1
|
Liu S, Chen S, Zhang K, Xu N, Ni X, Yue L, He M. Exogenous Hydrogen sulfide attenuates cadmium toxicity to Chrysanthemum (Chrysanthemum indicum) by modulating glutathione synthesis and cadmium adsorption capacity in the cell wall. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109860. [PMID: 40194502 DOI: 10.1016/j.plaphy.2025.109860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/22/2025] [Accepted: 03/29/2025] [Indexed: 04/09/2025]
Abstract
Soil cadmium (Cd) contamination leads to plant toxicity and poses a risk to human health both directly and indirectly through the food chain. Hydrogen sulfide (H2S), a novel gaseous signaling molecule, has been shown to enhance plant tolerance to various abiotic stresses. In this study, the potential of H2S in mitigating Cd toxicity in chrysanthemum (Chrysanthemum indicum) was investigated through physiological, biochemical and transcriptomic analyses. Results showed that the application of exogenous H2S resulted Cd accumulation in the roots by 21.15 %, while reducing Cd in the aboveground parts by 13.21 %. It was further found that H2S increased the pectin and hemicellulose content by 50.09 % and 49.79 %, respectively, through the regulation of cell wall polysaccharide synthesis-related genes, leading to changes in root functional group content and cell wall adsorption capacity for cadmium ions (Cd2+). Additionally, H2S also promoted the synthesis of GSH and PCs by regulating the expression of genes related to sulfur metabolism, chelating free Cd2+ in the cytoplasm, and reducing their harmful effects on the organelles. It was also found that exogenous H2S may have regulated the expression of transporter proteins by modulating the expression of transcription factors (MYB, AP2/ERF, and WRKY), thereby affecting the uptake, transport, and accumulation of Cd2+. In conclusion, exogenous H2S reduced the free Cd2+ content in the cytoplasm by promoting the adsorption of Cd2+ in the root cell walls and facilitating the synthesis of GSH and PCs in the cells, which in turn alleviated the toxic effects of Cd2+ on chrysanthemum.
Collapse
Affiliation(s)
- Shuguang Liu
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Shengyan Chen
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Kaiyuan Zhang
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Ning Xu
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Xingyu Ni
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Liran Yue
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China.
| | - Miao He
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
2
|
Carpentier R, Lavendomme R, Colasson B, Bartik K, Jabin I. Development of a water-soluble ouroboros-like calix[6]arene-trisimidazole-based ligand for enhanced binding of zinc. Dalton Trans 2025; 54:1052-1062. [PMID: 39589280 DOI: 10.1039/d4dt03158j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Increasing the thermodynamic stability of metal complexes in water is a key challenge for various applications of coordination chemistry. In this study, a calix[6]arene macrocycle functionalized with three imidazole units on the narrow rim and three primary amino legs on the wide rim was synthesized and studied. This ligand coordinates a Zn2+ cation in water, within a pH window centered around 7, through the three imidazole units and one self-included amino leg occupying the coordination site within the macrocycle cavity. The coordination process benefits from a favourable entropic effect, conferring greater thermodynamic stability to the resulting ouroboros-like complex compared to the one stabilized by an exogenous amine. Additionally, the intramolecular coordination ensures a supramolecular protection, which can be exploited for the site-selective functionalization of two out of the three amino groups. These findings demonstrate that the use of macrocyclic ligands capable of forming ouroboros-like molecular complexes represents a valuable strategy for stabilizing metal ions in water.
Collapse
Affiliation(s)
- Romain Carpentier
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering of Molecular NanoSystems, Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium.
- Université libre de Bruxelles (ULB), Laboratoire de Chimie Organique, Avenue F.D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium.
| | - Roy Lavendomme
- Université libre de Bruxelles (ULB), Laboratoire de Chimie Organique, Avenue F.D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium.
