1
|
Chai J, Wang X, Yao T, Lei Y, Li S, Liu X, Li C, Bai J. Optimization of compound bacterial inoculant enhances soil nutrients and bacterial community richness in alpine grassland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125807. [PMID: 40381308 DOI: 10.1016/j.jenvman.2025.125807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 05/08/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
Grassland degradation results in nutrient loss and ecosystem function impairment, making it crucial to explore green and effective restoration technologies. In this study, three strains (Acinetobacter calcoaceticus J1, Pseudomonas piscium J5, Bacillus subtilis Y3) isolated from alpine grassland, and mixed in equal volume (VJ1:VJ5:VY3 = 1:1:1) to prepare the compound bacteria. The fermentation medium and conditions of the compound bacteria were optimized, then pot and field experiments were conducted to validate the application of the optimized compound bacterial inoculant. The optimal conditions were: soluble starch 2.62 g L-1, yeast extract 20.26 g L-1, KCl 5.01 g L-1, pH 6.0, incubated at 25 °C for 48 h, with 20 % liquid volume, 3 % inoculation ratio, and 200 r·min-1. Under these conditions, the number of viable bacteria was 128.47 times higher than before optimization. The obtained compound bacterial inoculant resulted in a significant increase of 34.24 %, 52.61 %, 57.74 %, 62.50 %, and 53.92 % in the height, total root length, root surface area, volume, and branch number of Elymus nutans, with better effects than the single bacterial. The field experiment revealed that the compound bacterial inoculant could significantly increase above-ground biomass (10.63 %), organic matter (16.99 %), available nitrogen (12.58 %), total nitrogen, and phosphorus (15.79 % and 11.54 %). This study has developed an environmentally friendly compound bacterial inoculant (G1), that accelerates soil nutrient cycling by reducing soil pH and increasing the richness of the bacterial community, thus restoring degraded grassland. This result realized the principle of "near-natural restoration" of degraded alpine grassland and provided a new biological restoration technology for the degraded alpine grassland.
Collapse
Affiliation(s)
- Jiali Chai
- Pratacultural College, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xian Wang
- Agronomy College, Gansu Agricultural University, Lanzhou, 730070, China
| | - Tuo Yao
- Pratacultural College, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yang Lei
- Pratacultural College, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shuangxiong Li
- Pratacultural College, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaoting Liu
- Pratacultural College, Gansu Agricultural University, Lanzhou, 730070, China
| | - Changning Li
- Pratacultural College, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jie Bai
- Pratacultural College, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
2
|
Praeg N, Steinwandter M, Urbach D, Snethlage MA, Alves RP, Apple ME, Bilovitz P, Britton AJ, Bruni EP, Chen TW, Dumack K, Fernandez-Mendoza F, Freppaz M, Frey B, Fromin N, Geisen S, Grube M, Guariento E, Guisan A, Ji QQ, Jiménez JJ, Maier S, Malard LA, Minor MA, Mc Lean CC, Mitchell EAD, Peham T, Pizzolotto R, Taylor AFS, Vernon P, van Tol JJ, Wu D, Wu Y, Xie Z, Weber B, Illmer P, Seeber J. Biodiversity in mountain soils above the treeline. Biol Rev Camb Philos Soc 2025. [PMID: 40369817 DOI: 10.1111/brv.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Biological diversity in mountain ecosystems has been increasingly studied over the last decade. This is also the case for mountain soils, but no study to date has provided an overall synthesis of the current state of knowledge. Here we fill this gap with a first global analysis of published research on cryptogams, microorganisms, and fauna in mountain soils above the treeline, and a structured synthesis of current knowledge. Based on a corpus of almost 1400 publications and the expertise of 37 mountain soil scientists worldwide, we summarise what is known about the diversity and distribution patterns of each of these organismal groups, specifically along elevation, and provide an overview of available knowledge on the drivers explaining these patterns and their changes. In particular, we document an elevation-dependent decrease in faunal diversity above the treeline, while for cryptogams there is an initial increase above the treeline, followed by a decrease towards the nival belt. Thus, our data confirm the key role that elevation plays in shaping the biodiversity and distribution of these organisms in mountain soils. The response of prokaryote diversity to elevation, in turn, was more diverse, whereas fungal diversity appeared to be substantially influenced by plants. As far as available, we describe key characteristics, adaptations, and functions of mountain soil species, and despite a lack of ecological information about the uncultivated majority of prokaryotes, fungi, and protists, we illustrate the remarkable and unique diversity of life forms and life histories encountered in alpine mountain soils. By applying rule- as well as pattern-based literature-mining approaches and semi-quantitative analyses, we identified hotspots of mountain soil research in the European Alps and Central Asia and revealed significant gaps in taxonomic coverage, particularly among biocrusts, soil protists, and soil fauna. We further report thematic priorities for research on mountain soil biodiversity above the treeline and identify unanswered research questions. Building upon the outcomes of this synthesis, we conclude with a set of research opportunities for mountain soil biodiversity research worldwide. Soils in mountain ecosystems above the treeline fulfil critical functions and make essential contributions to life on land. Accordingly, seizing these opportunities and closing knowledge gaps appears crucial to enable science-based decision making in mountain regions and formulating laws and guidelines in support of mountain soil biodiversity conservation targets.
