1
|
Hernández-Zanoletty A, Oller I, Polo-López MI, Jambrina-Hernández E, Plaza-Bolaños P, Agüera A. Upgrade constructed wetlands wastewater quality by solar-driven photochemical quaternary treatments in raceway pond reactor at pilot plant scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178058. [PMID: 39705962 DOI: 10.1016/j.scitotenv.2024.178058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
This study explores the potential application of solar photochemical processes (SPPs) for simultaneous disinfection and decontamination of urban wastewater (UWW) when combined with constructed wetlands (CWs). Two SPPs based on the addition of low concentrations of hydrogen peroxide and peroxymonosulfate (PMS) were evaluated. SPPs were carried out at pilot plant scale using low-cost solar open photoreactors (Raceway Pond Reactor (RPR)) under natural sunlight. The performance of the SPPs was analyzed by monitoring naturally occurring bacteria (Escherichia coli, Enterococcus spp. and Salmonella spp.) and Contaminants of Emerging Concern (CECs), such as pharmaceutical products, pesticides, antibiotics and their metabolites, simultaneously. SPP best operating conditions were determined by testing a wide range of oxidant concentrations (0-5.9 mM, 0-3.0 mM) and liquid depths (5, 10 and 15 cm) in the RPR. SPP treatment efficacy was tested on the actual inlet and outlet of the CW system, showing the high influence of their different physicochemical characteristics on the oxidants' performance. H2O2/solar SPP in the actual inlet of the CWs showed slightly higher inactivation kinetics when increasing H2O2 concentration at both water depths (5 and 10 cm), while no significant CECs degradation rates were obtained. However, much higher efficacy was obtained with PMS/solar process attaining high bacteria inactivation under dark conditions and 79 % CEC degradation at 3.0 mM after only 10 min of reaction time. SPPs assessment on the outlet of the CWs also showed better efficacy of the PMS as oxidant compared to the H2O2 for the simultaneous CECs removal (95 % at 1.0 mM of PMS, after only 5 min of treatment) and bacteria inactivation (confirming the no-regrown after 24 h). SPPs have demonstrated to be a low-cost and eco-sustainable polishing alternative to regenerate CW effluents complying with the actual European regulation on the minimum water quality requirements for reusing treated UWW in agriculture.
Collapse
Affiliation(s)
- Alba Hernández-Zanoletty
- Plataforma Solar de Almería-CIEMAT, Ctra. de Senes km 4.5, 04200 Tabernas, Almería, Spain; CIESOL, Centro Mixto UAL-CIEMAT, E-04120 Almería, Spain
| | - Isabel Oller
- Plataforma Solar de Almería-CIEMAT, Ctra. de Senes km 4.5, 04200 Tabernas, Almería, Spain; CIESOL, Centro Mixto UAL-CIEMAT, E-04120 Almería, Spain.
| | - M Inmaculada Polo-López
- Plataforma Solar de Almería-CIEMAT, Ctra. de Senes km 4.5, 04200 Tabernas, Almería, Spain; CIESOL, Centro Mixto UAL-CIEMAT, E-04120 Almería, Spain
| | - Eva Jambrina-Hernández
- CIESOL, Centro Mixto UAL-CIEMAT, E-04120 Almería, Spain; Department of Chemistry and Physics, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain
| | - Patricia Plaza-Bolaños
- CIESOL, Centro Mixto UAL-CIEMAT, E-04120 Almería, Spain; Department of Chemistry and Physics, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain
| | - Ana Agüera
- CIESOL, Centro Mixto UAL-CIEMAT, E-04120 Almería, Spain; Department of Chemistry and Physics, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain
| |
Collapse
|
2
|
Gentile A, Di Stasio L, Oliva G, Vigliotta G, Cicatelli A, Guarino F, Nissim WG, Labra M, Castiglione S. Antibiotic resistance in urban soils: Dynamics and mitigation strategies. ENVIRONMENTAL RESEARCH 2024; 263:120120. [PMID: 39384008 DOI: 10.1016/j.envres.2024.120120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Antibiotic resistance (AR) is a critical global health issue with significant clinical and economic implications. AR occurs when microorganisms develop mechanisms to withstand the effects of antibiotics, reducing treatment efficacy and increasing the risk of mortality and healthcare costs. While the connection between antibiotic use in clinical and agricultural settings and the emergence of AR is well-established, the role of urban soils as reservoirs and spreaders of AR is underexplored. This review examines the complex dynamics of AR in urban soils, highlighting the various sources of antibiotics, including domestic wastewater, industrial effluents, urban agricultural practices, but also microplastics and domestic animal excrements. The selective pressure exerted by these anthropogenic sources promotes the proliferation of antibiotic-resistant bacteria, particularly through horizontal gene transfer, which facilitates the transmission of resistance genes among soil microorganisms in urban environments. About that, the presence of antibiotics in urban soils poses a significant threat to public health by potentially transferring resistance genes to human pathogens through multiple pathways, including direct contact, food consumption, and water ingestion. Furthermore, AR in urban soils disrupts microbial community dynamics, impacting soil fertility, plant growth, and overall environmental quality. Therefore, this review aims to address gaps in understanding AR in urban soils, offering insights into its implications for human health and ecosystem integrity. By identifying these gaps and suggesting evidence-based strategies, this review proposes valid and sustainable solutions to mitigate and counteract the spread of AR in urban environments.
