1
|
Zheng Y, Abbott LK, Bolan N, Singh PK, Jenkins SN, Mickan BS. Evaluating the potential of digestate-loaded biochar in improving soil biological health and plant nutrition with less greenhouse gas emissions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 377:126431. [PMID: 40373854 DOI: 10.1016/j.envpol.2025.126431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/15/2025] [Accepted: 05/11/2025] [Indexed: 05/17/2025]
Abstract
Digestate has a great potential as a carbon (C) and nitrogen (N) soil amendment. Loading digestate onto biochar can produce a C- and N- enriched biochar fertilizer (i.e., digestate-loaded biochar, DLB), and help to solve digestate-specific issues. This study aims to evaluate the potential of DLB at optimal application rates in keeping plant (annual ryegrass) nutrition level while mitigating greenhouse gas emissions and improving soil biological health compared to chemical fertilizers in an acidic soil under liming or not. Soil biological health index was assessed through quantitative PCR and amplicon sequencing. The results showed that increasing DLB addition to 150 kg N ha-1 resulted in a similar N uptake of ryegrass to that under urea despite lower mineral N provided by DLB. This application rate decreased greenhouse gas emissions relative to urea, through decreasing CO2 emission despite increased CH4 emission. Compared to urea, this DLB rate did not change N2O emission, corresponding to the specifically increased abundance of nirK gene (1.3-fold) (and enriched denitrifier Dokdonella) for N2O production and nosZ clade I and II genes (87%) for N2O consumption. The DLB at 150 kg N ha-1 enhanced soil biological health index by 1.4-fold relative to urea through increasing microbial abundances particularly fungi, enriching beneficial microbes (plant-growth-promoting bacteria, mycorrhiza and dark-septate-endophyte), and increasing fungal diversity; this effect was less pronounced under liming. This study concludes that DLB can serve as an organic-mineral fertilizer in maintaining plant nutrition while decreasing greenhouse gas emissions and enhancing soil biological health, offering a sustainable approach to managing organic waste.
Collapse
Affiliation(s)
- Yunyun Zheng
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, 4067, Australia.
| | - Lynette K Abbott
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Pankaj K Singh
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Sasha N Jenkins
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Bede S Mickan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; Richgro Garden Products, 203 Acourt Rd, Jandakot, WA, 6164, Australia
| |
Collapse
|
2
|
Zheng Y, Abbott LK, Bolan N, Hu H, Jenkins SN, Mickan BS. Biochar interacted with organic compounds from digestate in controlling N 2O emissions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 385:125591. [PMID: 40334400 DOI: 10.1016/j.jenvman.2025.125591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/14/2025] [Accepted: 04/27/2025] [Indexed: 05/09/2025]
Abstract
Treating biochar with digestate can form a C- and N-enriched biochar fertilizer, but its role in controlling N2O emission from soil with different pH is unclear. This study assessed N2O emission from rhizosphere soil after growing ryegrass with urea, urea plus biochar, solid digestate, and digestate-incorporated biochar, with and without liming. The abundances of bacteria, fungi, two nitrification genes (bacterial amoA; archaeal amoA), and four denitrification genes (nirK, nirS, nosZ for clade I and nosZII for clade II) were quantified using quantitative PCR. Bacterial community composition was characterized using amplicon sequencing. Solid digestate and urea plus biochar decreased N2O emission by 48% and 56%, respectively, relative to urea under non-liming. This corresponded to the increased bacterial abundance and greater increases in N2O-consuming (nosZ and nosZII) than N2O-producing (archaeal amoA, nirK, nirS) gene abundances. Digestate-incorporated biochar decreased N2O emission by 75% compared to solid digestate, with decreased nirK gene abundance and increased prevalence of the denitrifier Dokdonella. Liming resulted in the lowest N2O emissions and highest nosZII gene abundance among all treatments. This study demonstrated the value of incorporating biochar in digestate in reducing N2O emission while enhancing plant nutrition.
