1
|
Zhen F, Zhang Y, Zhou H, Zhang H, Pang Y, Xing T, Peng X, Li L. Digestate-based organic amendment substitution improves the red soil quality and pakchoi yield. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125005. [PMID: 40096808 DOI: 10.1016/j.jenvman.2025.125005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
This study investigated the effect of the partially substituting chemical fertilizers (CF) with digestate-based organic amendment (OA) on the amelioration of red soil and the growth of plant. OA with nitrogen substitution rates ranging from 10 % to 40 % were mixed with CF and applied to red soil in a pot experiment. The results indicated that plant growth was significantly enhanced in the treatment where 20 % of the CF was substituted with the OA (OA20) compared to other treatments (p < 0.05). Specifically, the OA20 treatment increased nutrient use efficiency by 54.76 %-100.42 % compared to the treatment using only CF. Furthermore, all OA treatments improved the quality of red soil, with the nutrient content significantly higher in the OA20 group than in the other treatments (p < 0.05). The parameters of total phosphorus (TP), available nitrogen (AN), available phosphorus (AP), and total potassium (TK) significantly affected the soil quality index and plant growth, serving as reliable indicators of soil quality and plant yield. Microbial analysis revealed that the bacterial Chao index and the abundance of microorganisms involved in C-N nutrient cycling, such as Chryseolinea and norank_f__norank_o__Actinomarinales, were highest in the OA20 group. Significant correlations were observed between soil nutrient content (AN, AP, and TK) and the abundance of norank_f__norank_o__Actinomarinales and Chryseolinea, indicating their close relationship with pakchoi growth. Consequently, digestate-based OA may positively affect plant growth in acidic ecosystems by enhancing soil properties, inducing shifts in microbial community composition, and promoting the enrichment of potentially beneficial bacteria. This study provides valuable insights for the enhancement of low-quality soils and the resource utilization of digestate.
Collapse
Affiliation(s)
- Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou, 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - Yifan Zhang
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Hengbing Zhou
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Hongqiong Zhang
- College of Engineering, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuwan Pang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, PR China
| | - Tao Xing
- Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou, 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - Xuya Peng
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Lei Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
2
|
Liu H, Long J, Zhang K, Li M, Zhao D, Song D, Zhang W. Agricultural biomass/waste-based materials could be a potential adsorption-type remediation contributor to environmental pollution induced by pesticides-A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174180. [PMID: 38936738 DOI: 10.1016/j.scitotenv.2024.174180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
The widespread use of pesticides that are inevitable to keep the production of food grains brings serious environmental pollution problems. Turning agricultural biomass/wastes into materials addressing the issues of pesticide contaminants is a feasible strategy to realize the reuse of wastes. Several works summarized the current applications of agricultural biomass/waste materials in the remediation of environmental pollutants. However, few studies systematically take the pesticides as an unitary target pollutant. This critical review comprehensively described the remediation effects of crop-derived waste (cereal crops, cash crops) and animal-derived waste materials on pesticide pollution. Adsorption is considered a superior and highlighted effect between pesticides and materials. The review generalized the sources, preparation, characterization, condition optimization, removal efficiency and influencing factors analysis of agricultural biomass/waste materials. Our work mainly emphasized the promising results in lab experiments, which helps to clarify the current application status of these materials in the field of pesticide remediation. In the meantime, rigorous pros and cons of the materials guide to understand the research trends more comprehensively. Overall, we hope to achieve a large-scale use of agricultural biomass/wastes.
Collapse
Affiliation(s)
- Hui Liu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jun Long
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China
| | - Kexin Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Miqi Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, PR China.