Collapse
Affiliation(s)
- Nadine Praeg
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, Innsbruck, 6020, Austria
| | - Michael Steinwandter
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
| | - Davnah Urbach
- Global Mountain Biodiversity Assessment (GMBA), University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Centre Interdisciplinaire de Recherche sur la Montagne, University of Lausanne, Ch. de l'Institut 18, Bramois/Sion, 1967, Switzerland
| | - Mark A Snethlage
- Global Mountain Biodiversity Assessment (GMBA), University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Centre Interdisciplinaire de Recherche sur la Montagne, University of Lausanne, Ch. de l'Institut 18, Bramois/Sion, 1967, Switzerland
| | - Rodrigo P Alves
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Martha E Apple
- Department of Biological Sciences, Montana Technological University, Butte, 59701, MT, USA
| | - Peter Bilovitz
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Andrea J Britton
- Ecological Sciences, The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Estelle P Bruni
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Ting-Wen Chen
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, Na Sádkách 702/7, České Budějovice, 37005, Czech Republic
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, Göttingen, 37073, Germany
| | - Kenneth Dumack
- Terrestrial Ecology, Cologne Biocenter, University of Cologne, Zülpicher Strasse 47b, Cologne, 50674, Germany
| | - Fernando Fernandez-Mendoza
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Michele Freppaz
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
- Research Center on Natural Risks in Mountain and Hilly Environments, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Nathalie Fromin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Route de Mende 34199, Montpellier Cedex 5, France
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Martin Grube
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Elia Guariento
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
| | - Antoine Guisan
- Department of Ecology and Evolution (DEE), University of Lausanne, Biophore, Lausanne, 1015, Switzerland
- Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Géopolis, Lausanne, 1015, Switzerland
| | - Qiao-Qiao Ji
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130102, China
| | - Juan J Jiménez
- Instituto Pirenaico de Ecología (IPE), Consejo Superior de Investigaciones Cientificas (CSIC), Avda. Ntra. Sra. de la Victoria 16, Jaca, 22700, Huesca, Spain
| | - Stefanie Maier
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Lucie A Malard
- Department of Ecology and Evolution (DEE), University of Lausanne, Biophore, Lausanne, 1015, Switzerland
| | - Maria A Minor
- School of Food Technology and Natural Sciences, Massey University, Riddett Road, Palmerston North, 4410, New Zealand
| | - Cowan C Mc Lean
- Department of Soil, Crop and Climate Sciences, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Edward A D Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Thomas Peham
- Department of Ecology, Universität Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Roberto Pizzolotto
- Dipartimento di Biologia, Ecologia e Scienze della Terra, University of Calabria, Ponte Pietro Bucci 4b, Rende, 87036, Italy
| | - Andy F S Taylor
- Ecological Sciences, The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Philippe Vernon
- UMR 6553 EcoBio CNRS, University of Rennes, Biological Station, Paimpont, 35380, France
| | - Johan J van Tol
- Department of Soil, Crop and Climate Sciences, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Donghui Wu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130102, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Yunga Wu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Zhijing Xie
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Bettina Weber
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, Innsbruck, 6020, Austria
| | - Julia Seeber
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
- Department of Ecology, Universität Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| |
Collapse
|
3
|
He G, Liu X, Li Y, Ji T. Response of plant life forms and soil physical properties to near-natural restoration measures in alpine grassland, Tibetan plateau. FRONTIERS IN PLANT SCIENCE 2025; 15:1504754. [PMID: 39902201 PMCID: PMC11788364 DOI: 10.3389/fpls.2024.1504754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/23/2024] [Indexed: 02/05/2025]
Abstract
Introduction Near-natural restoration measures enhance the stability of plant life forms in degraded grasslands, facilitating the natural succession of plant communities. Methods In this study, we investigated the effects of three natural restoration measures on the alpine meadows of the northeastern Tibetan Plateau: banned grazing (BG), rest grazing (RG), traditional grazing (TG), and continuous grazing (CG). We utilized redundancy analysis (RDA), variation partitioning(VP), hierarchical partitioning (HP), and partial least squares pathway modeling (PLS-PM) to dissect the quantitative relationships between the distribution of plant life forms and soil physical properties under these restoration measures. Results and discussion The results indicated the following: 1) Under each restoration measure, the distribution of life form plants were predominantly characterized by the highest number of hemicryptophytes, followed by geophytes, with the least number of therophytes. We found that the BG treatment had the highest hemicryptophyte height, coverage, aboveground biomass, and importance value, while the CG treatment had the lowest. 2) After near-natural restoration, the soil bulk density (BD) was decreased. The soil moisture characteristics (MC) were increased including soil saturated water content(SSWC), capillary water holding capacity (CWHC), field water capacity (FWC). And capillary porosity (CP) and non-capillary porosity (NP) were increased. 3) VP analysis revealed that MC, BD, and CP together explained 57.4% of the variation in plant life forms communities. 4) The hemicryptophytes benefited from restoration measures and increased CP. In contrast, the decrease in BD negatively affected geophytes. In summary, restoration measures reduce BD by enhancing MC and increasing CP, which affects the distribution of plant life forms. This finding reveals the important role of soil physical properties in plant survival strategies during alpine meadow restoration.
