1
|
Bolla M, Pettinato M, Ferrari PF, Fabiano B, Perego P. Polyhydroxyalkanoates production from laboratory to industrial scale: A review. Int J Biol Macromol 2025; 310:143255. [PMID: 40250686 DOI: 10.1016/j.ijbiomac.2025.143255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Environmental issues related to fossil-based plastics are getting the attention of the media and legislative authorities, addressing the need to improve the plastics' design, collection, and circular economy. In this regard, polyhydroxyalkanoates (PHAs) represent a promising alternative to the conventional polymers, given their biological origin, biodegradability, and biocompatibility. To date, their commercialization covers only a little percentage of the biodegradable plastic application, mainly due to their high cost. However, new production strategies are being investigated and patented, enhancing the PHA market competitiveness. This review tries to fill the gap about the critical investigation on innovative and up-to-date process strategies in PHA production field, deeply evaluating them from a plant-engineering point of view. Several aspects are considered regarding the reduction of the production costs and the increase in the overall PHA productivity and recovery. Among them, the feeding of pre-treated carbon sources derived from food and agro-industrial wastes, the use of mixed microbial cultures as convenient substitutes to the pure ones, and optimized downstream processes are widely discussed. The overlook of the topic is completed by evaluating the innovative technologies existing at pilot and industrial scale, able to achieve improved production yields. Finally, PHA economic and market current conditions are investigated.
Collapse
Affiliation(s)
- Maria Bolla
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy.
| | - Margherita Pettinato
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy.
| | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| | - Bruno Fabiano
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy.
| | - Patrizia Perego
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| |
Collapse
|
2
|
Le TM, Lin Y, Zhuang WQ, Jayaraman K, Kim NK. Effects of Extraction Methods on the Thermal Stability of Extracellular Polymeric Substances-Based Biomaterials from Wastewater Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4165-4177. [PMID: 39968815 DOI: 10.1021/acs.est.4c10329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Various methods for recovering extracellular polymeric substances (EPS)-based biomaterials from wastewater sludge exist. However, the relationships between extraction methods and properties of biomaterials have not been fully explored. In this study, the thermal properties, including activation energy (AE) and thermal decomposition mechanism, of EPS-based biomaterials extracted by different methods have been determined by thermogravimetric analysis integrated with the deconvolution method. Simultaneously, the chemical properties of these biomaterials, such as the extraction yield, chemical composition, and functional groups, have been monitored to clarify the influences of extraction methods. Notably, proteins and humic-like substances have been found as the major components to determine thermal stability and AE. Moreover, the physicochemical method shows significant effects on enhancing extraction yield and AE, with the NaOH and heat methods proving to be outstanding by delivering the highest AE of 300 kJ/mol and a substantial char formation of 24%. The results have demonstrated the significant impact of extraction methods on the thermal stability of EPS-based biomaterials. Moreover, this finding provides insights into the linkages between the properties of EPS-based biomaterials and extraction methods to guide the selection of appropriate extraction methods tailored to specific applications, including flame-resistant materials.
Collapse
Affiliation(s)
- Tan M Le
- Centre for Advanced Materials Manufacturing and Design, University of Auckland, Auckland 1023, New Zealand
- Department of Mechanical and Mechatronics Engineering, University of Auckland, Auckland 1010, New Zealand
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, Delft 2629HZ, The Netherlands
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, University of Auckland, Auckland 1010, New Zealand
| | - Krishnan Jayaraman
- Centre for Advanced Materials Manufacturing and Design, University of Auckland, Auckland 1023, New Zealand
- Department of Mechanical and Mechatronics Engineering, University of Auckland, Auckland 1010, New Zealand
| | - Nam Kyeun Kim
- Centre for Advanced Materials Manufacturing and Design, University of Auckland, Auckland 1023, New Zealand
- Department of Mechanical and Mechatronics Engineering, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
3
|
Getino L, García I, Cornejo A, Mateos R, Ariza-Carmona LM, Sánchez-Castro N, Moran JF, R. Olivera E, Chamizo-Ampudia A. The Effectiveness of Polyhydroxyalkanoate (PHA) Extraction Methods in Gram-Negative Pseudomonas putida U. Polymers (Basel) 2025; 17:150. [PMID: 39861223 PMCID: PMC11769110 DOI: 10.3390/polym17020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Bioplastics are emerging as a promising solution to reduce pollution caused by petroleum-based plastics. Among them, polyhydroxyalkanoates (PHAs) stand out as viable biotechnological alternatives, though their commercialization is limited by expensive downstream processes. Traditional PHA extraction methods often involve toxic solvents and high energy consumption, underscoring the need for more sustainable approaches. This study evaluated physical and chemical methods to extract PHAs from Pseudomonas putida U, a bacterium known to produce poly-3-hydroxyoctanoate P(3HO). Lyophilized cells underwent six extraction methods, including the use of the following: boiling, sonication, sodium hypochlorite (NaClO), sodium dodecyl sulfate (SDS), sodium hydroxide (NaOH), and chloroform. Physical methods such as boiling and sonication achieved yields of 70% and 60%, respectively, but P(3HO) recovery remained low (30-40%). NaClO extraction provided higher yields (80%) but resulted in significant impurities (70%). NaOH methods offered moderate yields (50-80%), with P(3HO) purities between 50% and 70%, depending on the conditions. Spectroscopic and analytical techniques (FTIR, TGA, NMR, GPC) identified 0.05 M NaOH at 60 °C as the optimal extraction condition, delivering high P(3HO) purity while minimizing environmental impact. This positions NaOH as a sustainable alternative to traditional halogenated solvents, paving the way for more eco-friendly PHA production processes.
