1
|
Kim J, Lim H, Jang Y, Park M, Moon DH, Lee G, Hyun S. Effect of drying treatment on the leachability of metallic elements (Zn, As, Cd, and Pb) from amended mine soils during batch leaching experiments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126246. [PMID: 40228734 DOI: 10.1016/j.envpol.2025.126246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Chemical amendments are frequently applied to immobilize toxic elements in contaminated soils. However, remobilization of elements in amended soils is poorly understood. The elution of metallic elements (Zn, As, Cd, and Pb) from mine soil amended with mine sludge (MS), steel slag (SS), and limestone (LS) was evaluated using batch leaching tests under continuous wetting and intermittent drying. The elements were effectively immobilized by the three amendments, as evidenced by the reductions in the labile fraction (10.6-78.8 %) of SEP (sequential extraction procedure) and cumulative mass (42.0-98.5 %) during 14 leaching runs. Drying events increased the leaching potential by 2.9-fold and 4.4-fold for the eluted mass (μg) and depletion rate (k, h-1), respectively. The depletion rate of cationic elements (e.g., Zn, Cd, and Pb) from the amended samples (MSS, SSS, and LSS) correlated with the leachate pH (r2 > 0.583), while the leaching of anionic element (e.g., As) from MSS and SSS correlated well with the leachate concentration of Fe (r2 = 0.898). The findings indicate that drying events can substantially increase the remobilization of metallic elements from amended soils. Moreover, change in the leachate phase, such as the pH drop (up to 1.5 unit) and/or the Fe concentration rise (up to 62 %), can be an early sign of the increased remobilization potential of metallic elements in amendment-treated remediation sites.
Collapse
Affiliation(s)
- Juhee Kim
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea; Department of Civil, Environmental and Construction Engineering, University of Hawaii, Honolulu, HI, 96822, USA
| | - Heyyeon Lim
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yoojin Jang
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Minseok Park
- Ojeong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Deok Hyun Moon
- Department of Environmental Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Goontaek Lee
- Department of Applied Biology and Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seunghun Hyun
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Dong Y, Yu B, Jia Y, Xu X, Zhou P, Yu M, Liu J. Influence of sewage sludge compost on heavy metals in abandoned mine land reclamation: A large-scale field study for three years. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137098. [PMID: 39764972 DOI: 10.1016/j.jhazmat.2025.137098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/04/2024] [Accepted: 01/01/2025] [Indexed: 03/12/2025]
Abstract
Using sewage sludge compost (SSC) for abandoned mine land reclamation supports ecological sustainability, but the environmental behavior of heavy metals in this process lacks systematic field validation. Here we analyzed the dynamic changes in heavy metal composition in topsoil, surface runoff, and subsurface infiltration after large-scale reclamation. Results show that SSC application promoted plant growth by 2-4 times, enhanced the physicochemical structure of the topsoil, and increased the levels of organic matter and inorganic nutrients. Most heavy metals exhibited higher retention in SSC-treated areas compared to non-SSC areas; nonetheless, they remained within low toxicity risk levels overall. Surface runoff from areas with high SSC content exhibited elevated concentrations of heavy metals. In the 2020-M225 sample, Cd, Cu, Pb, and Zn concentrations were at least 1.5 times that of M0. Mixing application of SSC further mitigated the subsurface migration of Cr, Cu, Pb, and Zn compared to S120, with concentrations of As, Cr, Pb, and Zn in 2020-M225 being less than 1/10 of those in M0. Correlation analysis demonstrates that SSC regulated topsoil pH and the contents of organic matter, phosphorus, and Fe and Al (hydr)oxides, which synergistically enhanced the adsorption and complexation of most toxic heavy metals, thereby reducing their migratory pollution over time. This study suggests that practical SSC application (up to 225 t/ha) results in long-term effects on heavy metals characterized by in-situ multi-effect stabilization, rather than increasing overall environmental risks, and provides a technological foundation for ensuring the safe use of SSC in mine reclamation.