Collapse
Affiliation(s)
- Guoxing He
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou, Gansu, China
- Sino-U.S. Center for Grazing Land Ecosystem Sustainability, Lanzhou, Gansu, China
| | - Xiaoni Liu
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou, Gansu, China
- Sino-U.S. Center for Grazing Land Ecosystem Sustainability, Lanzhou, Gansu, China
| | - Yali Li
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou, Gansu, China
- Sino-U.S. Center for Grazing Land Ecosystem Sustainability, Lanzhou, Gansu, China
| | - Tong Ji
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou, Gansu, China
- Sino-U.S. Center for Grazing Land Ecosystem Sustainability, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Liu Z, Cong Y, Sossah FL, Sheng H, Li Y. Identification of bacterial communities associated with needle mushroom ( Flammulina filiformis) and its production environment. Front Microbiol 2024; 15:1429213. [PMID: 39741595 PMCID: PMC11685130 DOI: 10.3389/fmicb.2024.1429213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
Flammulina filiformis is an important edible and medicinal mushroom widely cultivated in East Asia, with its quality and health strongly influenced by associated microbial communities. However, limited data exist on the bacterial communities associated with F. filiformis cultivation in Chinese farms. This study investigated bacterial communities associated with F. filiformis and its production environment using high-throughput 16S rRNA gene amplicon sequencing and culture-dependent methods. A total of 42 samples were collected from farms in Jilin and Guizhou provinces, China, for microbial community profiling. The analysis revealed diverse bacterial phyla, including Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Cyanobacteria. Genera such as Pseudomonas, Lactobacillus, Acinetobacter, Flavobacterium, and Phyllobacterium were identified, with notable regional variations in the relative abundance of Pseudomonas and Lactobacillus. Pathogenic species, including Pseudomonas tolaasii, Ewingella americana, Stenotrophomonas maltophilia, Pseudomonas sp., Lelliottia amnigena, and Janthinobacterium lividum, were identified through phenotypic, biochemical, and molecular analyses. Pathogenicity tests confirmed the disease-causing potential of P. tolaasii, E. americana, and J. lividum in F. filiformis. These findings highlight regional differences in bacterial community composition and emphasize the need for tailored management practices. This study contributes to safe, high-quality mushroom cultivation and provides insights into improved cultivation practices, including Mushroom Good Agricultural Practices (MGAP).
Collapse
Affiliation(s)
- Zhenghui Liu
- Engineering and Research Center for Southwest Bio-pharmaceutical Resources of National Education Ministry, Guizhou University, Guiyang, China
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
- Institute of Edible Fungi, Guizhou University, Guiyang, China
| | - Yunlong Cong
- Research Institute of Science and Technology, Guizhou University, Guiyang, China
| | - Frederick Leo Sossah
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
- Council for Scientific and Industrial Research (CSIR), Oil Palm Research Institute, Coconut Research Programme, Sekondi, Ghana
| | - Hongyan Sheng
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Yu Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
5
|
Ma C, Zhao T, Baoyin T, Han X, Frey B, Yang J, Dong S. Long-term grazing reduces soil fungal network complexity but enhances plant-soil microbe network connectivity in a semi-arid grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176498. [PMID: 39326755 DOI: 10.1016/j.scitotenv.2024.176498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Grazing plays a significant role in shaping both aboveground vegetation and belowground microbial communities in arid and semi-arid grasslands, which in turn affects ecosystem functions and sustainability. Therefore, it was essential to implement effective grazing management practices to preserve ecological balance and support sustainable development in these delicate environments. To optimize the traditional continuous grazing policy, we conducted a 10-year seasonal grazing experiment with five treatments in a typical grassland in northern China: no grazing (NG), continuous summer grazing (CG), and three seasonal grazing treatments (G57 in May and July, G68 in June and August, and G79 in July and September). Our study found that although grazing reduced plant community biomass, G68 treatment maintained high plant height and community diversity (P < 0.05). Grazing did not affect soil bacterial and archaeal alpha diversity, but CG treatment reduced soil fungal diversity (P < 0.05). CG reduced the archaeal network's vertices (which represent microbial taxa, OTUs) and connections (ecological interactions between taxa), but seasonal grazing increased its complexity. Furthermore, grazing did not change bacterial networks but enhanced cross-domain interactions (relationships between different biological groups) of plant-soil fungi and plant-soil archaea. Overall, we used the Mantel test to find that soil microbial diversity was positively correlated with soil physicochemical properties rather than plant community characteristics after grazing. These findings are beneficial for the optimization of sustainable grassland management policies and the protection of plant and soil biodiversity.