Collapse
Affiliation(s)
- Yunyun Zheng
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, 4067, Australia.
| | - Lynette K Abbott
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Hangwei Hu
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sasha N Jenkins
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Bede S Mickan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; Richgro Garden Products, 203 Acourt Rd, Jandakot, WA, 6164, Australia
| |
Collapse
|
3
|
Gao D, Tian H, Yang H, Tan W, Liang X, Wen C, Song D, Zhang Y, Tan Q. Co-application of digestate and biochar reduced greenhouse gas emissions in paddy soil through enhanced denitrification and anaerobic methane oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125244. [PMID: 40188752 DOI: 10.1016/j.jenvman.2025.125244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/27/2025]
Abstract
Digestate from food waste (FW) has been identified as a promising nutrient resource for agriculture. However, applying digestate directly to soil often produces considerable greenhouse gas (GHG) emissions. As a soil amendment, biochar has demonstrated potential for mitigating GHG emissions. At present, the effect of biochar on GHG emissions and the associated regulatory mechanisms in paddy soils amended with digestate remains unclear. A 45-day soil incubation was conducted with different nitrogen substitution ratios of urea by digestate, coupled with biochar application: CK (100 % urea), D0U100 (100 % urea + biochar), D50U50 (50 % urea, 50 % digestate + biochar), and D100U0 (100 % digestate + biochar). Results indicated that the co-application of biochar and digestate significantly reduced N2O accumulation by 44.99 %-80.39 % compared to CK, primarily due to a decrease in soil NO3--N content and an increase in soil pH, which together significantly improved the distribution of the nosZ gene involved in denitrification. The increase in the abundance of Conexibacter, Symbiobacterium, Anaerolinea, and Candidatus_Solibacter further contributed to N2O reduction. Furthermore, the co-application led to a 21.68 %-38.15 % reduction in CH4 accumulation compared to CK. Biochar increased the abundance of methanotrophic bacteria, such as Methylococcaceae, Methyloligellaceae, and Methylomirabilaceae. Co-application increased the abundance of nitrate-reducing bacteria Symbiobacterium and Anaerolinea, thereafter facilitating nitrite-dependent anaerobic methane oxidation (AOM) dominated by Methylomirabilaceae. Additionally, sulfate-dependent and Iron(III)-dependent AOM likely further contributed to CH4 reduction. Overall, this study proposed a low-carbon management strategy for FW digestate and GHG emissions mitigation of paddy soil.
Collapse
Affiliation(s)
- Dandan Gao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Developmen, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hailin Tian
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Developmen, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Hao Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Developmen, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wenxia Tan
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Developmen, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaofeng Liang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Developmen, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | | | - Dianyu Song
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Developmen, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuman Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Developmen, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qian Tan
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Developmen, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
4
|
Ighalo JO, Ohoro CR, Ojukwu VE, Oniye M, Shaikh WA, Biswas JK, Seth CS, Mohan GBM, Chandran SA, Rangabhashiyam S. Biochar for ameliorating soil fertility and microbial diversity: From production to action of the black gold. iScience 2025; 28:111524. [PMID: 39807171 PMCID: PMC11728978 DOI: 10.1016/j.isci.2024.111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
This article evaluated different production strategies, characteristics, and applications of biochar for ameliorating soil fertility and microbial diversity. The biochar production techniques are evolving, indicating that newer methods (including hydrothermal and retort carbonization) operate with minimum temperatures, yet resulting in high yields with significant improvements in different properties, including heating value, oxygen functionality, and carbon content, compared to the traditional methods. It has been found that the temperature, feedstock type, and moisture content play critical roles in the fabrication process. The alkaline nature of biochar is attributed to surface functional groups and addresses soil acidity issues. The porous structure and oxygen-containing functional groups contribute to soil microbial adhesion, affecting soil health and nutrient availability, improving plant root morphology, photosynthetic pigments, enzyme activities, and growth even under salinity stress conditions. The review underscores the potential of biochar to address diverse agricultural challenges, emphasizing the need for further research and application-specific considerations.