- Université libre de Bruxelles (ULB), Laboratoire de Résonance Magnétique Nucléaire Haute Résolution, Avenue F.D. Roosevelt 50, CP160/08, B-1050 Brussels, Belgium
| | - Benoit Colasson
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| | - Kristin Bartik
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering of Molecular NanoSystems, Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium.
| | - Ivan Jabin
- Université libre de Bruxelles (ULB), Laboratoire de Chimie Organique, Avenue F.D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium.
| |
Collapse
|
3
|
Kou B, Huo L, Cao M, Hui K, Tan W, Yuan Y, Jiang Y. New insights into the stages of cadmium remediation in ryegrass enhanced by kitchen compost-derived dissolved organic matter: Activation, absorption, and storage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177138. [PMID: 39490827 DOI: 10.1016/j.scitotenv.2024.177138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/05/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Dissolved organic matter (DOM) regulates plant behavior in both agricultural and environmental fields. However, the regulatory mechanisms by which DOM influences soil-plant system interactions during the phytoremediation of Cd-contaminated soils remain unclear. Therefore, this study investigated the enhanced effect of kitchen compost-derived DOM on the Cd remediation capability of ryegrass across three phases of phytoremediation. The main pathways and mechanisms of DOM-assisted phytoremediation were identified through the analysis of changes in soil microbial communities and metabolism functions. The results revealed that DOM increased the bioavailability of soil Cd and significantly enhanced the Cd enrichment capacity of ryegrass, regardless of the application rate. The application of 20 % DOM to soil with a 20 mg/kg Cd content increased the bioconcentration factors of ryegrass roots and shoots by up to 38.19 and 11.08 times, respectively, compared with the control group. The direct or indirect optimizing effects of DOM on Cd fraction transformation, microbial communities, and their metabolism functions significantly enhanced the Cd enrichment capacity of ryegrass. Notably, DOM exhibited dual effects on ryegrass growth, mainly influenced by changes in soil physicochemical properties, optimization of microbial communities, and alterations in nitrogen metabolic functions. Additionally, the Cd reserves in ryegrass, which serve as a vital indicator of phytoremediation, exhibited a positive response to DOM. This study provides insights into the various reinforcing roles of kitchen compost-derived DOM in Cd-contaminated soil phytoremediation. These findings support the development of effective agronomic strategies for precise Cd regulation.
Collapse
Affiliation(s)
- Bing Kou
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Lin Huo
- Swiss Federal Institute of Technology (ETH) Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Minyi Cao
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
4
|
Menhas S, Hayat K, Lin D, Shahid M, Bundschuh J, Zhu S, Hayat S, Liu W. Citric acid-driven cadmium uptake and growth promotion mechanisms in Brassica napus. CHEMOSPHERE 2024; 368:143716. [PMID: 39515533 DOI: 10.1016/j.chemosphere.2024.143716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Citric acid (CA) is well-known for mitigating cadmium (Cd) toxicity in plants. Yet, the underlying mechanisms driving growth promotion, Cd detoxification/tolerance, and enhanced phytoremediation processes remain incompletely understood. This study investigated the effects of CA application (2.5 mM) on Brassica napus grown in Cd-contaminated (30 mg kg-1) growth medium through a controlled pot experiment. Cd exposure alone significantly impaired various plant physiological parameters in B. napus. Whereas CA application significantly (p < 0.05) enhanced physiological attributes, Cd detoxification and tolerance by modulating key genes involved in photosynthesis and Cd transport, including the metal-transporting P1B-type ATPases (Cd/zinc heavy metal-transporting ATPase 1; HMA1) and light-harvesting chlorophyll a/b-binding 3 (LHCB3). Notably, CA application increased Cd accumulation in stems and leaves by 4% and 35%, respectively, enhancing bioconcentration factors (BCF) by 12% in stems and 40% in leaves while reducing root BCF by 10%. This translocation was facilitated by the upregulation of HMA4, HMA2, and plant Cd resistance (PCR2) genes in plant leaves, improving Cd mobility within the plant. Furthermore, CA induced a 34% increase in phytochelatins and a 32% upregulation in metallothioneins, accompanied by a significant reduction in oxidative stress markers, including a 40% decrease in hydrogen peroxide and a 44% decline in malondialdehyde levels in leaves. Enhanced antioxidant enzyme activity and osmolyte accumulation further contributed to improved Cd detoxification/sequestration in leaves, reduced oxidative stress, and improved photosynthetic efficiency, resulting in enhanced plant biomass production and Cd tolerance. Transcriptomic analysis showed that CA treatment substantially influenced the expression of 12,291 differentially expressed genes (DEGs), with 750 common genes consistently downregulated in CK vs Cd treatment group but upregulated in Cd vs Cd-CA treatment group. Additionally, CA modulated 11 DEGs associated with 32 gene ontologies in the citrate pathway under Cd stress, highlighting its targeted regulatory effect on metabolic pathways involved in Cd stress response. This study offers novel insights into the synergistic role of CA in promoting plant growth and regulating Cd uptake in B. napus, highlighting its potential to enhance phytoremediation strategies.