Collapse
Affiliation(s)
- Chunhui Ma
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Tianqi Zhao
- Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Taogetao Baoyin
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xingguo Han
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurich, Birmensdorf 8903, Switzerland
| | - Beat Frey
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurich, Birmensdorf 8903, Switzerland
| | - Juejie Yang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| | - Shikui Dong
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
6
|
Lin Q, Yang P, Zhang Y, Zhang W, Wu H. Metagenomic Insights into Coal Slag Remediation Effects on Soil and Microbial Health in Qinghai's Muli Coal Mine. Microorganisms 2024; 12:2222. [PMID: 39597611 PMCID: PMC11596568 DOI: 10.3390/microorganisms12112222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Long-term coal mining in the Muli coal mine area of Qinghai Province has degraded soil quality and reduced microbial diversity, making it imperative to implement effective ecological restoration measures to restore soil quality and enhance ecosystem functions. This study evaluated soil samples under 11 ecological restoration treatments using metagenomic sequencing combined with soil quality analysis to explore the responses of the microbial community structure and function to identify effective restoration measures. This study demonstrated that ecological restoration significantly increased the soil microbial diversity and richness, with the MLII1 (soil samples treated with a chemical weathering agent, attapulgite, and a microbial agent) and MLIII1 (soil samples treated with sheep manure (2.4 kg/m2), granular organic fertilizer (1.2 kg/m2), and the microbial agent) treatment groups performing exceptionally well. Further analysis of the functional networks revealed that although the MLII2 (soil samples treated with the chemical weathering agent and attapulgite) treatment group did not exhibit the highest species diversity, it exhibited the highest functional network complexity. The results of hierarchical clustering analysis showed that the microbial community of the MLII2 treatment group was most similar to that of the natural meadows compared to the other treatment groups. From the perspective of overall ecological restoration, this study concluded that the MLII2 treatment group exhibited the most favorable ecological restoration outcomes. This finding emphasizes the importance of not only enhancing microbial diversity but also prioritizing the restoration of community functions, especially for the recovery of fragile high-altitude ecosystems.
Collapse
Affiliation(s)
- Qi Lin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Q.L.); (P.Y.)
| | - Pan Yang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Q.L.); (P.Y.)
| | - Yongbei Zhang
- Hainan Beiou Bio-Energy Development Co., Ltd., Haikou 570100, China;
| | - Wenfei Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Q.L.); (P.Y.)
| | - Hongping Wu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Q.L.); (P.Y.)
| |
Collapse
|
7
|
Chen Y, Chen Z, Li X, Malik K, Li C. Metagenomic Analysis: Alterations of Soil Microbial Community and Function due to the Disturbance of Collecting Cordyceps sinensis. Int J Mol Sci 2024; 25:10961. [PMID: 39456745 PMCID: PMC11507193 DOI: 10.3390/ijms252010961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Soil microorganisms are critical to the occurrence of Cordyceps sinensis (Chinese Cordyceps), a medicinal fungi used in Traditional Chinese Medicine. The over-collection of Chinese Cordyceps has caused vegetation degradation and impacted the sustainable occurrence of Cordyceps. The effects of Chinese Cordyceps collection on soil microorganisms have not been reported. Metagenomic analysis was performed on the soil of collecting and non-collecting areas of production and non-production areas, respectively. C. sinensis collection showed no alteration in alpha-diversity but significantly affected beta-diversity and the community composition of soil microorganisms. In Cordyceps production, Thaumarchaeota and Crenarchaeota were identified as the dominant archaeal phyla. DNA repair, flagellar assembly, propionate metabolism, and sulfur metabolism were affected in archaea, reducing the tolerance of archaea in extreme habitats. Proteobacteria, Actinobacteria, Acidobacteria, Verrucomicrobia, and Nitrospirae were identified as the dominant bacterial phyla. The collection of Chinese Cordyceps enhanced the bacterial biosynthesis of secondary metabolites and suppressed ribosome and carbon metabolism pathways in bacteria. A more complex microbial community relationship network in the Chinese Cordyceps production area was found. The changes in the microbial community structure were closely related to C, N, P and enzyme activities. This study clarified soil microbial community composition and function in the Cordyceps production area and established that collection clearly affects the microbial community function by altering microbial community structure. Therefore, it would be important to balance the relationship between cordyceps production and microbiology.