| | - Danyang Zhao
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Dongkai Song
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Weiyin Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
3
|
Li C, Wei Z, Wang X, Ma X, Tang Q, Zhao B, Shan J, Yan X. Biochar mitigates the stimulatory effects of straw incorporation on N 2O emission and N 2O/(N 2O + N 2) ratio in upland soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122318. [PMID: 39216357 DOI: 10.1016/j.jenvman.2024.122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Straw incorporation, a common agricultural strategy designed to enhance soil organic carbon (SOC), often leads to increased nitrous oxide (N2O) emission, potentially offsetting benefits of SOC sequestration. However, the mechanism and mitigation options for the enhanced N2O emission following straw incorporation remain unclear. Here, N2 and N2O emission rate, as well as N2O/(N2O + N2) ratio under four different fertilization treatments [i.e., non-fertilization (Control), conventional chemical fertilization (CF), conventional chemical fertilization plus straw incorporation (SWCF), and conventional chemical fertilization plus straw and biochar incorporation (SWBCF)] were investigated by a robotized sampling and analysis system. High-throughput sequencing was also employed to assess the variation of bacterial community across different treatments. The results showed CF, SWCF, and SWBCF fertilization treatments significantly increased N2O emission rate by 1.04, 2.01, and 1.29 folds, respectively, relative to Control treatment. Albeit no significant enhancements in N2 emission rate, the N2O/(N2O + N2) ratio significantly increased by 65.53%, 1.10 folds, and 69.49% in CF, SWCF, and SWBCF treatments, respectively. The partial least squares path modeling analysis further revealed that fertilization treatments slightly increased N2 emission rate by increasing DOC content and keystone OTUs abundance. While the enhanced N2O emission rate and N2O/(N2O + N2) ratio in the fertilization treatments was primarily determined by reducing DOC/NO3- ratio and specific bacteria module abundance dominated by Gaiellales, Solirubrobacterales, and Micrococcales. Furthermore, SWBCF treatment alleviated the increase in net global warming potential due to straw incorporation, as indicated by the higher SOC sequestration and lower N2O/(N2O + N2) ratio therein. Collectively, these findings suggest that simultaneous application of straw and biochar has the potential to mitigate the risk of increased N2O emission from straw incorporation. This study provides valuable insights for developing targeted strategies in C sequestration and greenhouse gas mitigation, tackling the challenge presented by global climate change.
Collapse
Affiliation(s)
- Chenglin Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhijun Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaomin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaofang Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Quan Tang
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, 225009, China
| | - Bingzi Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
4
|
Chen L, Du H, Liu Q, Gao W, Cui J, Chen Y. Organic waste recycling application increases N availability and mitigates N 2O emission without crop yield penalty in the North China Plain. FRONTIERS IN PLANT SCIENCE 2024; 15:1446277. [PMID: 39354947 PMCID: PMC11444239 DOI: 10.3389/fpls.2024.1446277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024]
Abstract
Introduction Agricultural organic waste recycling can supply nutrients for crop production and partially replace chemical nitrogen fertilizers, which is beneficial for waste management and environmental protection. Nevertheless, comprehensive evaluation of the effects of different organic materials applications on crop yield and the environment is limited. Methods Therefore, in this study, a comprehensive investigation of the synergistic effects of straw, pig manure, and biogas residue recycling on the wheat (Triticum aestivum L.) and maize (Zea mays L.) systems was carried out in the North China Plain. Field experiments were conducted from 2019 to 2021, comprising five treatments: straw (ST), pig manure (PM), and biogas residue (BR) partially replacing chemical nitrogen fertilizer, sole application of chemical nitrogen fertilizer (CF), and a control with no nitrogen application (WN). Results and discussion The results showed that organic materials significantly increased soil total nitrogen (3.04%-9.10%) and N recovery efficiency (REN; 42.21%-44.99%), but pig manure was more beneficial in increasing crop yields (3.50%), especially wheat yields (8.72%), and REN was significantly higher than that of the other treatments. Organic materials performed differently in wheat and maize seasons, and wheat yield could be improved by organic materials return. Organic materials stimulated N2O emission in wheat season (4.28%-32.20%), while biogas residue inhibited the N2O emission in maize season (47.47%). The negative effect of straw and biogas residue on yield decreased with increasing years of return, and pig manure continued to contribute to yield. In conclusion, pig manure is the optimal alternative that can increase crop yield, soil N content, and REN without stimulating N2O emissions.
Collapse
Affiliation(s)
- Lin Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hailun Du
- Heilongjiang Academy of Black Soil Conservation and Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qing Liu
- National Engineering Research Center of Wheat and Maize, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wangsheng Gao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jixiao Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanquan Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Wu M, Nuo M, Jiang Z, Xu R, Zhang H, Lu X, Yao L, Dou M, Xing X, Meng X, Wang D, Wei X, Tian P, Wang G, Wu Z, Yang M. Successive Years of Rice Straw Return Increased the Rice Yield and Soil Nutrients While Decreasing the Greenhouse Gas Intensity. PLANTS (BASEL, SWITZERLAND) 2024; 13:2446. [PMID: 39273930 PMCID: PMC11397390 DOI: 10.3390/plants13172446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Straw return has important impacts on black soil protection, food security, and environmental protection. One year of straw return (S1) reduces rice yield and increases greenhouse gas (GHG) emissions. However, the effects of successive years of straw return on rice yield, soil nutrients, and GHG emissions in the northeast rice region are still unclear. Therefore, we conducted four successive years of straw return (S4) in a positional experiment to investigate the effects of different years of straw return on rice yield, soil nutrients, and GHG emissions in the northeast rice region. The experimental treatments included the following: no straw return (S0), a year of straw return (S1), two successive years of straw return (S2), three successive years of straw return (S3), and four successive years of straw return (S4). Compared with S1, the rice yields of S2, S3, and S4 increased by 10.89%, 15.46%, and 16.98%, respectively. But only S4 increased by 4.64% compared to S0, while other treatments were lower than S0. S4 increased panicles per m2 and spikelets per panicle by 9.34% and 8.93%, respectively, compared to S1. Panicles per m2 decreased by 8.06% at S4 compared to S0, while spikelets per panicle increased by 13.23%. Compared with S0, the soil organic carbon, total nitrogen, NH4+-N, NO3--N, available phosphorus, and available potassium of S4 increased by 11.68%, 10.15%, 24.62%, 21.38%, 12.33%, and 13.35%, respectively. Successive years of rice straw return decreased GHG intensity (GHGI). Compared with S1, the GHGI of S4, S3, and S2 decreased by 16.2%, 11.84%, and 9.36%, respectively. Thus, S4 increased rice yield and soil nutrients, reducing GHGI.