Collapse
Affiliation(s)
- Saiqa Menhas
- Zhejiang Ecological Civilization Academy, Anji, 313300, PR China; Department of Environmental Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Kashif Hayat
- ZJP Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, PR China.
| | - Daohui Lin
- Zhejiang Ecological Civilization Academy, Anji, 313300, PR China; Department of Environmental Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, 61100, Pakistan
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, 4350, Toowoomba, Queensland, Australia; Groundwater Arsenic Within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, 4350, Toowoomba, Queensland, Australia
| | - Saiyong Zhu
- Zhejiang Ecological Civilization Academy, Anji, 313300, PR China; Department of Environmental Science, Zhejiang University, Hangzhou, 310058, PR China.
| | - Sikandar Hayat
- College of Medicine, Xian International University, Xian, 710000, Shaanxi, PR China
| | - Weiping Liu
- ZJP Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, PR China
| |
Collapse
|
5
|
Ghafoor A, Shafiq F, Anwar S, Zhang L, Ashraf M. Comparative assessment of pantothenic, aspartic, ascorbic and tartaric acids assisted Pb-phytoextraction by sunflower (Helianthus annuus L.). Biometals 2024:10.1007/s10534-024-00619-9. [PMID: 39073690 DOI: 10.1007/s10534-024-00619-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/06/2024] [Indexed: 07/30/2024]
Abstract
Phytoextraction of lead (Pb) is a challenging task due to its extremely low mobility within soil and plant systems. In this study, we tested the influence of some novel chelating agents for Pb-phytoextraction using sunflower. The Pb was applied at control (0.0278 mM) and 4.826 mM Pb as Pb(NO3)2 through soil-spiking. After 10 days of Pb addition, four different organic ligands (aspartic, ascorbic, tartaric, and pantothenic acids) were added to the soil at 1 mM concentration each. respectively. In the absence of any chelate, sunflower plants grown at 4.826 mM Pb level accumulated Pb concentrations up to 104 µg g-1 DW in roots, whereas 64 µg g-1 DW in shoot. By contrast, tartaric acid promoted significantly Pb accumulation in roots (191 µg g-1 DW; + 45.5%) and shoot (131.6 µg g-1 DW; + 51.3%). Pantothenic acid also resulted in a significant Pb-uptake in the sunflower shoots (123 µg g-1 DW; + 47.9%) and in roots (177.3 µg g-1 DW; + 41.3%). The least effective amongst the chelates tested was aspartic acid, but it still contributed to + 40.1% more Pb accumulation in the sunflower root and shoots. In addition, plant growth, biochemical, and ionomic parameters were positively regulated by the organic chelates used. Especially, an increase in leaf Ca, P, and S was evident in Pb-stressed plants in response to chelates. These results highlight that the use of biocompatible organic chelates positively alters plant physio-biochemical traits contributing to higher Pb-sequestration in sunflower plant parts.
Collapse
Affiliation(s)
- Asif Ghafoor
- Institue of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54590, Pakistan
| | - Fahad Shafiq
- Deaprtment of Botany, Government College University Lahore, Lahore, 54000, Pakistan.
| | - Sumera Anwar
- Department of Botany, Government College Women University Faisalabad, Faisalabad, 38000, Pakistan
| | - Lixin Zhang
- Northwest Agricultural and Forestry University, Yangling, 712100, China
| | - Muhammad Ashraf
- Institue of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54590, Pakistan
- School of Agriculture, University of Jordan, Amman, Jordan
| |
Collapse
|
6
|
Sarma H, Gogoi B, Guan CY, Yu CP. Nitro-PAHs: Occurrences, ecological consequences, and remediation strategies for environmental restoration. CHEMOSPHERE 2024; 356:141795. [PMID: 38548078 DOI: 10.1016/j.chemosphere.2024.141795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/24/2023] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are persistent pollutants that have been introduced into the environment as a result of human activities. They are produced when PAHs undergo oxidation and are highly resistant to degradation, resulting in prolonged exposure and significant health risks for wildlife and humans. Nitro-PAHs' potential to induce cancer and mutations has raised concerns about their harmful effects. Furthermore, their ability to accumulate in the food chain seriously threatens the ecosystem and human health. Moreover, nitro-PAHs can disrupt the normal functioning of the endocrine system, leading to reproductive and developmental problems in humans and other organisms. Reducing nitro-PAHs in the environment through source management, physical removal, and chemical treatment is essential to mitigate the associated environmental and human health risks. Recent studies have focused on improving nitro-PAHs' phytoremediation by incorporating microorganisms and biostimulants. Microbes can break down nitro-PAHs into less harmful substances, while biostimulants can enhance plant growth and metabolic activity. By combining these elements, the effectiveness of phytoremediation for nitro-PAHs can be increased. This study aimed to investigate the impact of introducing microbial and biostimulant agents on the phytoremediation process for nitro-PAHs and identify potential solutions for addressing the environmental risks associated with these pollutants.