Collapse
Affiliation(s)
- Yangyang Chen
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, No. 222, Tianshui South Road, Chengguan District, Lanzhou 730020, China; (Y.C.); (K.M.)
| | - Zhenjiang Chen
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, No. 222, Tianshui South Road, Chengguan District, Lanzhou 730020, China; (Y.C.); (K.M.)
| | - Xiuzhang Li
- Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China;
| | - Kamran Malik
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, No. 222, Tianshui South Road, Chengguan District, Lanzhou 730020, China; (Y.C.); (K.M.)
| | - Chunjie Li
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, No. 222, Tianshui South Road, Chengguan District, Lanzhou 730020, China; (Y.C.); (K.M.)
| |
Collapse
|
8
|
Qiao J, Zheng J, Li S, Zhang F, Zhang B, Zhao M. Impact of climate warming on soil microbial communities during the restoration of the inner Mongolian desert steppe. Front Microbiol 2024; 15:1458777. [PMID: 39309524 PMCID: PMC11412859 DOI: 10.3389/fmicb.2024.1458777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Grazer exclosure is widely regarded as an effective measure for restoring degraded grasslands, having positive effects on soil microbial diversity. The Intergovernmental Panel on Climate Change (IPCC) predicts that global surface temperatures will increase by 1.5-4.5°C by the end of the 21st century, which may affect restoration practices for degraded grasslands. This inevitability highlights the urgent need to study the effect of temperature on grassland soil microbial communities, given their critical ecological functions. Methods Here, we assessed the effects of heavy grazing (control), grazer exclosure, and grazer exclosure plus warming by 1.5°C on soil microbial community diversity and network properties as well as their relationships to soil physicochemical properties. Results and discussion Our results showed that grazer closure increased soil microbial richness relative to heavy grazing controls. Specifically, bacterial richness increased by 7.9%, fungal richness increased by 20.2%, and the number of fungal network nodes and edges increased without altering network complexity and stability. By contrast, grazer exclosure plus warming decreased bacterial richness by 9.2% and network complexity by 12.4% compared to heavy grazing controls, while increasing fungal network complexity by 25.8%. Grazer exclosure without warming increased soil ammonium nitrogen content, while warming increased soil nitrate nitrogen content. Soil pH and organic carbon were not affected by either exclosure strategy, but nitrate nitrogen was the dominant soil factor explaining changes in bacterial communities. Conclusion Our findings show that grazer exclosure increases soil microbial diversity which are effective soil restoration measures for degraded desert steppe, but this effect is weakened under warming conditions. Thus, global climate change should be considered when formulating restoration measures for degraded grasslands.
Collapse
Affiliation(s)
| | | | | | | | | | - Mengli Zhao
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
9
|
Al-Shammary AAG, Al-Shihmani LSS, Fernández-Gálvez J, Caballero-Calvo A. Optimizing sustainable agriculture: A comprehensive review of agronomic practices and their impacts on soil attributes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121487. [PMID: 38889650 DOI: 10.1016/j.jenvman.2024.121487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
This study explores agronomic management (AM) effects on soil parameters under diverse conditions. Investigating tillage practices (TP), nutrient management (NM), crop rotation (CR), organic matter (OM), irrigation management (IM), and mulching (MS), it aims to reveal impacts on soil productivity, nutrient availability, microbial activity, and overall health. Varied TP affect soil quality through compaction, porosity, and erosion risk. Proper NM is vital for nutrient cycling, preventing imbalances and acidification. CR disrupts pest cycles, reduces weed pressure, and boosts nutrient recycling. OM management enhances soil quality by influencing organic carbon, nutrient availability, pH, fertility, and water retention. Optimizing IM regulates soil water content without inducing waterlogging. MS contributes to OM content, nutrient retention, soil structure, and temperature-moisture regulation, benefiting soil biota, aggregation, soil health and agricultural productivity. The review emphasizes integrated nutrient, CR, and OM management's positive impact on fertility and microbial activity. Different TP and IM variations impact soil health and crop production. Judicious implementation of these practices is essential for sustainable agriculture. This synthesis identifies uncertainties and proposes research directions for optimizing productivity while ensuring environmental sustainability. Ongoing inquiry can guide a balanced approach between yields and resilient soil stewardship for future generations.