Collapse
Affiliation(s)
- Yuecen Dong
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Bao Yu
- School of Environment, Tsinghua University, Beijing 100084, China; Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yufeng Jia
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xingkun Xu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ping Zhou
- Kunming Dianchi Water Treatment Co.,Ltd, Kunming 650032, China
| | - Mingdong Yu
- Zhejiang Economic & Information Center, Hangzhou 310000, China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Liu Y, Wang Z, Tan X, Hou D, Fang L, Lin A, Li F, Duan G. Long-term effectiveness of heavy metal(loid) stabilization: Development of an assessing method. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125798. [PMID: 39914560 DOI: 10.1016/j.envpol.2025.125798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/18/2025]
Abstract
In-situ stabilization technology offers a cost-effective solution for the remediation of heavy metal(loid) (HM) contaminated soils. However, the lack of a reliable method to assess the long-term effectiveness of HM stabilization significantly impedes the practical application of this technology. To address this gap, we have devised an innovative method that integrates acid rain leaching with dry-wet alternation to evaluate the long-term effectiveness of HM stabilization. We initiate the acid rain leaching process by adding 200 mL of a H2SO4 and HNO3 solution, with a pH of 3.20, to 20 g of tested soil and stirring at 30 ± 2 rpm for 2 h. After decanting the supernatant, we dried the soil in a water bath at 60 °C. Then repeat this leaching and drying cycle until HM in the leachate either exceed the preset thresholds or become stable. The time-dependent effectiveness of the stabilization is calculated based on the annual average rainfall, and the number of cycles. By using multiple types of soils contaminated with various HM, we demonstrated that this method is versatile and not limited by the types of soil or HM, and exhibits excellent multi-laboratory precision. The method exhibited excellent multi-laboratory precision, with over 82% of samples having a relative standard deviation (RSD) of less than 30%. This method is of significance for not only mitigating the risk of re-contamination from HM reactivation post-remediation, but also broadening the disposal options for remediated soils beyond landfill, thereby fostering environmentally sustainable practices.
Collapse
Affiliation(s)
- Yanqing Liu
- State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zewen Wang
- State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Tan
- State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated AgroEnvironmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated AgroEnvironmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Guilan Duan
- State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Yin M, Li X, Guo C, Zhong Q, Li X, Zeng L, Zhou Y, Yang C, Dang Z. Effects of coexisting goethite or lepidocrocite on Fe(II)-induced ferrihydrite transformation pathways and Cd speciation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178321. [PMID: 39756299 DOI: 10.1016/j.scitotenv.2024.178321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/08/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
The efficacy of ferrihydrite in remediating Cd-contaminated soil is tightly regulated by Fe(II)-induced mineralogical transformations. Despite the common coexistence of iron minerals such as goethite and lepidocrocite, which can act as templates for secondary mineral formation, the impact of these minerals on Fe(II)-induced ferrihydrite transformation and the associated Cd fate have yet to be elucidated. Herein, we investigated the simultaneous evolution of secondary minerals and Cd speciation during Fe(II)-induced ferrihydrite transformation in the presence of goethite versus lepidocrocite. The presence of goethite resulted in a more pronounced ferrihydrite transformation than lepidocrocite because goethite facilitates electron transfer. Coexisting goethite promoted the production of secondary goethite with different morphology by triggering template-directed nucleation and growth of labile Fe(III) derived from ferrihydrite and intermediate lepidocrocite, respectively. However, coexisting lepidocrocite impeded goethite formation from ferrihydrite and acted as the template to facilitate secondary lepidocrocite production. Furthermore, variations in the crystallinity of coexisting lepidocrocite influenced the particle size and crystallinity of the secondary lepidocrocite, reflecting different dominant mechanisms in secondary lepidocrocite formation. Despite partial Cd mobilization into the solution due to Fe(II)-induced ferrihydrite transformation, secondary goethite and lepidocrocite re-sequestered Cd through lattice Fe(III) substitution, indicated by an increased structural Cd proportion, expanded lattice spacing, and reduced hyperfine field intensity. Additionally, secondary goethite was more effective than secondary lepidocrocite in sequestering Cd. Coexisting goethite increased the structural Cd proportion by 3.5-fold compared to coexisting lepidocrocite, demonstrating the superior ability of coexisting goethite in enhancing Cd stability during Fe(II)-induced ferrihydrite transformation in natural soils. These findings highlight the impact of template-driven mineralogical transformation on Cd fate in polluted soils and provide crucial implications for toxic metal remediation using mineral amendments.