Collapse
Affiliation(s)
- Annamaria Gentile
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy
| | - Luca Di Stasio
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy
| | - Gianmaria Oliva
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy.
| | - Giovanni Vigliotta
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Angela Cicatelli
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Francesco Guarino
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Werther Guidi Nissim
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, (MI), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, (MI), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Stefano Castiglione
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| |
Collapse
|
3
|
Strugała-Wilczek A, Jałowiecki Ł, Szul M, Borgulat J, Płaza G, Stańczyk K. A hybrid system based on the combination of adsorption, electrocoagulation, and wetland treatment for the effective remediation of industrial wastewater from underground coal gasification (UCG). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123180. [PMID: 39509979 DOI: 10.1016/j.jenvman.2024.123180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/26/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
The study verified the effectiveness of treating post-process underground coal gasification (UCG) wastewater, containing high loads of inorganic and organic pollutants, using constructed wetlands (CW) enhanced by hybrid adsorption and electrocoagulation (EC) techniques. Four different system configurations were tested: wetland, EC/wetland, adsorbent/wetland, and EC/adsorbent/wetland. Each experiment lasted 60 days. The feed and effluents from each treatment step were analysed for their basic physicochemical parameters such as metals and trace elements, phenols, sulphides, cyanides, total organic carbon (TOC), chemical oxygen demand (COD), biological oxygen demand (BOD), benzene, toluene, ethylene, xylene (BTEX), and polyaromatic hydrocarbons (PAHs). Systems with electrocoagulation proved to be effective in the case of metal removal. The best results were obtained for Fe, Ni, Sb and As (up to 96%, 98%, 94% and 82% respectively). The systems were ineffective in removing Mn. All tested systems showed the greatest effectiveness in the treatment of wastewater from phenols, BTEX and CN (almost 100% removal). CWs without preliminary electrocoagulation showed practically 100% effectiveness in removing BTEX after 14 days of treatment. Electrocoagulation was particularly effective in reduction of large quantity of PAH compounds (from 1228 μg/l to below 0.050 μg/l). Effective toxicity reduction from V class to II class after 60 days in comparison with meeting the requirements contained in the Best Available Techniques (BAT) document, showed that all tested systems were favorable in terms of UCG wastewater treatment. A significant decrease in toxicity was observed in just 14 days (around 90% reduction of toxicity measured in TU values for systems without adsorbent and around 75% for systems with adsorbent). The wastewater were still toxic due to the formation of degradation intermediates of organic compounds (BTEX, PAHs, phenol compounds), despite a significant decrease in the concentration of contaminants, therefore toxicity assessment should be one of the evaluation criteria for industrial wastewater treatment.
Collapse
Affiliation(s)
- Aleksandra Strugała-Wilczek
- Central Mining Institute - National Research Institute GIG-PIB, Department of Energy Saving and Air Protection, Plac Gwarków 1, 40-166, Katowice, Poland.