Collapse
Affiliation(s)
- Joshua O. Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka P. M. B. 5025, Nigeria
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Chinemerem R. Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa
| | - Victor E. Ojukwu
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka P. M. B. 5025, Nigeria
| | - Mutiat Oniye
- Department of Chemical and Material Science, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Wasim Akram Shaikh
- Department of Basic Science, School of Science and Technology, The Neotia University, Sarisha, West Bengal 743368, India
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), International Centre for Ecological Engineering & Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | | | - Ganesh Babu Malli Mohan
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, USA
| | - Sam Aldrin Chandran
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India
| | - Selvasembian Rangabhashiyam
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| |
Collapse
|
5
|
Czatzkowska M, Wolak I, Harnisz M, Korzeniewska E. Microbial diversity and biosafety judgment of digestates derived from different biogas plants for agricultural applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123329. [PMID: 39541817 DOI: 10.1016/j.jenvman.2024.123329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/25/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
The composition of microbial communities is the key to effective anaerobic digestion (AD). The microbiome driving the AD process has been extensively researched, whereas the influence of specific substrates on the microbiome of digestate remains insufficiently investigated. Digestate has considerable potential for use in soil fertilization and bioremediation, therefore its biological safety should be monitored. Moreover, the knowledge about the composition of microbial communities and their interconnections in digestate should be extended, due to the impact on soil microbiota and its functionality. The aim of this study was a comprehensive assessment of the (1) sanitary quality, (2) core microbiome, and (3) microbial interactions in digestates collected from three full-scale agricultural biogas plants, with particular emphasis on their applicability from the perspective of the resident microbiota. Analyzed samples of digestate were derived from various substrates used for AD, including plant- and animal-based materials, and industrial waste. The study demonstrated that the phyla Bacillota, Bacteroidota, and Cloacimonadota were the most dominant in digestates regardless of the composition of the processed substrates, however, member composition at the genus level differed significantly between samples. In addition, we observed that microbial genera belonging to the less prevalent phyla play an integral role in the forming of microbial community interactions. Dominant microbial taxa with broad metabolic capabilities, potentially improving soil quality and functionality, have been identified. Moreover, we confirmed, that digestate samples were free of analyzed pathogenic bacteria and parasites. The study results indicate that digestate may have an immense fertilizing and bioremediation potential that has not been fully availed of to date.
Collapse
Affiliation(s)
- Małgorzata Czatzkowska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| | - Izabela Wolak
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| |
Collapse
|
6
|
Lee JTE, Bu J, Senadheera S, Tiong YW, Majid MBA, Yuan X, Wang CH, Zhang J, Ok YS, Tong YW. Methanosarcina thermophila bioaugmentation with biochar growth support for valorisation of food waste via thermophilic anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122869. [PMID: 39423614 DOI: 10.1016/j.jenvman.2024.122869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Methanosarcina thermophila bioaugmentation on biochar as the growth support particle has previously been shown to enhance biomethane production of anaerobic digestion of food waste. In this paper, the duration of the beneficial effects is examined by a semi-continuous thermophilic regime starting from pooled digestate from a previous batch digestion. An additional experiment is performed to decouple the solids retention time, mitigating the washout effect and resulting in improved methane yield for 17 days. The second experiment is extended incorporating various permutations of biochar amendment, and the findings suggest that liquid soluble supplements are essential for prolonging the advantages. Experimental and microbiological analyses indicate that the biochar's enhancement is likely due to microbial factors like direct interspecies electron transfer (DIET) or syntrophic interactions, rather than physicochemical mechanisms.
Collapse
Affiliation(s)
- Jonathan T E Lee
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore
| | - Jie Bu
- Environmental Research Institute, National University of Singapore, Singapore
| | - Sachini Senadheera
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Yong Wei Tiong
- Environmental Research Institute, National University of Singapore, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE(2)), Agency for Science, Technology and Research (A∗STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | | | - Xiangzhou Yuan
- Ministry of Education of Key Laboratory of Energy Thermal Conversion and Control, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Chi-Hwa Wang
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore; Department of Chemical & Biomolecular Engineering, NUS, Singapore
| | - Jingxin Zhang
- China-US Low Carbon College, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Yen Wah Tong
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore; Department of Chemical & Biomolecular Engineering, NUS, Singapore.