Collapse
Affiliation(s)
| | | | - Jesús Fernández-Gálvez
- Department of Regional Geographical Analysis and Physical Geography, University of Granada, 18071, Granada, Spain.
| | - Andrés Caballero-Calvo
- Department of Regional Geographical Analysis and Physical Geography, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
10
|
Wang X, Wang J, Zou Y, Bie Y, Mahmood A, Zhang L, Liao L, Song Z, Liu G, Zhang C. Urea fertilization increased CO 2 and CH 4 emissions by enhancing C-cycling genes in semi-arid grasslands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120718. [PMID: 38537467 DOI: 10.1016/j.jenvman.2024.120718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
Global climate change is predicted to increase exogenous N input into terrestrial ecosystems, leading to significant changes in soil C-cycling. However, it remains largely unknown how these changes affect soil C-cycling, especially in semi-arid grasslands, which are one of the most vulnerable ecosystems. Here, based on a 3-year field study involving N additions (0, 25, 50, and 100 kg ha-1 yr-1 of urea) in a semi-arid grassland on the Loess Plateau, we investigated the impact of urea fertilization on plant characteristics, soil properties, CO2 and CH4 emissions, and microbial C cycling genes. The compositions of genes involved in C cycling, including C fixation, degradation, methanogenesis, and methane oxidation, were determined using metagenomics analysis. We found that N enrichment increased both above- and belowground biomasses and soil organic C content, but this positive effect was weakened when excessive N was input (N100). N enrichment also altered the C-cycling processes by modifying C-cycle-related genes, specifically stimulating the Calvin cycle C-fixation process, which led to an increase in the relative abundance of cbbS, prkB, and cbbL genes. However, it had no significant effect on the Reductive citrate cycle and 3-hydroxypropionate bi-cycle. N enrichment led to higher soil CO2 and CH4 emissions compared to treatments without added N. This increase showed significant correlations with C degradation genes (bglA, per, and lpo), methanogenesis genes (mch, ftr, and mcr), methane oxidation genes (pmoA, pmoB, and pmoC), and the abundance of microbial taxa harboring these genes. Microbial C-cycling genes were primarily influenced by N-induced changes in soil properties. Specifically, reduced soil pH largely explained the alterations in methane metabolism, while elevated available N levels were mainly responsible for the shift in C fixation and C degradation genes. Our results suggest that soil N enrichment enhances microbial C-cycling processes and soil CO2 and CH4 emissions in semi-arid ecosystems, which contributes to more accurate predictions of ecosystem C-cycling under future climate change.
Collapse
Affiliation(s)
- Xiaojun Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Shaanxi, 712100, PR China; Institute of Soil and Water Conservation, Chinese Academy of Science, Shaanxi, 712100, PR China
| | - Jie Wang
- College of Forestry, Guizhou University, Guiyang, 550025, PR China
| | - Yanuo Zou
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Shaanxi, 712100, PR China; Institute of Soil and Water Conservation, Chinese Academy of Science, Shaanxi, 712100, PR China
| | - Yujing Bie
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Shaanxi, 712100, PR China; Institute of Soil and Water Conservation, Chinese Academy of Science, Shaanxi, 712100, PR China
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Lu Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Shaanxi, 712100, PR China; Institute of Soil and Water Conservation, Chinese Academy of Science, Shaanxi, 712100, PR China
| | - Lirong Liao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Shaanxi, 712100, PR China; Institute of Soil and Water Conservation, Chinese Academy of Science, Shaanxi, 712100, PR China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Shaanxi, 712100, PR China
| | - Guobin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Shaanxi, 712100, PR China; Institute of Soil and Water Conservation, Chinese Academy of Science, Shaanxi, 712100, PR China.
| | - Chao Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Shaanxi, 712100, PR China; Institute of Soil and Water Conservation, Chinese Academy of Science, Shaanxi, 712100, PR China.
