1
|
Olivera-Begué E, González D, Kaal J, Camps-Arbestain M, Sánchez A. Commercial-scale co-composting of wood-derived biochar with source-selected organic fraction of municipal solid waste. BIORESOURCE TECHNOLOGY 2025; 431:132595. [PMID: 40300730 DOI: 10.1016/j.biortech.2025.132595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/26/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
This full-scale trial aims to systematically examine the effect of the addition (10 % DW ratio) of wood-derived biochar produced at 700 °C on the composting of source-selected organic fraction of municipal solid waste (OFMSW) and compare it with an identical treatment without biochar addition. The study mainly focused on (i) composting process performance, including compost quality, and (ii) gaseous emissions (ammonia, methane, nitrous oxide, volatile organic compounds (VOC) and odor emissions) from the two experimental piles, in which representative areas within each pile were identified as independent regions (n = 6) for sampling, obtaining over 1300 independent gas sampling data points. During the first 50 days, biochar contributed to a more sustained thermophilic temperature compared to the control (average 47 and 38 °C, respectively). Over the 80 days of composting, biochar significantly (p < 0.003) decreased methane (from 0.17 to 0.05 kg CH4 Mg-1 OFMSW) and ammonia (from 0.57 to 0.35 kg NH3 Mg-1 OFMSW) emissions. The differences in VOC emission from the two treatments were only significant (p < 0.001) during the maturation phase (from day 50 onwards) with average values of 35 and 175 g C-VOC day-1, for the biochar and control treatments, respectively. Odor emissions were smaller in the presence of biochar (1.1E + 0.6 vs. 1.9E + 0.6 ou Mg-1 OFMSW). The agronomic value of the resultant biochar co-compost was similar to that of the control compost. Biochar can thus contribute to climate change mitigation, not only through CO2 removal, but also through the reduction of non-CO2 greenhouse gases emissions during composting, while also decreasing the odor impact of the plant on nearby residents.
Collapse
Affiliation(s)
- Elena Olivera-Begué
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Daniel González
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Joeri Kaal
- Pyrolyscience, 15707 Santiago de Compostela, Spain
| | - Marta Camps-Arbestain
- Shell Global Solutions International B.V., Shell Technology Centre Amsterdam, Grasweg 31, 1031 HW Amsterdam, the Netherlands
| | - Antoni Sánchez
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| |
Collapse
|
2
|
Xiao W, Zhang Q, Zhao S, Chen D, Zhao Z, Gao N, Huang M, Ye X. Combined metabolomic and microbial community analyses reveal that biochar and organic manure alter soil C-N metabolism and greenhouse gas emissions. ENVIRONMENT INTERNATIONAL 2024; 192:109028. [PMID: 39307007 DOI: 10.1016/j.envint.2024.109028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
The use of biochar to reduce the gas emissions from paddy soils is a promising approach. However, the manner in which biochar and soil microbial communities interact to affect CO2, CH4, and N2O emissions is not clearly understood, particularly when compared with other amendments. In this study, high-throughput sequencing, soil metabolomics, and quantitative real-time PCR were utilized to compare the effects of biochar (BC) and organic manure (OM) on soil microbial community structure, metabolomic profiles and functional genes, and ultimately CO2, CH4, and N2O emissions. Results indicated that BC and OM had opposite effects on soil CO2 and N2O emissions, with BC resulting in lower emissions and OM resulting in higher emissions, whereas BC, OM, and their combined amendments increased cumulative CH4 emissions by 19.5 %, 31.6 %, and 49.1 %, respectively. BC amendment increased the abundance of methanogens (Methanobacterium and Methanocella) and denitrifying bacteria (Anaerolinea and Gemmatimonas), resulting in an increase in the abundance of mcrA, amoA, amoB, and nosZ genes and the secretion of a flavonoid (chrysosplenetin), which caused the generation of CH4 and the reduction of N2O to N2, thereby accelerating CH4 emissions while reducing N2O emissions. Simultaneously, OM amendment increased the abundance of the methanogen Caldicoprobacter and denitrifying Acinetobacter, resulting in increased abundance of mcrA, amoA, amoB, nirK, and nirS genes and the catabolism of carbohydrates [maltotriose, D-(+)-melezitose, D-(+)-cellobiose, and maltotetraose], thereby enhancing CH4 and N2O emissions. Moreover, puerarin produced by Bacillus metabolism may contribute to the reduction in CO2 emissions by BC amendment, but increase in CO2 emissions by OM amendment. These findings reveal how BC and OM affect greenhouse gas emissions by modulating soil microbial communities, functional genes, and metabolomic profiles.
