xiyuecheng Street, Jinniu District, Chengdu City, Sichuan Province, China
| | - XiaoJun Xu
- Sichuan Communication Surveying and Design Institute Co., LTD, 35 Taisheng North Road, Qingyang District, Chengdu City, Sichuan Province, China
| | - MingXia Ma
- Sichuan Communication Surveying and Design Institute Co., LTD, 35 Taisheng North Road, Qingyang District, Chengdu City, Sichuan Province, China
| | - YongZhi Li
- Chongqing Institute of Green and Interligent Technology, Chinese Academy of Science, 266, Fangzheng Avenue, Shuitu High-tech Park, Beibei, Chongqing, 400714, China
| | - Qiao Chen
- Chongqing Institute of Green and Interligent Technology, Chinese Academy of Science, 266, Fangzheng Avenue, Shuitu High-tech Park, Beibei, Chongqing, 400714, China.
| | - HaiFeng Su
- Chongqing Institute of Green and Interligent Technology, Chinese Academy of Science, 266, Fangzheng Avenue, Shuitu High-tech Park, Beibei, Chongqing, 400714, China.
| |
Collapse
|
13
|
Zhan Y, Xu S, Hou Z, Gao X, Su J, Peng B, Zhao J, Wang Z, Cheng M, Zhang A, Guo Y, Ding G, Li J, Wei Y. Co-inoculation of phosphate-solubilizing bacteria and phosphate accumulating bacteria in phosphorus-enriched composting regulates phosphorus transformation by facilitating polyphosphate formation. BIORESOURCE TECHNOLOGY 2023; 390:129870. [PMID: 37839642 DOI: 10.1016/j.biortech.2023.129870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
This study aimed to explore the impact of co-inoculating phosphate-solubilizing bacteria (PSB) and phosphate accumulating bacteria (PAB) on phosphorus forms transformation, microbial biomass phosphorus (MBP) and polyphosphate (Poly-P) accumulation, bacterial community composition in composting, using high throughput sequencing, PICRUSt 2, network analysis, structural equation model (SEM) and random forest (RF) analysis. The results demonstrated PSB-PAB co-inoculation (T1) reduced Olsen-P content (1.4 g) but had higher levels of MBP (74.2 mg/kg) and Poly-P (419 A.U.) compared to PSB-only (T0). The mantel test revealed a significantly positive correlation between bacterial diversity and both bioavailable P and MBP. Halocella was identified as a key genus related to Poly-P synthesis by network analysis. SEM and RF analysis showed that pH and bacterial community had the most influence on Poly-P synthesis, and PICRUSt 2 analysis revealed inoculation of PAB increased ppk gene abundance in T1. Thus, PSB-PAB co-inoculation provides a new idea for phosphorus management.
Collapse
Affiliation(s)
- Yabin Zhan
- Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Shaoqi Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Zhuonan Hou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Xin Gao
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Jing Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Bihui Peng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Jinyue Zhao
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Zhigang Wang
- DBN Agriculture Science and Technology Group CO., Ltd., DBN Pig Academy, Beijing 102629, China
| | - Meidi Cheng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Ake Zhang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Fuyang Academy of Agricultural Sciences, Fuyang 236065, China
| | - Yanbin Guo
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Guochun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
14
|
He L, Zhao Y, Zhao X, Wang Y, Dang Q. Regulating method of microbial driving the phosphorus bioavailability in factory composting. BIORESOURCE TECHNOLOGY 2023; 387:129676. [PMID: 37586430 DOI: 10.1016/j.biortech.2023.129676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Phosphorus bioavailability is essential for assessing compost quality. However, the effects of microbial and environmental factors on potentially active phosphorus (H2O-P + NaHCO3-Pi) in factory compost have not been investigated. The findings indicated that chicken manure had significantly higher available phosphorus (AP) and H2O-P + NaHCO3-Pi throughout the composting process than kitchen waste (P < 0.05). Chicken manure compost also exhibited higher α-microbial diversity. Novibacillus, Marinococcaceae and Bacillales were the core bacteria involved in bioavailable phosphorus conversion in both composts. The core bacteria in kitchen waste compost had a broader range of phosphorus metabolism functions. Moreover, moisture and pH were the key environmental factors that significantly influenced the bioavailable phosphorus (P < 0.05). These findings provide a scientific foundation for regulating the composting process and improving phosphorus utilization efficiency.
Collapse
Affiliation(s)
- Liangzi He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiuling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
15
|
Li S, Xu S, Chen S, Zhang H, Zhan Y, Jia K, Cheng M, Wei Y. Carbon-containing additives changes the phosphorus flow by affecting humification and bacterial community during composting. BIORESOURCE TECHNOLOGY 2023; 379:129066. [PMID: 37075850 DOI: 10.1016/j.biortech.2023.129066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Phosphorus recycling from organic wastes to prepare a fertilizer by composting is promising. The aim of this study was to compare the effect of diverse carbon-containing additives (T1, glucose; T2, biochar; T3, woody peat) on phosphorus (P) fractions transformations, humus formation and bacterial community succession in chicken manure composting. Results showed that orthophosphate monoester was significantly related to the humification process, and glucose or woody peat addition increased the P in humus. Lentibacillus was a key carbon cycle bacteria related to organics stabilization affected by carbon-containing additives. Redundancy analysis and variation partitioning indicated that phosphatase enzyme activity driven by bacterial community and humic substance had 59.7% contribution to P fractions dynamics. The findings highlight an efficient humus-regulation P stabilization way, notably in composting adding glucose to form humus with a better binding ability to labile P forms and phosphatase.