| | - Łukasz Jałowiecki
- Silesian University of Technology, Faculty of Organization and Management, Roosevelta 26-28, 41-800, Zabrze, Poland
| | - Mateusz Szul
- Institute of Energy and Fuel Processing Technologies (ITPE), Department of Circular Economy, Zamkowa 1, 41-803, Zabrze, Poland
| | - Jacek Borgulat
- Silesian University of Technology, Faculty of Organization and Management, Roosevelta 26-28, 41-800, Zabrze, Poland
| | - Grażyna Płaza
- Silesian University of Technology, Faculty of Organization and Management, Roosevelta 26-28, 41-800, Zabrze, Poland; Institute for Ecology of Industrial Areas, Environmental Microbiology Unit, Kossutha 6, 40-844, Katowice, Poland
| | - Krzysztof Stańczyk
- Central Mining Institute - National Research Institute GIG-PIB, Department of Energy Saving and Air Protection, Plac Gwarków 1, 40-166, Katowice, Poland
| |
Collapse
|
4
|
Gentile A, Piccolo P, Iannece P, Cicatelli A, Castiglione S, Guarino F. Reduction of antimicrobial resistance: Advancements in nature-based wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134330. [PMID: 38678704 DOI: 10.1016/j.jhazmat.2024.134330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Water scarcity, affecting one-fifth of the global population, is exacerbated by industrial, agricultural, and population growth pressures on water resources. Wastewater, containing Contaminants of Emerging Concern (CECs) such as antibiotics, presents environmental and health hazards. This study explores a Nature-Based Solution (NBS) using Constructed Wetlands (CWs) for wastewater reclamation and CECs removal. Two CW configurations (Vertical-VCW and Hybrid-HCW) were tested for their efficacy. Results show significant reduction in for all the chemico-physical and biological parameters meeting Italian water reuse standards. Furthermore, Antibiotic Resistant Bacteria (ARB) and Antibiotic Resistant Genes (ARGs) were effectively reduced, emphasizing the potential of the CWs in mitigating Antimicrobial Resistance (AMR). Lettuce seedlings irrigated with the treated wastewater exhibited no ARB/ARGs transfer, indicating the safety of the reclaimed wastewater for agricultural use. Overall, CWs emerge as sustainable Nature Based Solutions (NBS) for wastewater treatment, contributing to global water conservation efforts amid escalating water scarcity challenges.
Collapse
Affiliation(s)
- Annamaria Gentile
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano 84084, SA, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, PA, Italy.
| | - Paolo Piccolo
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano 84084, SA, Italy.
| | - Patrizia Iannece
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano 84084, SA, Italy.
| | - Angela Cicatelli
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano 84084, SA, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, PA, Italy.
| | - Stefano Castiglione
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano 84084, SA, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, PA, Italy.
| | - Francesco Guarino
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano 84084, SA, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, PA, Italy.
| |
Collapse
|
5
|
Lv X, Zhang W, Deng J, Feng S, Zhan H. Pyrite and humus soil-coupled mixotrophic denitrification system for efficient nitrate and phosphate removal. ENVIRONMENTAL RESEARCH 2024; 247:118105. [PMID: 38224940 DOI: 10.1016/j.envres.2024.118105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Affiliation(s)
- Xin Lv
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Wenxi Zhang
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Jiushuai Deng
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China; Engineering Technology Research Center for Comprehensive Utilization of Rare Earth, Rare Metal and Rare-Scattered in Non-ferrous Metal Industry, CUMTB, Beijing, 100083, China; Key Laboratory of Separation and Processing of Symbiotic-Associated Mineral Resources in Non-ferrous Metal Industry, CUMTB, Beijing, 100083, China.
| | - Shengyuan Feng
- Jiangxi Gaiya Environm Sci & Technol Co. Ltd, Shangrao, Jiangxi, 334000, China
| | - Hongzhi Zhan
- Jiangxi Gaiya Environm Sci & Technol Co. Ltd, Shangrao, Jiangxi, 334000, China
| |
Collapse
|
6
|
Clemente E, Domingues E, Quinta-Ferreira RM, Leitão A, Martins RC. Solar photo-Fenton and persulphate-based processes for landfill leachate treatment: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169471. [PMID: 38145668 DOI: 10.1016/j.scitotenv.2023.169471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/27/2023]
Abstract
Landfilling is the most usual solid waste management strategy for solid residues disposal. However, it entails several drawbacks such as the generation of landfill leachate that seriously threaten human life and the environment due to their toxicity and carcinogenic character. Among various technologies, solar photo-Fenton and sulphate-based processes have proven to be suitable for the treatment of these polluted streams. This review critically summarises the last three decades of studies in this field. It is found that the solar homogeneous photo-Fenton process should be preferably used as a pre- and post-treatment of biological technologies and as a standalone treatment for young, medium, and mature leachates, respectively. Studies on heterogeneous solar photo-Fenton process are lacking so that this technology may be scaled-up for industrial applications. Sulphate radicals are attractive for removing both COD and ammonia. However, no study has been reported on solar sulphate activation for landfill leachate treatment. This review discusses the main advances and challenges on treating landfill leachate through solar AOPs, it compares solar photo-Fenton and solar persulphate-based treatments, indicates the future research directions and contributes for a better understanding of these technologies towards sustainable treatment of landfill leachate in sunny and not-so-sunny regions.