Collapse
Affiliation(s)
- Meikang Wu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Min Nuo
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Zixian Jiang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Ruiyao Xu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Hongcheng Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Xiao Lu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Liqun Yao
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Man Dou
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Xu Xing
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Xin Meng
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Dongchao Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Xiaoshuang Wei
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Ping Tian
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Guan Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Zhihai Wu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
- National Crop Variety Approval and Characterization Station, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Laboratory of Crop Germplasm Resources, Changchun 130118, China
| | - Meiying Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
6
|
Feng Y, Song Y, Song C, Yao X, Zhu M, Liu J, Chen N. Nitrogen inputs promote wetland carbon dioxide and nitrous oxide emissions in China: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55774-55787. [PMID: 39242491 DOI: 10.1007/s11356-024-34877-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
Nitrogen is the most limiting nutrient in wetland ecosystems. Changing in nitrogen nutrient status has a great effect on wetland carbon and nitrogen cycling. However, there is much uncertainty as to wetland greenhouse gas emissions response to nitrogen inputs in China. In this study, we synthesized 177 paired observations from 27 studies of greenhouse gases emissions related to nitrogen additions across wetland in China. The results showed nitrogen inputs significantly contributed to wetland carbon dioxide (CO2) and nitrous oxide (N2O) emissions but had no significant effect on methane (CH4). We further analyze the relationship between greenhouse gases emissions and soil properties, climate factors under nitrogen inputs. Regression analyses introducing explanatory variables showed that high nitrogen inputs (12 g N m-2 yr-1-24 g N m-2 yr-1) contributed more significantly to wetland CO2 and N2O emissions. Compared to other wetland types, alpine peatlands have a greater impact on CO2 and N2O emissions following nitrogen input. In addition, high altitude (> 1500 m and ≤ 3500 m) could promote wetland CO2 and N2O emissions more significantly after nitrogen input, but ultra-high altitude (> 3500 m) reduced CO2 emissions. CO2 and N2O emissions were more significantly promoted when mean annual temperature (MAT) was positive, and CO2 emissions increased with increasing mean annual precipitation (MAP). Wetland CO2 emissions can be significantly promoted when soil is acidic, while N2O emissions can be significantly promoted when soil is alkaline. N2O emissions increased with increasing of soil total nitrogen (TN) and soil organic carbon (SOC) contents. These findings highlight the characteristics of wetland greenhouse gas emissions following nitrogen input, and improve our ability to predict greenhouse gas emissions and help meet carbon neutrality targets.
Collapse
Affiliation(s)
- Yisong Feng
- College of Geographic Science and Tourism, Jilin Normal University, Siping, 136000, China
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yanyu Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Xiaochen Yao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- University of Chinese Academy Sciences, Beijing, 100049, China
| | - Mengyuan Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- University of Chinese Academy Sciences, Beijing, 100049, China
| | - Jiping Liu
- College of Geographic Science and Tourism, Jilin Normal University, Siping, 136000, China
| | - Ning Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
7
|
Zhang R, Yu H, Zhang W, Li W, Su H, Wu S, Xu Q, Li Y, Yao H. Straw return enhances grain yield and quality of three main crops: evidence from a meta-analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1433220. [PMID: 39175489 PMCID: PMC11340517 DOI: 10.3389/fpls.2024.1433220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
Straw return is regarded as a widely used field management strategy for improving soil health, but its comprehensive effect on crop grain yield and quality remains elusive. Herein, a meta-analysis containing 1822 pairs of observations from 78 studies was conducted to quantify the effect of straw return on grain yield and quality of three main crops (maize, rice, and wheat). On average, compared with no straw return, straw return significantly (p< 0.05) increased grain yield (+4.3%), protein content (+2.5%), total amino acids concentration (+1.2%), and grain phosphorus content (+3.6%), respectively. Meanwhile, straw return significantly (p< 0.05) decreased rice chalky grain rate (-14.4%), overall grain hardness (-1.9%), and water absorption of maize and wheat (-0.5%), respectively. Moreover, straw return effects on grain yield and quality traits were infected by cultivated crop types, straw return amounts, straw return methods, and straw return duration. Our findings illustrated that direct straw return increased three main crop grain yields and improved various quality traits among different agricultural production areas. Although improper straw return may increase plant disease risk and affect seed germination, our results suggest that full straw return with covered or plough mode is a more suitable way to enhance grain yield and quality. Our study also highlights that compared with direct straw return, straw burning or composting before application may also be beneficial to farmland productivity and sustainability, but comparative studies in this area are still lacking.