| |
Collapse
|
11
|
Shu X, Ye Q, Huang H, Xia L, Tang H, Liu X, Wu J, Li Y, Zhang Y, Deng L, Liu W. Effects of grazing exclusion on soil microbial diversity and its functionality in grasslands: a meta-analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1366821. [PMID: 38567132 PMCID: PMC10985342 DOI: 10.3389/fpls.2024.1366821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Grazing exclusion (GE) is considered an effective strategy for restoring the degradation of overgrazed grasslands on the global scale. Soil microbial diversity plays a crucial role in supporting multiple ecosystem functions (multifunctionality) in grassland ecosystems. However, the impact of grazing exclusion on soil microbial diversity remains uncertain. Here, we conducted a meta-analysis using a dataset comprising 246 paired observations from 46 peer-reviewed papers to estimate how GE affects microbial diversity and how these effects vary with climatic regions, grassland types, and GE duration ranging from 1 to 64 years. Meanwhile, we explored the relationship between microbial diversity and its functionality under grazing exclusion. Overall, grazing exclusion significantly increased microbial Shannon (1.9%) and microbial richness (4.9%) compared to grazing group. For microbial groups, GE significantly increased fungal richness (8.6%) and bacterial richness (5.3%), but decreased specific microbial richness (-11.9%). The responses of microbial Shannon to GE varied among climatic regions, grassland types, and GE duration. Specifically, GE increased microbial diversity in in arid, semi-arid, and dry sub-humid regions, but decreased it in humid regions. Moreover, GE significantly increased microbial Shannon in semidesert grasslands (5.9%) and alpine grasslands (3.0%), but not in temperate grasslands. Long-term (>20 year) GE had greater effects on microbial diversity (8.0% for Shannon and 6.7% for richness) compared to short-term (<10 year) GE (-0.8% and 2.4%). Furthermore, grazing exclusion significantly increased multifunctionality, and both microbial and plant Shannon positively correlated with multifunctionality. Overall, our findings emphasize the importance of considering climate, GE duration, and grassland type for biodiversity conservation and sustainable grassland ecosystem functions.
Collapse
Affiliation(s)
- Xiangyang Shu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, China
| | - Qinxin Ye
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Han Huang
- College of Economics and Management, Xinjiang Agricultural University, Urumqi, China
| | - Longlong Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Hao Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, China
| | - Xingyi Liu
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Jianwei Wu
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Yiding Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Liangji Deng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Weijia Liu
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| |
Collapse
|
12
|
Wang Y, Wang Z, Kang Y, Zhang Z, Bao D, Sun X, Su J. Assessing the win-win situation of forage production and soil organic carbon through a short-term active restoration strategy in alpine grasslands. FRONTIERS IN PLANT SCIENCE 2024; 14:1290808. [PMID: 38273956 PMCID: PMC10808524 DOI: 10.3389/fpls.2023.1290808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
Introduction Grassland degradation has seriously affected the ecological environment and human livelihood. To abate these, implementing effective management strategies to restore and improve the service functions and productivity of degraded grasslands is crucial. Methods To evaluate the influences of restoration measures combined with different grazing intensities on short-term (1 year) grassland restoration, the changes in soil physicochemical properties, as well as plant traits under restoration measures of different grazing intensities, reseeding, and fertilization, were analyzed. Results Soil organic carbon (SOC) increased to varying degrees, whereas available nutrients decreased under all combined restoration measures. Reseeding, alone and in combination with fertilization, substantially increased SOC, improved grassland vegetation status, and enhanced grassland productivity. The aboveground biomass of Gramineae and the total aboveground biomass increased under the combined restoration measures of transferring livestock out of the pasture 45 days in advance, reseeding, and fertilization (T4). Redundancy analysis revealed a strong correlation between grassland vegetation characteristics, SOC, and available potassium. Considering soil and vegetation factors, the short-term results suggested that the combination measures in T4had the most marked positive impact on grassland restoration. Discussion These findings offer valuable theoretical insights for the ecological restoration of degraded grasslands in alpine regions.
Collapse
Affiliation(s)
- Yan Wang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Zhicheng Wang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Yukun Kang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Zhiming Zhang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Duanhong Bao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Xiaomei Sun
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
- College of Resource and Environmental Science, Gansu Agricultural University, Lanzhou, China
| | - Junhu Su
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
13
|
Liang X, Wang H, Wang C, Yao Z, Qiu X, Ju H, Wang J. Disentangling the impact of biogas slurry topdressing as a replacement for chemical fertilizers on soil bacterial and fungal community composition, functional characteristics, and co-occurrence networks. ENVIRONMENTAL RESEARCH 2023; 238:117256. [PMID: 37775013 DOI: 10.1016/j.envres.2023.117256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
The application of biogas slurry topdressing with drip irrigation systems can compensate for the limitation of traditional solid organic fertilizer, which can only be applied at the bottom. Based on this, we attempted to define the response of soil bacterial and fungal communities of maize during the tasseling and full maturity stages, by using a no-topdressing control and different ratios of biogas slurry nitrogen in place of chemical fertilizer topdressing. The application of biogas slurry resulted in the emergence of new bacterial phyla led by Synergistota. Compared with pure urea chemical topdressing, the pure biogas slurry topdressing treatment significantly enriched Firmicutes and Basidiomycota communities during the tasseling stage, in addition to affecting the separation of bacterial and fungal α-diversity indices between the tasseling and full maturity stages. Based on the prediction of community composition and function, the changes in bacterial and fungal communities caused by biogas slurry treatment stimulated the ability of microorganisms to decompose refractory organic components, which was conducive to turnover in the soil carbon cycle, and improved multi-element (such as sulfur) cycles; however it may also bring potential risks of heavy metal and pathogenic microbial contamination. Notably, the biogas slurry treatment reduced the correlation and aggregation of bacterial and fungal symbiotic networks, and had a dual effect on ecological randomness. These findings contribute to a deeper comprehension of the alterations occurring in soil microbial communities when substituting chemical fertilizers treated with biogas slurry topdressing, and promote the efficient and sustainable utilization of biogas slurry resources.