Collapse
Affiliation(s)
- E Clemente
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal; LESRA - Laboratory of Separation, Reaction and Environmental Engineering, Faculty of Engineering, Agostinho Neto University, Av. Ho Chi Min no 201, Luanda, Angola
| | - E Domingues
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal
| | - R M Quinta-Ferreira
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal
| | - A Leitão
- LESRA - Laboratory of Separation, Reaction and Environmental Engineering, Faculty of Engineering, Agostinho Neto University, Av. Ho Chi Min no 201, Luanda, Angola
| | - R C Martins
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal.
| |
Collapse
|
7
|
Pinedo-Hernández J, Marrugo-Negrete J, Pérez-Espitia M, Durango-Hernández J, Enamorado-Montes G, Navarro-Frómeta A. A pilot-scale electrocoagulation-treatment wetland system for the treatment of landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119681. [PMID: 38043314 DOI: 10.1016/j.jenvman.2023.119681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023]
Abstract
In the present study, the technical feasibility of an electrocoagulation-treatment wetland continuous flow system, for the removal of organic matter from landfill leachate (LL), was evaluated. The response surface methodology (MSR) was used to assess the individual and combined effects of the applied potential and distance between electrodes, on the removal efficiency and optimization of the electrocoagulation process. The hybrid treatment wetland system consisted of a vertical flow system coupled to a horizontal subsurface flow system, both planted with Canna indica. For a chemical oxygen demand (COD) concentration - without pretreatment of 5142.8 ± 2.5 mg L-1, the removal percentage for the electrocoagulation system was 79.4 ± 0.16%, under the optimal working conditions (Potential: 20 V; Distance: 2.0 cm). The COD removal efficiency in the treatment wetland with Canna indica showed a dependence with the hydraulic retention time, reaching 59.2 ± 0.2 % over 15 days. The overall efficiency of the system was about 91.5 ± 0.02 % removal of COD. In addition, a decrease in the biochemical oxygen demand (94.8 ± 0.14%) and total suspended solids (88.2 ± 0.22%), also related to the contamination levels of the LL, were obtained. This study, for the first time, shows that the coupling of electrocoagulation together with a treatment wetland system is a good alternative for the removal of organic contaminants present in LL.
Collapse
Affiliation(s)
- José Pinedo-Hernández
- University of Córdoba, Faculty of Basic Sciences, Department of Chemistry, Water, Applied and Environmental Chemistry Group, Laboratory of Toxicology and Environmental Management, Montería, Colombia.
| | - José Marrugo-Negrete
- University of Córdoba, Faculty of Basic Sciences, Department of Chemistry, Water, Applied and Environmental Chemistry Group, Laboratory of Toxicology and Environmental Management, Montería, Colombia
| | - Mauricio Pérez-Espitia
- University of Córdoba, Faculty of Basic Sciences, Department of Chemistry, Water, Applied and Environmental Chemistry Group, Laboratory of Toxicology and Environmental Management, Montería, Colombia
| | - José Durango-Hernández
- University of Córdoba, Faculty of Basic Sciences, Department of Chemistry, Water, Applied and Environmental Chemistry Group, Laboratory of Toxicology and Environmental Management, Montería, Colombia
| | - Germán Enamorado-Montes
- University of Córdoba, Faculty of Basic Sciences, Department of Chemistry, Water, Applied and Environmental Chemistry Group, Laboratory of Toxicology and Environmental Management, Montería, Colombia
| | - Amado Navarro-Frómeta
- Technological University of Izúcar de Matamoros, Prolongación Reforma # 168, Barrio Santiago Mihuacán, Izúcar de Matamoros, 74420, Puebla, Mexico.