Collapse
Affiliation(s)
- Luis Getino
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain; (L.G.); (E.R.O.)
| | - Irene García
- IES Los Sauces—Avda Federico Silva, 48, Benavente, 49600 Zamora, Spain;
| | - Alfonso Cornejo
- Institute for Advanced Materials and Mathematics (INAMAT2), Department of Sciences, Public University of Navarre (UPNA), Campus de Arrosadía, 31006 Pamplona, Spain;
| | - Raúl Mateos
- Chemical and Environmental Bioprocess Engineering Group, I4 Institute, University of León, 24071 León, Spain;
| | | | - Natalia Sánchez-Castro
- Manchester Institute of Biotechnology, University of Manchester, Manchester M13 9PL, UK;
| | - José F. Moran
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, 31192 Mutilva, Spain;
| | - Elías R. Olivera
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain; (L.G.); (E.R.O.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, Campus de Vegazana, 24071 León, Spain
| | - Alejandro Chamizo-Ampudia
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain; (L.G.); (E.R.O.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, Campus de Vegazana, 24071 León, Spain
| |
Collapse
|
4
|
Grgurević K, Bramberger D, Miloloža M, Stublić K, Ocelić Bulatović V, Ranilović J, Ukić Š, Bolanča T, Cvetnić M, Markić M, Kučić Grgić D. Producing and Characterizing Polyhydroxyalkanoates from Starch and Chickpea Waste Using Mixed Microbial Cultures in Solid-State Fermentation. Polymers (Basel) 2024; 16:3407. [PMID: 39684153 DOI: 10.3390/polym16233407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The environmental impact of plastic waste is a growing global challenge, primarily due to non-biodegradable plastics from fossil resources that accumulate in ecosystems. Biodegradable polymers like polyhydroxyalkanoates (PHAs) offer a sustainable alternative. PHAs are microbial biopolymers produced by microorganisms using renewable substrates, including agro-industrial byproducts, making them eco-friendly and cost-effective. This study focused on the isolation and characterization of PHA-producing microorganisms from agro-industrial waste, including chickpeas, chickpeas with bean residues, and starch. Screening via Sudan Black staining identified PHA-accumulating strains such as Brevibacillus sp., Micrococcus spp., and Candida krusei, among others. To assess the potential for PHA biosynthesis, solid-state fermentation (SSF) was conducted using agro-industrial waste as substrates, along with a mixed culture of the isolated microorganisms. The highest observed yield was a PHA accumulation of 13.81%, achieved with chickpeas containing bean residues. Structural and thermal characterization of the PHAs was performed using Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). FTIR-ATR spectra indicated polyhydroxybutyrate (PHB), suggesting it as the synthesized PHA type. This study highlights the potential of agro-industrial waste for sustainable PHA production and eco-friendly bioplastics.