Collapse
Affiliation(s)
- Wendan Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shouping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - De Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhen Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Na Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Miaojie Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xuezhu Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
3
|
Wang J, Wang B, Bian R, He W, Liu Y, Shen G, Xie H, Feng Y. Bibliometric analysis of biochar-based organic fertilizers in the past 15 years: Focus on ammonia volatilization and greenhouse gas emissions during composting. ENVIRONMENTAL RESEARCH 2024; 243:117853. [PMID: 38070856 DOI: 10.1016/j.envres.2023.117853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 02/06/2024]
Abstract
Biochar-based organic fertilizer is a new type of ecological fertilizer formulated with organic fertilizers using biochar as the primary conditioning agent, which has received wide attention and application in recent years. This study conducted a comprehensive bibliometric analysis of the main hot spots and research trends in the field of biochar-based organic fertilizer research by collecting indicators (publication year, number, prominent authors, and research institutions) in the Web of Science database. The results showed that the research in biochar-based organic fertilizer has been in a rapid development stage since 2015, with exponential growth in publications number; the main institution with the highest publications number was Northwest Agriculture & Forestry University; the researchers with the highest number of publications was Mukesh Kumar Awasthi; the most publications country is China by Dec 30, 2022. The hot spots of biochar-based organic fertilizer research have been nitrogen utilization, greenhouse gas emission, composting product quality and soil fertility. Biochar reduces ammonia volatilization and greenhouse gas emissions from compost mainly through adsorption. The results showed that adding 10% biochar was an effective measure to achieve co-emission reduction of ammonia and greenhouse gases in composting process. In addition, biochar modification or combination with other additives should be the focus of future research to mitigate ammonia and greenhouse gas emissions from composting processes.
Collapse
Affiliation(s)
- Jixiang Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Rongjun Bian
- Institute of Resources, Ecosystem and Environment of Agriculture and Center of Biomass and Biochar Green Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Weijiang He
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yang Liu
- Research Center of IoT Agriculture Applications/Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Guangcai Shen
- Baoshan Branch of Yunnan Tobacco Company, Baoshan, 67800, China
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| |
Collapse
|
4
|
Zhang Y, Sun Y, He R, Zhao J, Wang J, Yu T, Zhang X, Bildyukevich AV. Effects of excess sludge composting process, environmentally persistent free radicals, and microplastics on antibiotics degradation efficiency of aging biochar. BIORESOURCE TECHNOLOGY 2024; 393:130070. [PMID: 37984667 DOI: 10.1016/j.biortech.2023.130070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Simulation of microbial aging biochar in compost is an important index for evaluating the biochar degradation efficiency of antibiotics. In this study, biochar was prepared by adding microplastics (MPs) to sludge, and the degradation effect of biochar/(peroxymonosulfate, PMS) on antibiotics was evaluated during the compost aging process of biochar. After the compost aging of biochars, the antibiotic degradation efficiency of HPBC500, HPBC500 + polystyrene (PS), HPBC900/PMS, and HPBC900 + PS/PMS decreased by 6.47, 15.2, 10.16, and 10.33 %, respectively. Environmentally persistent free radicals (EPFRs) and defect structure were the main contributors to the activation of PMS. EPFRs produced through PS pyrolysis of biochar exhibited strong reactivity but poor stability during the degradation of antibiotics. Biochar enhanced the growth of microorganisms in compost but reduced its specific surface area. The antibiotic degradation efficiency of the biochar was positively correlated with the concentration of EPFRs. This study elucidated the durability of different biochar toward antibiotic degradation.
Collapse
Affiliation(s)
- Yanzhuo Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China.
| | - Yutai Sun
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China
| | - Rui He
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China
| | - Jing Zhao
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China
| | - Jiqin Wang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China.
| | - Tonghuan Yu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China
| | - Xiaozhuan Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China
| | - Alexandr V Bildyukevich
- Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus, Surganov str. 13, 220072 Minsk, Republic of Belarus.
| |
Collapse
|
5
|
Stegenta-Dąbrowska S, Syguła E, Bednik M, Rosik J. Effective Carbon Dioxide Mitigation and Improvement of Compost Nutrients with the Use of Composts' Biochar. MATERIALS (BASEL, SWITZERLAND) 2024; 17:563. [PMID: 38591413 PMCID: PMC10856095 DOI: 10.3390/ma17030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 04/10/2024]
Abstract
Composting is a process that emits environmentally harmful gases: CO2, CO, H2S, and NH3, negatively affecting the quality of mature compost. The addition of biochar to the compost can significantly reduce emissions. For effective CO2 removal, high doses of biochar (up to 20%) are often recommended. Nevertheless, as the production efficiency of biochar is low-up to 90% mass loss-there is a need for research into the effectiveness of lower doses. In this study, laboratory experiments were conducted to observe the gaseous emissions during the first 10 days of composting with biochars obtained from mature composts. Biochars were produced at 550, 600, and 650 °C, and tested with different doses of 0, 3, 6, 9, 12, and 15% per dry matter (d.m.) in composting mixtures, at three incubation temperatures (50, 60, and 70 °C). CO2, CO, H2S, and NH3 emissions were measured daily. The results showed that the biochars effectively mitigate CO2 emissions during the intensive phase of composting. Even 3-6% d.m. of compost biochars can reduce up to 50% of the total measured gas emissions (the best treatment was B650 at 60 °C) and significantly increase the content of macronutrients. This study confirmed that even low doses of compost biochars have the potential for enhancing the composting process and improving the quality of the material quality.
Collapse
Affiliation(s)
- Sylwia Stegenta-Dąbrowska
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland; (S.S.-D.); (E.S.)
| | - Ewa Syguła
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland; (S.S.-D.); (E.S.)
| | - Magdalena Bednik
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wrocław University of Environmental and Life Sciences, Grunwaldzka Street 53, 50-375 Wrocław, Poland;
| | - Joanna Rosik
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland; (S.S.-D.); (E.S.)
| |
Collapse
|