| |
Collapse
|
7
|
Zheng Y, Bolan N, Jenkins SN, Mickan BS. Organic particles and high pH in food waste anaerobic digestate enhanced NH 4+ adsorption on wood-derived biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174458. [PMID: 38964404 DOI: 10.1016/j.scitotenv.2024.174458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Biogas residues (i.e., digestate) are rich in NH4+ that has great agricultural value but environmental risk if not recycled. Biochar can be an effective adsorbent retaining NH4+ from digestate. However, it remains unclear how the unique composition of digestate affects the capacity and mechanisms of NH4+ adsorption on biochar. This study examined the mechanisms and driving factors of NH4+ recovery from digestate containing different molecular-weight organic particles by using wood-derived biochar with or without H2O2 modification. Four solutions were prepared, including pure NH4+, synthetic NH4+ with multiple cations mimicking digestate solution, supernatant of digestate with small organic particles and dissolved organic matter, and digestate mixture containing supernatant and large organic particles. The results showed that compared with pure NH4+ solution, the adsorbed NH4+ was 42% lower in the synthetic NH4+ solution with multiple cations but was 2.2 time higher in the supernatant of digestate on two biochars following 48-h adsorption. Modified biochar did not change NH4+ adsorption in pure NH4+ solution despite higher specific surface area than raw biochar, but it increased the adsorption of NH4+ in digestate solutions with high pH (e.g., 4.03 vs. 3.37 mg N g-1 for modified and raw biochar, respectively, in the supernatant of digestate). Compared with the supernatant, the large organic particles in digestate mixture significantly but slightly decreased NH4+ adsorption on modified but not raw biochar. The desorption rate of NH4+ on the biochar was up to 74%-100%, and it was not supressed by the adsorption of organic particles in digestate. The findings here demonstrate the dominant role of electrostatic attraction in NH4+ adsorption, the important role of high pH and organic particles in digestate in facilitating NH4+ adsorption on biochar, and the suitability of the wood-derived biochar in recovering NH4+ from digestate and releasing N for agricultural application.
Collapse
Affiliation(s)
- Yunyun Zheng
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia.
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Sasha N Jenkins
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Bede S Mickan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; Richgro Garden Products, 203 Acourt Rd, Jandakot, WA 6164, Australia
| |
Collapse
|
8
|
Irshad MK, Lee JC, Aqeel M, Javed W, Noman A, Lam SS, Naggar AE, Niazi NK, Lee HH, Ibrahim M, Lee SS. Efficacy of Fe-Mg-bimetallic biochar in stabilization of multiple heavy metals-contaminated soil and attenuation of toxicity in spinach (Spinacia oleracea L.). CHEMOSPHERE 2024; 364:143184. [PMID: 39197684 DOI: 10.1016/j.chemosphere.2024.143184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Globally, soil contamination with heavy metals (HMs) pose serious threats to soil health, crop productivity, and human health. The present investigation involved synthesis and analysis of biochar with bimetallic combination of iron and magnesium (Fe-Mg-BC). Our study evaluated how Fe-Mg-BC affects the absorption of cadmium (Cd), lead (Pb), and copper (Cu) in spinach (Spinacia oleracea L.) and remediation of soil contaminated with multiple HMs. Results demonstrated the successful loading of iron (Fe) and magnesium (Mg) onto pristine biochar (BC) derived from peanut shells. The addition of Fe-Mg-BC (3%) notably increased spinach biomass, enhancing photosynthesis, transpiration, stomatal conductance, and intercellular CO2 levels by 22%, 21%, 103%, and 15.3%, respectively. Compared to control, Fe-Mg-BC (3%) suppressed metal-induced oxidative stress by boosting levels of superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) in roots by 40.9%, 57%, 54.8 %, and in shoots by 55.5%, 65.5%, and 37.4% in shoots, respectively. The Fe-Mg-BC effectively reduced the uptake of Cd, Pb, and Cu in spinach tissues by transforming their bioavailable fractions to non-bioavailable forms. The Fe-Mg-BC (3%) significantly reduced the mobility of Cd, Pb and Cu in soil and limited the concentration of Cd, Pb, and Cu in plant roots by 34.1%, 79.2%, 47%, and shoots by 56.3%, 43.3%, and 54.1%, respectively, compared to control. These findings underscore the potential of Fe-Mg-BC as a promising amendment for reclaiming soils contaminated with variety of HMs, thereby making a significant contribution to the promotion of safer food production.