Collapse
Affiliation(s)
- Karlo Grgurević
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Dora Bramberger
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Martina Miloloža
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | | | - Vesna Ocelić Bulatović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | | | - Šime Ukić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Tomislav Bolanča
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Matija Cvetnić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marinko Markić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Dajana Kučić Grgić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Wen Q, Wang Z, Liu B, Liu S, Huang H, Chen Z. Enrichment performance and salt tolerance of polyhydroxyalkanoates (PHAs) producing mixed cultures under different saline environments. ENVIRONMENTAL RESEARCH 2024; 251:118722. [PMID: 38499223 DOI: 10.1016/j.envres.2024.118722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
The key to the resource recycling of saline wastes in form of polyhydroxyalkanoates (PHA) is to enrich mixed cultures with salt tolerance and PHA synthesis ability. However, the comparison of saline sludge from different sources and the salt tolerance mechanisms of salt-tolerant PHA producers need to be clarified. In this study, three kinds of activated sludge from different salinity environments were selected as the inoculum to enrich salt-tolerant PHA producers under aerobic dynamic feeding (ADF) mode with butyric acid dominated mixed volatile fatty acid as the substrate. The maximum PHA content (PHAm) reached 0.62 ± 0.01, 0.62 ± 0.02, and 0.55 ± 0.03 g PHA/g VSS at salinity of 0.5%, 0.8%, and 1.8%, respectively. Microbial community analysis indicated that Thauera, Paracoccus, and Prosthecobacter were dominant salt-tolerant PHA producers at low salinity, Thauera, NS9_marine, and SM1A02 were dominant salt-tolerant PHA producers at high salinity. High salinity and ADF mode had synergistic effects on selection and enrichment of salt-tolerant PHA producers. Combined correlation network with redundancy analysis indicated that trehalose synthesis genes and betaine related genes had positive correlation with PHAm, while extracellular polymeric substances (EPS) content had negative correlation with PHAm. The compatible solutes accumulation and EPS secretion were the main salt tolerance mechanisms of the PHA producers. Therefore, adding compatible solutes is an effective strategy to improve PHA synthesis in saline environment.
Collapse
Affiliation(s)
- Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zifan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Baozhen Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Shaojiao Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China; School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Haolong Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
6
|
Kora E, Antonopoulou G, Zhang Y, Yan Q, Lyberatos G, Ntaikou I. Investigating the efficiency of a two-stage anaerobic-aerobic process for the treatment of confectionery industry wastewaters with simultaneous production of biohydrogen and polyhydroxyalkanoates. ENVIRONMENTAL RESEARCH 2024; 248:118526. [PMID: 38395334 DOI: 10.1016/j.envres.2024.118526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The scope of the current study was to investigate the efficiency of a two-stage anaerobic-aerobic process for the simultaneous treatment and valorization of selective wastewater streams from a confectionary industry. The specific wastewater (confectionary industry wastewater, CIW) was a mixture of the rinsing eluting during washing of the cauldrons in which jellies and syrups were produced, and contained mainly readily fermentable sugars, being thus of high organic load. The first stage of the process was the dark fermentation (DF) of the CIW in continuous, attached-biomass systems, in which the effect on hydrogen yields and distribution of metabolites were studied for different packing materials (ceramic or plastic), hydraulic retention times, HRTs (12 h-30 h) and feed substrate concentration (20 g COD/L- 50 g COD/L). In the second stage, the effectiveness of the aerobic treatment of the DF effluents was evaluated in terms of the reduction of the organic load and the production of polyhydroxyalkanoates (PHAs) through an enriched mixed microbial culture (MMC). The MMC was developed in a continuous draw and fill system, in which the accumulation potential of PHAs was studied. It was shown that the hydrogen production rates decreased for increasing substrate concentration and HRTs, with a maximum of 12.70 ± 0.35 m3 H2/m3 initial CIW achieved for the lowest HRT and feed concentration and using ceramic beads as packing material. Butyrate, acetate and lactate were the main metabolites generated in all cases, in different ratios. The distribution of metabolites during DF was shown to highly affect the efficiency of the second process in terms of both the reduction of organic load and the PHAs yields. The highest removal of organic load achieved after 48 h of aerobic treatment was 84.0 ± 0.9 %, whereas the maximum PHAs yield was 21.46 ± 0.13 kg PHAs/m3 initial CIW.