Collapse
Affiliation(s)
- Meiling Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xin Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Qiaohui Zhong
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Lijuan Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuting Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chen Yang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Wang H, Wu R, Zheng H, Gong Y, Yang Y, Zhu Y, Liu L, Cai M, Du S. Enhanced mobilization of soil heavy metals by the enantioselective herbicide R-napropamide compared to its S-isomer: Analyses of abiotic and biotic drivers. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135954. [PMID: 39353274 DOI: 10.1016/j.jhazmat.2024.135954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Chiral herbicides applied to agricultural soils are typically mildly to moderately contaminated with heavy metals (HMs), necessitating a thorough investigation into their effects on soil HMs availability. This study evaluated the effect of the chiral herbicide napropamide (NAP) on HMs bioavailability in different soil types, including weakly alkaline clay in Northeast China, neutral sandy loam in Zhejiang, and weakly acidic clay loam in Sichuan, China. The results demonstrate significant differences in the availability of HMs (Cd, Pb, Zn, and Ni) in the soil following enantiomer treatments, with variation ranges of 4.57-45.67 %, 5.03-96.21 %, 2.92-52.30 %, and 10.57-29.79 %, respectively. Overall, R-NAP enhanced the bioavailability of HMs more effectively than S-NAP, specifically by significantly activating available iron 3.33-191.97 % and markedly affecting soil pH and cation exchange capacity. Additionally, R-NAP influenced biotic processes by enriching dominant microbial communities, such as Chitinophaga, Niabella, and Promicromonospora, and by constructing more stable microbial networks. Notably, bioavailable Fe plays a dual regulatory role, affecting both the abiotic and biotic processes affected by soil NAP. In summary, although R-NAP is commonly used in agriculture, it poses a greater risk of HMs contamination in crops, highlighting the need for careful application and management. This study provides a fundamental theoretical basis for the judicious use of chiral herbicides in agricultural soils with mild-to-moderate HMs contamination.
Collapse
Affiliation(s)
- Hua Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Ran Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Haoyi Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yanxia Gong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yong Yang
- Zhejiang Zhongyi Testing Research Institute Co. Ltd., Ningbo 315040, China
| | - Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Lijuan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Miaozhen Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
6
|
Huang H, Luo J, Ma R, Zhang D, Sun S, Du C. Review on microwave immobilization of soil heavy metals: Processes and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122824. [PMID: 39378819 DOI: 10.1016/j.jenvman.2024.122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Soil contamination with heavy metals (HMs) is still a global issue. The maintenance of long-term stability of HMs in soil during immobilization remediation is a challenge. Microwave (MW) technology can promote the immobilization of HMs in the form of crystals and minerals, thus enhancing their resistance of corrosion. This review provides a comprehensive introduction to the basics of MW irradiation through 177 papers, and reviews the research progress of MW involvement in the immobilization of soil HMs in 10 years. The effects of MW parameter settings, absorber/fixative types and soil physicochemical properties on immobilized HMs are investigated. The immobilization mechanisms of HMs are discussed, high-temperature physical encapsulation and chemical stabilization are the two basic mechanisms in the immobilization process. MW has a unique heating method to achieve efficient remediation by shortening remediation time, reducing the activation energy of reactions and promoting the transformation of stabilization products. Finally, the current limitations of MW in the remediation of HMs contaminated soils are systematically discussed and the corresponding proposed solutions are presented which may provide directions for further laboratory studies. There are still serious problems in taking the results obtained in the laboratory to the full scale. Thus, process optimization, scale-up, design and demonstration are strongly desired. In summary, this review may help new researchers to seize the research frontier in MW and can serve as a reference for future development of MW technology in soil remediation.