Collapse
Affiliation(s)
- Muhammad Kashif Irshad
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea; Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Jong Cheol Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Muhammad Aqeel
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Wasim Javed
- Water Management Research Center (WMRC), University of Agriculture Faisalabad, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Ali El Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Hun Ho Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Muhammad Ibrahim
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea.
| |
Collapse
|
9
|
Kohira Y, Fentie D, Lewoyehu M, Wutisirirattanachai T, Gezahegn A, Addisu S, Sato S. Mitigation of ammonia volatilization from organic and inorganic nitrogen sources applied to soil using water hyacinth biochars. CHEMOSPHERE 2024; 363:142872. [PMID: 39019190 DOI: 10.1016/j.chemosphere.2024.142872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/13/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
The recent global population explosion has increased people's food demand. To meet this demand, huge amounts of nitrogen (N) fertilizer have been applied in the worldwide. However, ammonia (NH3) volatilization is one of the primary factors of N loss from soil after N application causing decrease crop N utilization efficiency and productivity. Incubation experiments were conducted on an acidic clayey soil with two different N sources (urea and anaerobic digestion effluent; ADE), two differently-produced biochars, and three biochar application rates (0%, 0.25%, and 1.0% w/w). Ammonia volatilization was lower from urea (14.0-23.5 mg N kg-1) and ADE (11.3-21.0 mg N kg-1) with biochar application than those without biochar (40.1 and 26.2 mg N kg-1 from urea and ADE alone, respectively). Biochar application significantly mitigated volatilization and reduction percentages for urea and ADE were 40%-64% and 18%-55%, respectively. 1.0% biochar application mitigated volatilization significantly compared to 0.25% application regardless of N source and biochar types. Possible mechanism for volatilization mitigation for urea and ADE were increased N immobilization by soil microorganisms and accelerated net nitrification rate due to increased soil nitrifying bacteria, respectively. Overall, our results clarified different mechanisms for N volatilization mitigation from different (inorganic vs. organic) N sources with biochar application.
Collapse
Affiliation(s)
- Yudai Kohira
- Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji-shi, Tokyo, 192-8577, Japan.
| | - Desalew Fentie
- Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji-shi, Tokyo, 192-8577, Japan; College of Agriculture Food and Climate Science, Injibara University, Injibara, Ethiopia, P.O. Box 40.
| | - Mekuanint Lewoyehu
- Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji-shi, Tokyo, 192-8577, Japan; College of Science, Bahir Dar University, Bahir Dar, Ethiopia, P.O. Box 79.
| | - Tassapak Wutisirirattanachai
- Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji-shi, Tokyo, 192-8577, Japan.
| | - Ashenafei Gezahegn
- College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar, Ethiopia, P.O. Box 79; College of Agriculture and Environmental Sciences, Debark University, Debark, Ethiopia, P.O. Box 90.
| | - Solomon Addisu
- College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar, Ethiopia, P.O. Box 79.
| | - Shinjiro Sato
- Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji-shi, Tokyo, 192-8577, Japan.
| |
Collapse
|
10
|
Sharma P, Parakh SK, Tsui TH, Bano A, Singh SP, Singh VP, Lam SS, Nadda AK, Tong YW. Synergetic anaerobic digestion of food waste for enhanced production of biogas and value-added products: strategies, challenges, and techno-economic analysis. Crit Rev Biotechnol 2024; 44:1040-1060. [PMID: 37643972 DOI: 10.1080/07388551.2023.2241112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 08/31/2023]
Abstract
The generation of food waste (FW) is increasing at an alarming rate, contributing to a total of 32% of all the waste produced globally. Anaerobic digestion (AD) is an effective method for dealing with organic wastes of various compositions, like FW. Waste valorization into value-added products has increased due to the conversion of FW into biogas using AD technology. A variety of pathways are adopted by microbes to avoid unfavorable conditions in AD, including competition between sulfate-reducing bacteria and methane (CH4)-forming bacteria. Anaerobic bacteria decompose organic matter to produce biogas, a digester gas. The composition depends on the type of raw material and the method by which the digestion process is conducted. Studies have shown that the biogas produced by AD contains 65-75% CH4 and 35-45% carbon dioxide (CO2). Methanothrix soehngenii and Methanosaeta concilii are examples of species that convert acetate to CH4 and CO2. Methanobacterium bryantii, Methanobacterium thermoautotrophicum, and Methanobrevibacter arboriphilus are examples of species that produce CH4 from hydrogen and CO2. Methanobacterium formicicum, Methanobrevibacter smithii, and Methanococcus voltae are examples of species that consume formate, hydrogen, and CO2 and produce CH4. The popularity of AD has increased for the development of biorefinery because it is seen as a more environmentally acceptable alternative in comparison to physico-chemical techniques for resource and energy recovery. The review examines the possibility of using accessible FW to produce important value-added products such as organic acids (acetate/butyrate), biopolymers, and other essential value-added products.