Collapse
Affiliation(s)
- Elianta Kora
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, 26504, Patras, Greece; Department of Sustainable Agriculture, University of Patras, 2 Seferi St., 30100, Agrinio, Greece
| | - Georgia Antonopoulou
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, 26504, Patras, Greece; Department of Sustainable Agriculture, University of Patras, 2 Seferi St., 30100, Agrinio, Greece
| | - Yi Zhang
- Department of Environmental Science and Engineering, Fudan University, 2105 Songhu Road, Yangpu District, Shanghai, China
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Gerasimos Lyberatos
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, 26504, Patras, Greece; School of Chemical Engineering, National Technical University of Athens, 15780, Athens, Greece
| | - Ioanna Ntaikou
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, 26504, Patras, Greece; Department of Civil Engineering, University of Patras, 26500, Patras, Greece.
| |
Collapse
|
7
|
Anagnostopoulou E, Tsouko E, Maina S, Myrtsi ED, Haroutounian S, Papanikolaou S, Koutinas A. Unlocking the potential of spent coffee grounds via a comprehensive biorefinery approach: production of microbial oil and carotenoids under fed-batch fermentation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35483-35497. [PMID: 38727974 DOI: 10.1007/s11356-024-33609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/04/2024] [Indexed: 05/30/2024]
Abstract
The valorization of renewable feedstock to produce a plethora of value-added products could promote the transition towards a circular bioeconomy. This study presents the development of cascade processes to bioconvert spent coffee grounds (SCGs) into microbial oil and carotenoids employing sustainable practices. The stepwise recovery of crude phenolic extract and coffee oil was carried out using green or recyclable solvents, i.e., aqueous ethanol and hexane. Palmitic acid (43.3%) and linoleic acid (38.9%) were the major fatty acids in the oil fraction of SCGs. The LC-MS analysis of crude phenolic extracts revealed that chlorogenic acid dominated (45.7%), while neochlorogenic acid was also detected in substantial amounts (24.0%). SCGs free of coffee oil and phenolic compounds were subjected to microwave-assisted pretreatment under different irradiations and solvents to enhance subsequent enzymatic saccharification. Microwave/water pretreatment at 400 W, followed by enzymatic hydrolysis with proteases, hemicellulases, and cellulases, at 50 g/L initial SCGs, led to satisfying overall yields of cellulose (75.4%), hemicellulose (50.3%), and holocellulose (55.3%). Mannan was the most extractable polysaccharide followed by galactan and arabinan. SCGs hydrolysate was used in fed-batch bioreactor fermentations with Rhodosporidium toruloides to produce 24.0 g/L microbial oil and carotenoids of 432.9 μg/g biomass.
Collapse
Affiliation(s)
- Elena Anagnostopoulou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Erminta Tsouko
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece.
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave, 11635, Athens, Greece.
| | - Sofia Maina
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Eleni D Myrtsi
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Serkos Haroutounian
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Apostolos Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| |
Collapse
|
8
|
Wang J, Huang J, Liu S. The production, recovery, and valorization of polyhydroxybutyrate (PHB) based on circular bioeconomy. Biotechnol Adv 2024; 72:108340. [PMID: 38537879 DOI: 10.1016/j.biotechadv.2024.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 03/01/2024] [Indexed: 04/17/2024]
Abstract
As an energy-storage substance of microorganisms, polyhydroxybutyrate (PHB) is a promising alternative to petrochemical polymers. Under appropriate fermentation conditions, PHB-producing strains with metabolic diversity can efficiently synthesize PHB using various carbon sources. Carbon-rich wastes may serve as alternatives to pure sugar substrates to reduce the cost of PHB production. Genetic engineering strategies can further improve the efficiency of substrate assimilation and PHB synthesis. In the downstream link, PHB recycling strategies based on green chemistry concepts can replace PHB extraction using chlorinated solvents to enhance the economics of PHB production and reduce the potential risks of environmental pollution and health damage. To avoid carbon loss caused by biodegradation in the traditional sense, various strategies have been developed to degrade PHB waste into monomers. These monomers can serve as platform chemicals to synthesize other functional compounds or as substrates for PHB reproduction. The sustainable potential and cycling value of PHB are thus reflected. This review summarized the recent progress of strains, substrates, and fermentation approaches for microbial PHB production. Analyses of available strategies for sustainable PHB recycling were also included. Furthermore, it discussed feasible pathways for PHB waste valorization. These contents may provide insights for constructing PHB-based comprehensive biorefinery systems.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States.