Collapse
Affiliation(s)
- Huiyin Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Juan Luo
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dengcai Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shichang Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Chaoyong Du
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
7
|
Lin D, Hu G, Li H, Wu F, Li L, Yang G, Zhuang L, Gong Y. Green remediation of mercury-contaminated soil using iron sulfide nanoparticles: Immobilization performance and mechanisms, effects on soil properties, and life cycle assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173928. [PMID: 38871308 DOI: 10.1016/j.scitotenv.2024.173928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/24/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Mercury (Hg) pollution in soil has grown into a severe environmental issue. Effective in situ immobilization techniques are crucially demanded. In this study, we explored the application of carboxymethyl cellulose stabilized iron sulfide nanoparticles (CMC-FeS) for in situ immobilization of Hg in soil. CMC-FeS (a CMC-to-FeS molar ratio of 0.0004) was prepared via the reaction between FeSO4 and Na2S using CMC as a stabilizer. Remedying the Hg-polluted soil using 0.03 % CMC-FeS via batch experiments effectively reduced the acid leachable Hg by 97.5 % upon equilibrium after 71 days. Column elution tests demonstrated that the addition of CMC-FeS decreased the peak Hg concentration by 89.9 % and the total Hg mass eluted by 94.9 % after 523 pore volumes. CMC-FeS immobilized Hg in soil via chemical precipitation, ion exchange, and surface complexation. After the CMC-FeS treatment, Hg was transformed from more available exchangeable, carbonate-bound, and organic material-bound forms into the less available residual fraction, reducing the environmental risk of soil Hg from medium to low. The application of CMC-FeS boosted the soil enzyme activities and enhanced the soil bacterial diversity whereas decreased the production of methylmercury. CMC-FeS also facilitated long-term immobilization of Hg in soil. The acid leachable Hg and relative Hg bioaccessibility was decreased. Lift cycle assessment indicated that the preparation and application of CMC-FeS for in situ Hg remediation in soil met green chemistry principles. The present study confirms that CMC-FeS can be applied as an efficient and "green" amending agent for long-term Hg immobilization in soil/sediment.
Collapse
Affiliation(s)
- Dongjiao Lin
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Guanzhao Hu
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Fan Wu
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Liang Li
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Guiqin Yang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Li Zhuang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Yanyan Gong
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
8
|
Lu T, Wang L, Hu J, Wang W, Duan X, Qiu G. Enhanced reduction of Cd uptake by wheat plants using iron and manganese oxides combined with citrate in Cd-contaminated weakly alkaline arable soils. ENVIRONMENTAL RESEARCH 2024; 257:119392. [PMID: 38857857 DOI: 10.1016/j.envres.2024.119392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Iron (Fe) and manganese (Mn) oxides can be used to remediate Cd-polluted soils due to their excellent performance in heavy metal adsorption. However, their remediation capability is rather limited, and a higher content of available Mn and Fe in soils can reduce Cd accumulation in wheat plants due to the competitive absorption effect. In this study, goethite and cryptomelane were first respectively used to immobilize Cd in Cd-polluted weakly alkaline soils, and sodium citrate was then added to increase the content of available Mn and Fe content for further reduction of wheat Cd absorption. In the first season, the content of soil-available Cd and Cd in wheat plants significantly decreased when cryptomelane, goethite and their mixture were used as the remediation agents. Cryptomelane showed a better remediation effect, which could be attributed to its higher adsorption performance. The grain Cd content could be decreased from 0.35 mg kg-1 to 0.25 mg kg-1 when the content of cryptomelane was controlled at 0.5%. In the second season, when sodium citrate at 20 mmol kg-1 was further added to the soils with 0.5% cryptomelane treatment in the first season, the content of soil available Cd was increased by 14.8%, and the available Mn content was increased by 19.5%, leading to a lower Cd content in wheat grains (0.16 mg kg-1) probably due to the competitive absorption. This work provides a new strategy for the remediation of slightly Cd-polluted arable soils with safe and high-quality production of wheat.