Collapse
Affiliation(s)
- Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| | - Bhoirob Gogoi
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India
| | - Chung-Yu Guan
- Department of Environmental Engineering, National Ilan University, Yilan, 260, Taiwan
| | - Chang-Ping Yu
- Graduate Institute of Environmental Engineering, National Taiwan University. B.S., Civil Engineering, National Taiwan University, Taiwan
| |
Collapse
|
7
|
Senila M, Kovacs E. Use of diffusive gradients in thin-film technique to predict the mobility and transfer of nutrients and toxic elements from agricultural soil to crops-an overview of recent studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34817-34838. [PMID: 38739340 PMCID: PMC11136807 DOI: 10.1007/s11356-024-33602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
The purpose of this review was to survey the recent applications of the diffusive gradients in thin films (DGT) technique in the assessment of mobility and bioavailability of nutrients and potentially toxic elements (PTEs) in agricultural soil. Many studies compared the capabilities of the DGT technique with those of classical soil chemical extractants used in single or sequential procedures to predict nutrients and PTE bioavailability to crops. In most of the published works, the DGT technique was reported to be superior to the conventional chemical extraction and fractionation methods in obtaining significant correlations with the metals and metalloids accumulated in crops. In the domain of nutrient bioavailability assessment, DGT-based studies focused mainly on phosphorous and selenium labile fraction measurement, but potassium, manganese, and nitrogen were also studied using the DGT tool. Different DGT configurations are reported, using binding and diffusive layers specific for certain analytes (Hg, P, and Se) or gels with wider applicability, such as Chelex-based binding gels for metal cations and ferrihydrite-based hydrogels for oxyanions. Overall, the literature demonstrates that the DGT technique is relevant for the evaluation of metal and nutrient bioavailability to crops, due to its capacity to mimic the plant root uptake process, which justifies future improvement efforts.
Collapse
Affiliation(s)
- Marin Senila
- INCDO INOE 2000, Research Institute for Analytical Instrumentation, Donath 67, 400293, Cluj-Napoca, Romania.
| | - Eniko Kovacs
- INCDO INOE 2000, Research Institute for Analytical Instrumentation, Donath 67, 400293, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Zheng X, Zou D, Wu Q, Zhang L, Tang J, Liu F, Xiao Z. Speciation, leachability, and phytoaccessibility of heavy metals during thermochemical liquefaction of contaminated peanut straw. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 176:20-29. [PMID: 38246074 DOI: 10.1016/j.wasman.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/14/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
In this study, the speciation, leachability, phytoaccessibility, and environmental risks of heavy metals (Cd, Zn, and Cu) during liquefaction of contaminated peanut straw in ethanol at different temperatures (220, 260, 300, 340, and 380 °C) were comprehensively investigated. The results showed that elevated temperatures facilitated heavy metal accumulation in the biochar. The acid-soluble/exchangeable and reducible fraction percentages of heavy metals were substantially reduced in the biochar after liquefaction as the temperature increased, and the oxidizable fraction became the dominant heavy metal fraction, accounting for 44.14-78.67%. Furthermore, although an excessively high liquefaction temperature (380 °C) increased the residual fraction percentages of Zn and Cu, it was detrimental to Cd immobilization. The acid-soluble/exchangeable Cd in the contaminated peanut straw readily migrates to the bio-oil during liquefaction, with the highest concentration of 1.60 mg/kg at 260 °C liquefaction temperature, whereas Zn and Cu are predominantly bound to the unexchangeable fraction in the bio-oil. Liquefaction inhibited heavy metal leachability and phytoaccessibility in biochar, the lowest extraction rates of Cd, Zn, and Cu were 0.71%, 1.66% and 0.95% by diethylenetriamine pentaacetic acid, respectively. However, the leaching and extraction concentrations increased when the temperature was raised to 380 °C. Additionally, heavy metal risk was reduced from medium and high risk to no and low risk. In summary, liquefaction reduces heavy metal toxicity and the risks associated with contaminated peanut straw, and a temperature range of 300-340 °C for ethanol liquefaction can be considered optimal for stabilizing heavy metals.