| |
Collapse
|
9
|
Bhat GS, Deekshitha BK, Thivaharan V, Divyashree MS. Physicochemical cell disruption of Bacillus sp. for recovery of polyhydroxyalkanoates: future bioplastic for sustainability. 3 Biotech 2024; 14:59. [PMID: 38314316 PMCID: PMC10837410 DOI: 10.1007/s13205-024-03913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/01/2024] [Indexed: 02/06/2024] Open
Abstract
Polyhydroxybutyrate (PHB) is known for wide applications, biocompatibility, and degradability; however, it cannot be commercialized due to conventional recovery using solvents. The present study employed mechanical cell-disruption methods, such as Pestle and mortar, sonication, and glass bead vortexing, for solvent-free extraction of PHA from Bacillus sp. Different time intervals were set for grinding (5, 10, 15 min), sonicating (1, 3 and 5 min), and vortexing (2, 5 and 8 g glass beads with 5, 10 and 15 min each) hence studying their effect on cell lysis to release PHA. Tris buffer containing phenylmethyl sulfonyl fluoride (PMSF) (20 mM Tris-HCl, pH 8.0, 1 mM PMSF) was employed as a lysis buffer to study its action over Bacillus cells. Its presence was checked with the above methods in cell lysis. Sonicating cells for 5 min in the presence of lysis buffer achieved a maximum PHA yield of 45%. Cell lysis using lysis buffer yielded 35% PHA when vortexing with 5 g glass beads for 15 min. Grinding cells for 15 min showed a maximum yield of 34% but lacked a lysis buffer. The overall results indicated that the action of lysis buffer and physical extraction methods improved PHA yield by %. Therefore, the study sought to evaluate the feasibility of applying laboratory methods for cell disruption. These methods can showcase possible opportunities in large-scale applications. The polymer yield results were compared with standard sodium hypochlorite extraction. Confirmation of obtained polymers as polyhydroxy butyrate (PHB) was made through FTIR and 1HNMR characterization.
Collapse
Affiliation(s)
- G. Sohani Bhat
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 India
| | - B. K. Deekshitha
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 India
| | - V. Thivaharan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 India
| | - M. S. Divyashree
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 India
| |
Collapse
|
10
|
Saito K, Reddy MV, Sarkar O, Kumar AN, Choi D, Chang YC. Quantification of the Monomer Compositions of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Poly(3-hydroxyvalerate) by Alkaline Hydrolysis and Using High-Performance Liquid Chromatography. Bioengineering (Basel) 2023; 10:bioengineering10050618. [PMID: 37237688 DOI: 10.3390/bioengineering10050618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
With the growing interest in bioplastics, there is an urgent need to develop rapid analysis methods linked to production technology development. This study focused on the production of a commercially non-available homopolymer, poly(3-hydroxyvalerate) (P(3HV)), and a commercially available copolymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)), through fermentation using two different bacterial strains. The bacteria Chromobacterium violaceum and Bacillus sp. CYR1 were used to produce P(3HV) and P(3HB-co-3HV), respectively. The bacterium Bacillus sp. CYR1 produced 415 mg/L of P(3HB-co-3HV) when incubated with acetic acid and valeric acid as the carbon sources, whereas the bacterium C. violaceum produced 0.198 g of P(3HV)/g dry biomass when incubated with sodium valerate as the carbon source. Additionally, we developed a fast, simple, and inexpensive method to quantify P(3HV) and P(3HB-co-3HV) using high-performance liquid chromatography (HPLC). As the alkaline decomposition of P(3HB-co-3HV) releases 2-butenoic acid (2BE) and 2-pentenoic acid (2PE), we were able to determine the concentration using HPLC. Moreover, calibration curves were prepared using standard 2BE and 2PE, along with sample 2BE and 2PE produced by the alkaline decomposition of poly(3-hydroxybutyrate) and P(3HV), respectively. Finally, the HPLC results obtained by our new method were compared using gas chromatography (GC) analysis.
Collapse
Affiliation(s)
- Kyo Saito
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
| | - M Venkateswar Reddy
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Omprakash Sarkar
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - A Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - DuBok Choi
- Faculty of Advanced Industry Convergence, Chosun University, Kwangju 61452, Republic of Korea
| | - Young-Cheol Chang
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
| |
Collapse
|
11
|
Kora E, Patrinou V, Antonopoulou G, Ntaikou I, Terkelekopoulou AG, Lyberatos G. Dark fermentation of expired fruit juices for biohydrogen production followed by treatment and biotechnological exploitation of effluents towards bioplastics and microbial lipids. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|