| |
Collapse
|
8
|
Khan O, Mufazzal S, Sherwani AF, Khan ZA, Parvez M, Idrisi MJ. Experimental investigation and multi-performance optimization of the leachate recirculation based sustainable landfills using Taguchi approach and an integrated MCDM method. Sci Rep 2023; 13:19102. [PMID: 37925554 PMCID: PMC10625540 DOI: 10.1038/s41598-023-45885-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
Landfill leachates contain harmful substances viz. chemicals, heavy metals, and pathogens, that pose a threat to human health and the environment. Unattended leachate can also cause ground water contamination, soil pollution and air pollution. This study focuses on management of leachate, by recirculating the rich, nutrient-filled fluid back into the landfills, turning it to a bioreactor, thereby maximising the performance parameters of landfills favourable for electricity production by the waste to energy plants. This study demonstrates a sustainable alternative method for utilising the fluid, rather than treating it using an extremely expensive treatment process. Further, it also experimentally investigates the effect of varying levels of five input parameters of the landfill including waste particle size, waste addition, inorganic content in waste, leachate recirculation rate, and landfill age, each at five levels, on the multiple performance of the landfill using Taguchi's L25 standard orthogonal array. Experimental results are analysed using an integrated MCDM approach i.e. MEREC-PIV method and statistical techniques such as analysis of mean (ANOM) and analysis of variance (ANOVA). The results indicate that the optimal setting of the input parameters is waste particle size at 9 ppm, waste addition at 80 Ktoe, inorganic content in waste at 2%, leachate recirculation rate at 250 l/day and landfill age at 3 years. Further, inorganic content waste is found to be the most significant parameter for the multiple performance of the landfill. This study presents a novel approach to produce input parameters for power plants which may enhance their profitability and sustainability.
Collapse
Affiliation(s)
- Osama Khan
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sameera Mufazzal
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, 110025, India
| | - Ahmad F Sherwani
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, 110025, India
| | - Zahid A Khan
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohd Parvez
- Department of Mechanical Engineering, Al Falah University, Faridabad, Haryana, 121004, India
| | - Mohammad Javed Idrisi
- Department of Mathematics, College of Natural and Computational Science, Mizan-Tepi University, Tepi, Ethiopia.
| |
Collapse
|
9
|
Faggiano A, De Carluccio M, Cerrato F, Garcia Junior CA, Proto A, Fiorentino A, Rizzo L. Improving organic matter and nutrients removal and minimizing sludge production in landfill leachate pre-treatment by Fenton process through a comprehensive response surface methodology approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117950. [PMID: 37094386 DOI: 10.1016/j.jenvman.2023.117950] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Landfill leachate (LL) represents a very complex effluent difficult to treat and to manage which usually requires a chemical pre-treatment. In this study, response surface methodology (RSM) was used to identify the optimum operating conditions of the Fenton process as a pre-treatment of LL in order to reduce the high organic content and simultaneously optimize the BOD5:TN:TP ratio. The dosages of Fenton process reagents, namely Fe2+ and H2O2, were used as variables for the implementation of RSM. Chemical oxygen demand (COD), five-days biochemical oxygen demand (BOD5), total nitrogen (TN), total phosphorus (TP) removals (and simultaneously BOD5:TN:TP ratio), sludge-to-iron ratio (SIR) and organic removal-to-sludge ratio (ORSR) were selected as target responses. This approach considered the SIR and ORSR parameters which are a useful tool for assessing sludge formation during the process along with organic matter removal. The variables (H2O2 and Fe2+ concentrations) significantly affected the responses, as the role of oxidation mechanism is dominant with respect to coagulation one. The pH for the process was fixed to 2.8 while the treatment time was set to 2 h. The optimum operational conditions obtained by perturbation and 3D surface plot, were found to be 4262 mg/L and 5104 mg/L for Fe2+ and H2O2, respectively (H2O2/Fe2+ molar ratio = 2) with COD, BOD5, TN and TP removals of 70%, 67%, 84% and 96% respectively, while SIR and ORSR final values were 1.15 L/mol and 33.79 g/L respectively, in accordance with models-predicted values. Moreover, the initial unbalanced BOD5:TN:TP ratio (9:1:1) was significantly improved (100:6:1), making the effluent suitable for a subsequent biological treatment. The investigated approach allowed to optimize the removal of organic load and nutrients as well as to minimize the sludge formation in Fenton process, providing a useful tool for the operation and management of LL pre-treatment.
Collapse
Affiliation(s)
- Antonio Faggiano
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Marco De Carluccio
- Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Francesco Cerrato
- ODS6 Clean Water and Sanitation, Av. dos Holandeses Ed. Century, Sala 2 - Térreo CEP, 65071-380, São Luís, MA, Brazil
| | | | - Antonio Proto
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Antonino Fiorentino
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Luigi Rizzo
- Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| |
Collapse
|