Collapse
Affiliation(s)
- Xiaochen Zheng
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Dongsheng Zou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Qingdan Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Liqing Zhang
- Moutai Institute, Renhuai, Guizhou 564507, PR China
| | - Jialong Tang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Fen Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Zhihua Xiao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| |
Collapse
|
9
|
Su J, Zeng Q, Li S, Wang R, Hu Y. Comparison of organic and synthetic amendments for poplar phytomanagement in copper and lead-contaminated calcareous soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120553. [PMID: 38471314 DOI: 10.1016/j.jenvman.2024.120553] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Soil remediation can be achieved through organic and synthetic amendments, but the differences in the phytomanagement of trace metal-contaminated land are unclear. We conducted an outdoor microcosm experiment to simulate the effects of organic amendment citric acid and synthetic amendments EDTA and EGTA on poplar phytomanagement of copper (Cu)- and lead (Pb)-contaminated calcareous land at doses of 0, 1, 3, and 9 mmol kg-1. We found that soil-bioavailable Cu and Pb contents increased by 2.11-27.27 and 1.48-269 times compared to the control, respectively. Additionally, synthetic amendments had a long-lasting (within 25 days) effect on metal bioavailability relative to organic amendments. Consequently, organic amendments increased the root Cu and Pb contents by 2.68-48.61% and 6.60-49.51%, respectively, whereas synthetic amendments increased them by 65.94-260% and 12.50-103%. The Cu and Pb contents in the leaves were lower than those in the roots, and increased significantly by 47.04-179% and 237-601%, respectively, only under synthetic amendments. Interestingly, none of the amendments increased the Cu and Pb content in poplar stems (<5 mg kg-1), which remained within the normal range for terrestrial plants. Regardless of the type and addition level, the amendments did not affect poplar growth. Nevertheless, synthetic amendments caused a significant redistribution of metals (Cu: 22-32%; Pb: 23-53%) from the topsoil into the subsoil within the root zone at medium and high levels relative to organic amendments. Therefore, organic and synthetic amendments can assist poplar phytomanagement with a phytostabilization strategy for Cu- and Pb-contaminated calcareous land and obtain marketable wood biomass. Moreover, collecting leaf litter is crucial when using synthetic amendments at optimum concentration levels.
Collapse
Affiliation(s)
- Jieqiong Su
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Qiaohong Zeng
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shuqi Li
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Rui Wang
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yahu Hu
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
10
|
Fine P, Engal O, Beriozkin A. EDTA biodegradability and assisted phytoextraction efficiency in a large-scale field simulation: Is EDTA phasing out justified? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120133. [PMID: 38308985 DOI: 10.1016/j.jenvman.2024.120133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
Enhanced phytoextraction of metal-polluted soils using EDTA is phasing out in favor of biodegradable chelants. However, these are too short-lived to be effective in the acclimated biodegrading soil environment established in long-term phytoextraction operations. We hypothesize that full-scale EDTA-enhanced phytoextraction can be both effective and environmentally safe, provided that soil leaching is prevented while EDTA persists in the soil profile. This was tested for 4 years in two sealed, well-monitored constructed lagoons (70-m3 each) packed with Cd-contaminated dredged sediment. Fast-growing, high-biomass, salinity-resistant eucalypts were planted in June 2010. Under controlled deficit irrigation, the 3-year average EC was 14.2 dS m-1. Summer leakage accounted for ∼1.2 % of the overall irrigation water and was prescribed for monitoring the composition of the soil solution. Altogether, 486 leachate and 261 suction-cap solutions were collected at average intervals of 5.5 days. EDTA was intermittently applied with summer irrigation, in multiple low doses at average seasonal concentrations of 1.1-9.2 mM. The soil solution EDTA biodegraded quickly after those applications were stopped. This cessation was timed well before the start of the rainy season. Spontaneous EDTA leaching during the three winters accounted for <0.02 % of the total 423 mol/basin applied. Prescribed summer leaching constituted ∼1 % of this total. Peak heavy metal (HM) concentrations in the leachate and suction-cap solutions (e.g., Cd, up to 18.5 and 14 mg L-1, respectively) were observed soon after EDTA application. Winter HM concentrations were not significantly different from the background. As the amounts of EDTA diminished, HM also disappeared from the soil solution, probably by adsorption. Eucalyptus occidentalis was by far the most efficient Cd sink of the five species tested,. The results of this study strongly support our hypothesis that EDTA-enhanced phytoextraction can be both effective and environmentally safe.