Collapse
Affiliation(s)
- Tao Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Li Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jiwen Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Weihua Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Xianjie Duan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Hubei Hongshan Laboratory, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agriculture Science, Shenzhen, China.
| |
Collapse
|
9
|
Zhou D, Li C, Huang M, Chen X, Xia Y, Huang Y. The metal release and transformation mechanisms of V-Ti magnetite tailings: Role of the alternate flooding and drying cycles and organic acids. CHEMOSPHERE 2024; 362:142709. [PMID: 38936491 DOI: 10.1016/j.chemosphere.2024.142709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/01/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
V-Ti magnetite tailings (VTMTs) contain various heavy metals, such as Fe, Mn, V, Co, and Ni. The groundwater pollution caused by the tailing metal release has become a local environmental concern. Although studies have demonstrated the influence of alternate flooding and drying cycles (FDCs) on metal form and mobility in minerals, little was known about whether FDCs affect the metal release of VTMTs and the transformation of released metals. This study investigated the metal release kinetics of VTMTs and the metal transformation under FDCs in the absence and presence of acid rain (sulfuric and nitric acids) and bio-secreted organic acids (acetic, oxalic, and citric acids). The results showed that FDCs promoted metal release whether or not acids were present. The maximum released concentrations of V, Mn, Fe, Co, and Ni were as high as 78.63 mg L-1,1.47 mg L-1, 67.96 μg L-1, 1.34 mg L-1, and 0.80 mg L-1, respectively, under FDCs and citric acids. FDCs enhanced the tailing metal release by increasing the metal labile fraction proportion. However, the concentrations of released Fe, Mn, V, Co, and Ni all gradually decreased due to their (co-)precipitation. These precipitates conversely inhibited the subsequent mineral dissolution by covering the tailing surface. FDCs also enhanced the tailings' porosities by 2.94%-9.94%. The mineral dissolution, expansion and shrinkage, and changes in tension destroyed the tailing microstructure during FDCs. This study demonstrated the low metal pollution risk of VTMTs under FDCs, either in acid rain or bio-secreted organic acids. However, the increase in tailing porosity should be seriously considered as it would affect the tailing pond safety.
Collapse
Affiliation(s)
- Dan Zhou
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Chao Li
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Mingzheng Huang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Xiaoyan Chen
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Yonglian Xia
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Yi Huang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
10
|
Lv KN, Huang Y, Yuan GL, Sun YC, Li J, Li H, Zhang B. Uptake of zinc from the soil to the wheat grain: Nonlinear process prediction based on artificial neural network and geochemical data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174582. [PMID: 38997044 DOI: 10.1016/j.scitotenv.2024.174582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Trace elements in plants primarily derive from soils, subsequently influencing human health through the food chain. Therefore, it is essential to understand the relationship of trace elements between plants and soils. Since trace elements from soils absorbed by plants is a nonlinear process, traditional multiple linear regression (MLR) models failed to provide accurate predictions. Zinc (Zn) was chosen as the objective element in this case. Using soil geochemical data, artificial neural networks (ANN) were utilized to develop predictive models that accurately estimated Zn content within wheat grains. A total of 4036 topsoil samples and 73 paired rhizosphere soil-wheat samples were collected for the simulation study. Through Pearson correlation analysis, the total content of elements (TCEs) of Fe, Mn, Zn, and P, as well as the available content of elements (ACEs) of B, Mo, N, and Fe, were significantly correlated with the Zn bioaccumulation factor (BAF). Upon comparison, ANN models outperformed MLR models in terms of prediction accuracy. Notably, the predictive performance using ACEs as input factors was better than that using TCEs. To improve the accuracy, a two-step model was established through multiple testing. Firstly, ACEs in the soil were predicted using TCEs and properties of the rhizosphere soil as input factors. Secondly, the Zn BAF in grains was predicted using ACE as input factors. Consequently, the content of Zn in wheat grains corresponding to 4036 topsoil samples was predicted. Results showed that 85.69 % of the land was suitable for cultivating Zn-rich wheat. This finding offers a more accurate method to predict the uptake of trace elements from soils to grains, which helps to warn about abnormal levels in grains and prevent potential health risks.