Collapse
Affiliation(s)
- Pooja Sharma
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Sheetal Kishor Parakh
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - To Hung Tsui
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Ambreen Bano
- Department of Biosciences, Faculty of Sciences, IIRC-3, Plant-Microbe Interaction, and Molecular Immunology Laboratory, Integral University, Lucknow, India
| | - Surendra Pratap Singh
- Department of Botany, Plant Molecular Biology Laboratory, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Vijay Pratap Singh
- Department of Botany, Plant Physiology Laboratory, C.M.P. Degree College, a Constituent Post Graduate College of University of Allahabad, Prayagraj, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, India
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| |
Collapse
|
11
|
Sun Y, Wang X, Wu Q, Zong T, Xin X, Xie J, Yang J. Use of rice straw nano-biochar to slow down water infiltration and reduce nitrogen leaching in a clayey soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174956. [PMID: 39053523 DOI: 10.1016/j.scitotenv.2024.174956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Biochar exhibits numerous advantages in enhancing the soil environment despite a few limitations due to its lower surface energy. Nanomodified biochar combines the advantages of biochar and nanoscale materials. However, its effects on water infiltration and N leaching in a clayey soil remain unclear. Therefore, this study prepared rice straw nano-biochar by a ball milling method, and investigated its physicochemical properties and effects of bulk biochar and nano-biochar at various addition rates (0 %, 0.5 %, 1 %, 2 %, 3 %, and 5 %) on wetting peak migration, cumulative infiltration, water absorption and retention, and N leaching. The results showed that, compared with bulk biochar, nano-biochar presented a more abundant pore structure with an increase in specific surface area of approximately 1.5 times, accompanied by a 20 % increase in acid functional groups. Compared with those for clayey soil without biochar addition, the wetting front migration time was increased by 10.2 %-123.9 % and 17.0 %-257.9 %, and the cumulative infiltration volume at 60 min was decreased by 26.0 %-48.4 % and 14.1 %-62.4 % for bulk biochar and nano-biochar, respectively. The parameter S of Philip model and the parameter a of Kostiakov model for nano-biochar were lower than those for bulk biochar, whereas the parameter b of Kostiakov model was greater, indicating that nano-biochar decreased initial soil infiltration rate and increased attenuation degree of the infiltration rate. Nano-biochar increased water absorption by 8.03 % and subsequently enhanced water retention capacity relative to bulk biochar. In addition, bulk biochar and nano-biochar reduced NH4+-N leaching by 3.0 %-13.1 % and 5.7 %-39.2 %, respectively, and NO3--N leaching by 2.7 %-3.6 % and 9.0 %-43.3 %, respectively, by decreasing N concentration and leachate volume relative to those with no biochar addition. This study provides new knowledge for nano-biochar application in a clayey soil.
Collapse
Affiliation(s)
- Yidi Sun
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xuetao Wang
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qi Wu
- College of Water Resource, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Tao Zong
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaoping Xin
- Department of Soil and Water Science/Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34945, United States
| | - Jigan Xie
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jianchang Yang
- College of Agriculture, Yangzhou University/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
12
|
Prasanna Kumar D, Mishra RK, Chinnam S, Binnal P, Dwivedi N. A comprehensive study on anaerobic digestion of organic solid waste: A review on configurations, operating parameters, techno-economic analysis and current trends. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 5:33-49. [PMID: 39660169 PMCID: PMC11630644 DOI: 10.1016/j.biotno.2024.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 12/12/2024]
Abstract
The excessive discharge and accumulation of solid organic waste into the environment is of severe concern across the globe. Thus, an efficient waste management system is important to mitigate health risks to humans, minimize harmful impacts on the environment, and ensure a sustainable ecosystem. The organic waste is converted into value-added products either using microorganisms or heat energy; these methods are commonly known as biochemical and thermochemical techniques. The biochemical process has the advantage of higher selectivity of the products and lower processing temperatures. The principal conversion processes of this category are fermentation and anaerobic digestion (AD). This review article focuses on AD, a potential method for treating organic waste and creating a variety of products with added value. Here we present the digestibility of various organic wastes, the role of microorganisms, the decomposition process, co-substrates, digester designs, biogas yields, by-products, environmental impacts, and overall techno-economical effectiveness of the process. Further, this review offers insights into new directions for AD for waste treatment and future research without compromising the overall feasibility and environmental sustainability.