Collapse
Affiliation(s)
- Xiaoyang Liang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Haitao Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Chuanjuan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Zonglu Yao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Xuefeng Qiu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Hui Ju
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiandong Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
14
|
Zhang X, Feng Q, Cao J, Liu W, Qin Y, Zhu M, Han T. Grazing practices affect soil microbial networks but not diversity and composition in alpine meadows of northeastern Qinghai-Tibetan plateau. ENVIRONMENTAL RESEARCH 2023; 235:116656. [PMID: 37451580 DOI: 10.1016/j.envres.2023.116656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Livestock grazing is the primary practice in alpine meadows and can alter soil microbiomes, which is critical for ecosystem functions and services. Seasonal grazing (SG) and continuous grazing (CG) are two kinds of different grazing practices that dominate alpine meadows on the Qinghai-Tibetan Plateau (QTP), and how they affect soil microbial communities remains in-depth exploration. The present study was conducted to investigate the effects of different grazing practices (i.e., SG and CG) on the diversity, composition, and co-occurrence networks of soil bacteria and fungi in QTP alpine meadows. Soil microbial α- and β-diversity showed no obvious difference between SG and CG grasslands. Grazing practices had little impact on soil microbial composition, except that the relative abundance of Proteobacteria and Ascomycota showed significant difference between SG and CG grasslands. Soil microbial networks were more complex and less stable in SG grasslands than that in CG grasslands, and the bacterial networks were more complex than fungal networks. Soil fungal diversity was more strongly correlated with environmental factors than bacteria, whereas both fungal and bacterial structures were mainly influenced by soil pH, total nitrogen, and ammonium nitrogen. These findings indicate that microbial associations are more sensitive to grazing practices than microbial diversity and composition, and that SG may be a better grazing practice for ecological benefits in alpine meadows.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qi Feng
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Jianjun Cao
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China.
| | - Wei Liu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Qilian Mountains Eco-Environment Research Center in Gansu Province, Lanzhou, 730000, China
| | - Yanyan Qin
- Qilian Mountains Eco-Environment Research Center in Gansu Province, Lanzhou, 730000, China; Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Meng Zhu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Tuo Han
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
15
|
Krivonos DV, Konanov DN, Ilina EN. FunFun: ITS-based functional annotator of fungal communities. Ecol Evol 2023; 13:e9874. [PMID: 36911300 PMCID: PMC9994472 DOI: 10.1002/ece3.9874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
The study of individual fungi and their communities is of great interest to modern biology because they might be both producers of useful compounds, such as antibiotics and organic acids, and pathogens of various diseases. And certain features associated with the functional capabilities of fungi are determined by differences in gene content. Information about gene content is most often taken from the results of functional annotation of the whole genome. However, in practice, whole genome sequencing of fungi is rarely performed. At the same time, usually sequence amplicons of the ITS region to identify fungal taxonomy. But in the case of amplicon sequencing there is no way to perform a functional annotation. Here, we present FunFun, the instrument that allows to evaluate the gene content of an individual fungus or mycobiome from ITS sequencing data. FunFun algorithm based on a modified K-nearest neighbors algorithm. As input, the program can use ITS1, ITS2, or a full-size ITS cluster (ITS1-5.8S-ITS2). FunFun was realized as a pip-installed command line instrument and validated using a shuffle-split approach. The developed instrument can be very useful in the fungal community comparing and estimating functional capabilities of fungi under study. Also, the program can predict with high accuracy the most variable functions.
Collapse
Affiliation(s)
- Danil V. Krivonos
- Research Institute for Systems Biology and Medicine (RISBM)MoscowRussia
| | - Dmitry N. Konanov
- Research Institute for Systems Biology and Medicine (RISBM)MoscowRussia
| | - Elena N. Ilina
- Research Institute for Systems Biology and Medicine (RISBM)MoscowRussia
| |
Collapse
|