Collapse
Affiliation(s)
- Pinchas Fine
- Institute of Soil, Water and Environmental Sciences, Volcani Center, ARO, P.O. Box 15159, Rishon Lezion, 7528809, Israel.
| | - Oz Engal
- Institute of Soil, Water and Environmental Sciences, Volcani Center, ARO, P.O. Box 15159, Rishon Lezion, 7528809, Israel; Origene Seeds Ltd., P.O.Box 699, Rehovot, 7610602, Israel.
| | - Anna Beriozkin
- Institute of Soil, Water and Environmental Sciences, Volcani Center, ARO, P.O. Box 15159, Rishon Lezion, 7528809, Israel.
| |
Collapse
|
11
|
Feng M, Zhang X, Fu Q, Hu H, Miao F, Huang C, Zhu J. Renewable and efficient removal of arsenic from contaminated water by modified biochars derived from As-enriched plant. BIORESOURCE TECHNOLOGY 2023; 387:129680. [PMID: 37586434 DOI: 10.1016/j.biortech.2023.129680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
There were limited researches on the scientific disposal of As-enriched plants, and how to reduce the available As content in the processed products and improve the utilization value were the key. In this study, the effect and mechanism of biochar produced by the As-enriched Pteris vittate before and after modification on the removal of As(III) in water were studied. The results indicated that the available As contents of Fe-BC300 and Fe-BC500 were reduced by 78.7 % and 91.9 % compared to original biochars, respectively. Modified biochars not only had a large adsorption capacity for As(III) (50.3 and 39.7 mg/g), but also can efficiently oxidize As(III) to As(V). The removal rate of As(III) by modified biochar was still higher than 50% after 3 cycles. The increase of the point of zero charge and the introduction of Fe were the main reasons for its efficient adsorption and oxidation of As(III).
Collapse
Affiliation(s)
- Mengxi Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xin Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingling Fu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Miao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaojun Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Jun Zhu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Liang J, Chang J, Xie J, Yang L, Sheteiwy MS, Moustafa ARA, Zaghloul MS, Ren H. Microorganisms and Biochar Improve the Remediation Efficiency of Paspalum vaginatum and Pennisetum alopecuroides on Cadmium-Contaminated Soil. TOXICS 2023; 11:582. [PMID: 37505548 PMCID: PMC10383370 DOI: 10.3390/toxics11070582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
Phytoremediation can help remediate potential toxic elements (PTE) in soil. Microorganisms and soil amendments are effective means to improve the efficiency of phytoremediation. This study selected three microorganisms that may promote phytoremediation, including bacteria (Ceratobasidium), fungi (Pseudomonas mendocina), and arbuscular-mycorrhizal fungi (AMF, Funneliformis caledonium). The effects of single or mixed inoculation of three microorganisms on the phytoremediation efficiency of Paspalum vaginatum and Pennisetum alopecuroides were tested under three different degrees of cadmium-contaminated soil (low 10 mg/kg, medium 50 mg/kg, and high 100 mg/kg). The results showed that single inoculation of AMF or Pseudomonas mendocina could significantly increase the biomass of two plants under three different degrees of cadmium-contaminated soil, and the growth-promoting effect of AMF was better than Pseudomonas mendocina. However, simultaneous inoculation of these two microorganisms did not show a better effect than the inoculation of one. Inoculation of Ceratobasidium reduced the biomass of the two plants under high concentrations of cadmium-contaminated soil. Among all treatments, the remediation ability of the two plants was the strongest when inoculated with AMF alone. On this basis, this study explored the effect of AMF combined with corn-straw-biochar on the phytoremediation efficiency of Paspalum vaginatum and Pennisetum alopecuroides. The results showed that biochar could affect plant biomass and Cd concentration in plants by reducing Cd concentration in soil. The combined use of biochar and AMF increased the biomass of Paspalum vaginatum by 8.9-48.6% and the biomass of Pennisetum alopecuroides by 8.04-32.92%. Compared with the single use of AMF or biochar, the combination of the two is better, which greatly improves the efficiency of phytoremediation.
Collapse
Affiliation(s)
- Jiahao Liang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiechao Chang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayao Xie
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Liquan Yang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | | | - Mohamed S Zaghloul
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Haiyan Ren
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|