Collapse
Affiliation(s)
- D.Jaya Prasanna Kumar
- Department of Chemical Engineering, Ramaiah Institute of Technology Bengaluru, Karnataka, 560054, India
| | - Ranjeet Kumar Mishra
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sampath Chinnam
- Department of Chemistry, Ramaiah Institute of Technology Bengaluru, Karnataka, 560054, India
| | - Prakash Binnal
- Department of Chemical Engineering, Siddaganga Institute of Technology, Tumkur, Karnataka, 572102, India
| | - Naveen Dwivedi
- Department of Biotechnology Engineering, Chandigarh University, Mohali, 140413, India
| |
Collapse
|
13
|
Tiong YW, Sharma P, Xu S, Bu J, An S, Foo JBL, Wee BK, Wang Y, Lee JTE, Zhang J, He Y, Tong YW. Enhancing sustainable crop cultivation: The impact of renewable soil amendments and digestate fertilizer on crop growth and nutrient composition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123132. [PMID: 38081377 DOI: 10.1016/j.envpol.2023.123132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/13/2023] [Accepted: 12/07/2023] [Indexed: 01/26/2024]
Abstract
Utilizing digestate as a fertilizer enhances soil nutrient content, improves fertility, and minimizes nutrient runoff, mitigating water pollution risks. This alternative approach replaces commercial fertilizers, thereby reducing their environmental impact and lowering greenhouse gas emissions associated with fertilizer production and landfilling. Herein, this study aimed to evaluate the impact of various soil amendments, including carbon fractions from waste materials (biochar, compost, and cocopeat), and food waste anaerobic digestate application methods on tomato plant growth (Solanum lycopersicum) and soil fertility. The results suggested that incorporating soil amendments (biochar, compost, and cocopeat) into the potting mix alongside digestate application significantly enhances crop yields, with increases ranging from 12.8 to 17.3% compared to treatments without digestate. Moreover, the combination of soil-biochar amendment and digestate application suggested notable improvements in nitrogen levels by 20.3% and phosphorus levels by 14%, surpassing the performance of the those without digestate. Microbial analysis revealed that the soil-biochar amendment significantly enhanced biological nitrification processes, leading to higher nitrogen levels compared to soil-compost and soil-cocopeat amendments, suggesting potential nitrogen availability enhancement within the rhizosphere's ecological system. Chlorophyll content analysis suggested a significant 6.91% increase with biochar and digestate inclusion in the soil, compared to the treatments without digestate. These findings underscore the substantial potential of crop cultivation using soil-biochar amendments in conjunction with organic fertilization through food waste anaerobic digestate, establishing a waste-to-food recycling system.
Collapse
Affiliation(s)
- Yong Wei Tiong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Pooja Sharma
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Shuai Xu
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Engineering Research Center of Edible and Medicinal Fungi of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Jie Bu
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Soobin An
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Jordan Bao Luo Foo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Bryan Kangjie Wee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Yueyang Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Jonathan Tian En Lee
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
14
|
Nie W, He S, Lin Y, Cheng JJ, Yang C. Functional biochar in enhanced anaerobic digestion: Synthesis, performances, and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167681. [PMID: 37839485 DOI: 10.1016/j.scitotenv.2023.167681] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Anaerobic digestion technology is crucial in bioenergy recovery and organic waste management. At the same time, it often encounters challenges such as low organic digestibility and inhibition of toxic substances, resulting in low biomethane yields. Biochar has recently been used in anaerobic digestion to alleviate toxicity inhibition, improve the stability of anaerobic digestion processes, and increase methane yields. However, the practical application of biochar is limited, for the properties of pristine biochar significantly affect its application in anaerobic digestion. Although much research focuses on understanding original biochar's fundamental properties and functionalization, there are few reviews on the applications of functional biochar and the effects of critical properties of pristine biochar on anaerobic digestion. This review systematically reviewed functionalization strategies, key performances, and applications of functional biochar in anaerobic digestion. The properties determining the role of biochar were reviewed, the synthesis methods of functional biochar were summarized and compared, the mechanism of functional biochar was discussed, and the factors affecting the function of functional biochar were reviewed. This review provided a comprehensive understanding of functional biochar in anaerobic digestion processes, which would be helpful for the development and applications of engineered biochar.