Collapse
Affiliation(s)
- Shuxin Li
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Shaoqi Xu
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215100, China
| | - Shuo Chen
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215100, China
| | - Hao Zhang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Yabin Zhan
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215100, China
| | - Kaixue Jia
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Meidi Cheng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yuquan Wei
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215100, China.
| |
Collapse
|
16
|
Xu S, Jia K, Zheng Y, Chen W, Wang Z, Wei D, Sun B, Cheng M, Fan B, Li J, Wei Y. Phosphorus transformation behavior and phosphorus cycling genes expression in food waste composting with hydroxyapatite enhanced by phosphate-solubilizing bacteria. BIORESOURCE TECHNOLOGY 2023; 376:128882. [PMID: 36925077 DOI: 10.1016/j.biortech.2023.128882] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to explore the effect of phosphate-solubilizing bacteria (PSB) Bacillus inoculation in the cooling stage on hydroxyapatite dissolution, phosphorus (P) forms transformation, and bacterial P cycling genes in food waste composting with hydroxyapatite. Results indicated that PSB inoculation promoted the dissolution of hydroxyapatite, increased P availability of compost by 8.1% and decreased the ratio of organic P to inorganic P by 10.2% based on sequential fractionation and 31P nuclear magnetic resonance spectroscopy. Illumina sequencing indicated Bacillus relative abundance after inoculation increased up to one time higher than control after the cooling stage. Network analysis and metabolic function of bacterial community analysis suggested inorganic P solubilizing genes of Bacillus and organic P mineralization genes of other genera were improved after inoculation in the core module. Therefore, bioaugmentation of PSB in the cooling stage may be a potential way to improve P bioavailability of bone and food waste in composting.
Collapse
Affiliation(s)
- Shaoqi Xu
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Kaixue Jia
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yi Zheng
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215100, China
| | - Wenjie Chen
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215100, China
| | - Zhigang Wang
- Beijing DBN Agriculture Science and Technology Group CO., Ltd., DBN Pig Academy, Beijing 102629, China
| | - Dan Wei
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Baoru Sun
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Meidi Cheng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Beibei Fan
- Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215100, China
| | - Ji Li
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215100, China
| | - Yuquan Wei
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215100, China.
| |
Collapse
|
17
|
Sun J, Wang F, Jia X, Wang X, Xiao X, Dong H. Research progress of bio-slurry remediation technology for organic contaminated soil. RSC Adv 2023; 13:9903-9917. [PMID: 37034448 PMCID: PMC10076817 DOI: 10.1039/d2ra06106f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Bio-slurry remediation technology, as a controllable bioremediation method, has the significant advantage of high remediation efficiency and can effectively solve the problems of high energy consumption and secondary pollution of traditional organic pollution site remediation technology. To further promote the application of this technology in the remediation of organically polluted soil, this paper summarizes the importance and advantages of bio-slurry remediation technology compared with traditional soil remediation technologies (physical, chemical, and biological). It introduces the technical infrastructure and its technological processes. Then, various factors that may affect its remediation performance are discussed. By analyzing the applications of this technology to the remediation of typical organic pollutant-(polycyclic aromatic hydrocarbons(PAHs), polychlorinated biphenyls(PCBs), total petroleum hydrocarbons(TPH), and pesticide) contaminated sites, the following key features of this remediation technology are summarised: (1) the technology has a wide range of applications and can be used in a versatile way in the remediation projects of various types of organic-contaminated soil sites such as in clay, sand, and high organic matter content soil; (2) the technology is highly controllable. Adjusting environmental parameters and operational conditions, such as nutrients, organic carbon sources (bio-stimulation), inoculants (bio-augmentation), water-to-soil ratio, etc., can control the remediation process, thus improving the restoration performance. To sum up, this bio-slurry remediation technology is an efficient, controllable and green soil remediation technology that has broad application prospects.
Collapse
Affiliation(s)
- Jing Sun
- Environmental Science and Engineering, Qilu University of Technology Jinan 250353 China
| | - Fujia Wang
- Environmental Science and Engineering, Qilu University of Technology Jinan 250353 China
- Environmental Testing and Experiment Center, Chinese Research Academy of Environmental Sciences Beijing 100012 China
| | - Xiaohan Jia
- Environmental Testing and Experiment Center, Chinese Research Academy of Environmental Sciences Beijing 100012 China
| | - Xiaowei Wang
- Environmental Testing and Experiment Center, Chinese Research Academy of Environmental Sciences Beijing 100012 China
| | - Xinxin Xiao
- Environmental Testing and Experiment Center, Chinese Research Academy of Environmental Sciences Beijing 100012 China
| | - Huaijin Dong
- Environmental Testing and Experiment Center, Chinese Research Academy of Environmental Sciences Beijing 100012 China
| |
Collapse
|