Collapse
Affiliation(s)
- Kai-Ning Lv
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Yong Huang
- Beijing Institute of Ecological Geology, Beijing 100120, China
| | - Guo-Li Yuan
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China.
| | - Yu-Chen Sun
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Jun Li
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Huan Li
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; Beijing Institute of Ecological Geology, Beijing 100120, China
| | - Bo Zhang
- Beijing Institute of Ecological Geology, Beijing 100120, China
| |
Collapse
|
11
|
Liu S, Huang J, He W, Shi L, Zhang W, Li E, Zhang C, Pang H. Impact of polyamide microplastics on riparian sediment structures and Cd(II) adsorption: A comparison of natural exposure, dry-wet cycles, and freeze-thaw cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133589. [PMID: 38271876 DOI: 10.1016/j.jhazmat.2024.133589] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Microplastics (MPs) accumulation in sediments has posed a huge threat to freshwater ecosystems. However, it is still unclear the effect of MPs on riparian sediment structures and contaminant adsorption under different hydrological processes. In this study, three concentrations of polyamide (PA) MPs-treated sediments (0.1%, 1%, and 10%, w/w) were subjected to natural (NA) exposure, dry-wet (DW) cycles, and freeze-thaw (FT) cycles. The results indicated that PA MPs-added sediment increased the micro-aggregates by 10.1%-18.6% after FT cycles, leading to a decrease in aggregate stability. The pH, OM, and DOC of sediments were significantly increased in DW and FT treatments. In addition, the increasing concentration of PA MPs showed an obvious decrease in aromaticity, humification, and molecular weight of sediment DOM in FT treatments. Also, high level of MPs was more likely to inhibit the formation of humic-like substances and tryptophan-like proteins. For DW and FT cycles, 0.1% and 1% PA MPs-treated sediments slightly increased the adsorption capacity of Cd(II), which may be ascribed to the aging of MPs. Further correlation analysis found that DW and FT altered the link between DOM indicators, and aggregate stability was directly related to the changes in sediment organic carbon. Our findings revealed the ecological risk of MPs accumulating in riparian sediments under typical hydrological processes.
Collapse
Affiliation(s)
- Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Wenjuan He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lixiu Shi
- College of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Enjie Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chenyu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Haoliang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
12
|
Shi J, Jiang L, Yang J, Guo Z, Li K, Peng Y, Ibrahim N, Liu H, Liang Y, Yin H, Liu X. Transport Behavior of Cd 2+ in Highly Weathered Acidic Soils and Shaping in Soil Microbial Community Structure. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:73-89. [PMID: 38117305 DOI: 10.1007/s00244-023-01046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
The mining and smelting site soils in South China present excessive Cd pollution. However, the transport behavior of Cd in the highly weathered acidic soil layer at the lead-zinc smelting site remains unclear. Here, under different conditions of simulated infiltration, the migration behavior of Cd2+ in acid smelting site soils at different depths was examined. The remodeling effect of Cd2+ migration behavior on microbial community structure and the dominant microorganisms in lead-zinc sites soils was analyzed using high-throughput sequencing of 16S rRNA gene amplicons. The results revealed a specific flow rate in the range of 0.3-0.5 mL/min that the convection and dispersion have no obvious effect on Cd2+ migration. The variation of packing porosity could only influence the migration behavior by changing the average pore velocity, but cannot change the adsorption efficiency of soil particles. The Cd has stronger migration capacity under the reactivation of acidic seepage fluid. However, in the alkaline solution, the physical properties of soil, especially pores, intercept the Cd compounds, further affecting their migration capacity. The acid-site soil with high content of SOM, amorphous Fe oxides, crystalline Fe/Mn/Al oxides, goethite, and hematite has stronger ability to adsorb and retain Cd2+. However, higher content of kaolinite in acidic soil will increase the potential migration of Cd2+. Besides, the migration behavior of Cd2+ results in simplified soil microbial communities. Under Cd stress, Cd-tolerant genera (Bacteroides, Sphingomonas, Bradyrhizobium, and Corynebacterium) and bacteria with both acid-Cd tolerance (WCHB 1-84) were distinguished. The Ralstonia showed a high enrichment degree in alkaline Cd2+ infiltration solution (pH 10.0). Compared to the influence of Cd2+ stress, soil pH had a stronger ability to shape the microbial community in the soil during the process of Cd2+ migration.
Collapse
Affiliation(s)
- Jiaxin Shi
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| | - Jiejie Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Ziwen Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Kewei Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Yulong Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Nazidi Ibrahim
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| |
Collapse
|