Collapse
Affiliation(s)
- Wenkai Nie
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China; College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China.
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jay J Cheng
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
15
|
Tian H, Ee AWL, Yan M, Tiong YW, Tan W, Tan Q, Lam HT, Zhang J, Tong YW. Life cycle assessment and cost-benefit analysis of small-scale anaerobic digestion system treating food waste onsite under different operational conditions. BIORESOURCE TECHNOLOGY 2023; 390:129902. [PMID: 37871743 DOI: 10.1016/j.biortech.2023.129902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
This study employed life cycle assessment and cost-benefit analysis to evaluate the environmental and economic profile of a real decentralized small-scale anaerobic digestion (AD) system treating food waste (FW). Different operational conditions, including temperature, biochar addition, biogas engine efficiency, and FW loading, were compared via scenario analysis. Biochar addition could potentially obtain carbon reduction and save fossil fuel. Moreover, at high FW loading and biogas engine efficiency, biochar addition achieved 1-3190% better performance than the system without biochar in all the nine impact categories. The system under mesophilic conditions performed worse than ambient conditions due to high energy demand. All the current scenarios resulted in a monetary loss at US$ 480 k-681 k, while profit was possible if the capital cost and operator salary decreased significantly. Overall, operating the small-scale AD system under ambient temperature with biochar addition was preferred due to its potential environmental benefits and economic profits.
Collapse
Affiliation(s)
- Hailin Tian
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore
| | - Alvin W L Ee
- Energy Studies Institute, National University of Singapore, 119620, Singapore
| | - Miao Yan
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yong Wei Tiong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore
| | - Wenxia Tan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Qian Tan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Heng Thong Lam
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
16
|
Tian H, Yan M, Zhou J, Wu Q, Tiong YW, Lam HT, Zhang J, Tong YW. A closed loop case study of decentralized food waste management: System performance and life cycle carbon emission assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165783. [PMID: 37495140 DOI: 10.1016/j.scitotenv.2023.165783] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/06/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Food waste (FW) has become a worldwide issue, while anaerobic digestion (AD) has appeared as a widely adopted technology to recover energy and resources from FW. Compared to many existing case studies of centralized AD system, the comprehensive study of decentralized micro-AD system from both system energy efficiency and carbon emission perspective is still scanty, particularly system operated under ambient temperature conditions. In this study, an actual decentralized micro-AD system with treating capacity of 300 kg FW/d for a local hawker center in Singapore was reported and evaluated. The results showed that 1894.5 kg of FW was treated and 173 m3 biogas with methane content of 53 % was produced during the experimental period of 75 days. The methane yield results showed a high FW degradation efficiency (87.87 %). However, net energy consumption and net carbon emission were observed during the experimental period. Nevertheless, energy self-efficiency and carbon neutrality, even net energy output and carbon reduction, can be achieved by increasing daily FW loading and biogas engine efficiency. Specifically, the FW loading for system energy self-efficiency was identified as 159 kg/d for engine efficiency of 35 % at a high kitchen waste/table waste ratio (63 %/37 %, with covid-19 dine-in restrictions); while they were 112 and 58 kg/d for engine efficiency of 25 % and 35 %, respective, at a low kitchen waste/table waste ratio (31 %/69 %, without covid-19 dine-in restrictions). The carbon emission ranged from 156.08 kg CO2-eq/t FW to -77.35 kg CO2-eq/t FW depending on the FW loading quantity and engine efficiency. Moreover, the sensitivity analysis also showed that the used electricity source for substitution influenced the carbon emission performance significantly. The obtained results imply that the decentralized micro-AD system could be a feasible FW management solution for energy generation and carbon reduction when the FW loading and engine electrical efficiency are carefully addressed.
Collapse
Affiliation(s)
- Hailin Tian
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Miao Yan
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jieyu Zhou
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Qinglian Wu
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150000, China
| | - Yong Wei Tiong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Heng Thong Lam
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|