Collapse
Affiliation(s)
- Ruipeng Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyang Yu
- College of Resource and Environment, Anhui Agricultural University, Hefei, China
| | - Wenbiao Zhang
- Beilun District Agriculture and Rural Bureau, Ningbo, China
| | - Wei Li
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Hao Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Sixuan Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Xu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
8
|
Xin J, Yan L, Cai H. Response of soil organic carbon to straw return in farmland soil in China: A meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121051. [PMID: 38723507 DOI: 10.1016/j.jenvman.2024.121051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024]
Abstract
Straw return is an effective measure to promote sustainable agriculture by significantly improving soil fertility. At present, few studies have been conducted on the most effective carbon enhancing management measures for various crops. Therefore, we conducted a meta-analysis using data collected from 184 literature sources, comprising 3297 data sets to analyze the carbon increase effects of straw returning in three main crops (rice, maize, and wheat) in China and to explore the influence mechanism of natural factors, soil properties, straw return measures, and cropping systems on the carbon enhancement effect. The study showed that straw return significantly increased soil organic carbon and the rate of increase was higher for wheat at 15.88% (14.74%-17.03%) than for rice at 12.7% (11.5%-13.91%) and maize at 12.42% (11.42%-13.42%), with varying degrees of improvement in other soil physicochemical properties. Natural factors have the greatest impact on the carbon increasing effect of rice fields, reaching 28.8%, especially at temperature between 10 °C and 15 °C, less than 800 mm precipitation, low latitude, and short frost-free period. Maize and wheat are most affected by soil properties, reaching 41% and 34.5% respectively. Furthermore, field management practices also play a pivotal role, organic carbon increasing obviously was observed when the C/N ratio of exogenous nutrients is bigger than 20 with the low initial organic matter. Shallow tillage and less than 7.5 t hm-2 straw returning with 3-10 years to the field are ideal for rice and maize. Crop rotation, especially in drylands, increased soil organic carbon more significantly than continuous. The results of our analysis can provide valuable insights into the effect of straw return on carbon increase. In the future, the soil carbon can be improved by adopting rational cropping patterns and straw return measures with taking into account climate and soil characteristics for different crops.
Collapse
Affiliation(s)
- Jinjian Xin
- College of Resource and Environmental, Jilin Agricultural University, Changchun, 130118, China.
| | - Li Yan
- College of Resource and Environmental, Jilin Agricultural University, Changchun, 130118, China.
| | - Hongguang Cai
- Institute of Agricultural Resource and Environmental, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
9
|
Xing S, Zhang G, Chen S, Zhang N, Wang C. Response of soil erosion resistance to straw incorporation amount in the black soil region of Northeast China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120801. [PMID: 38588622 DOI: 10.1016/j.jenvman.2024.120801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
Straw incorporation has been considered as an effective environmental management application to improve soil erosion resistance (SER) and organic carbon sequestration. SER is useful to evaluate soil erosion subjected to concentrated flow. Nevertheless, few studies have been performed to examine how SER varied with the amount of straw incorporation on sloping croplands in high latitude and cool regions. In the current study, the fixed bed scouring tests were conducted in a large hydraulic flume using undisturbed soil samples taken from Hebei small watershed in the black soil region of Northeast China. The response of SER to different straw incorporation amounts (0, 1.125, 2.25, 4.5, 6.75, 9.0 and 13.5 t ha-1) was quantified after three months of straw decomposition. The major influencing factors and the corresponding mechanisms were determined. The findings demonstrated that rill erodibility firstly decreased exponentially with straw incorporation amount (R2 = 0.93), while it slightly increased when straw incorporation amount was more than 9.0 t ha-1. Critical shear stress firstly increased logarithmically (R2 = 0.90) and then slightly decreased when the amount exceeded 9.0 t ha-1. Compared to the treatment of 0 t ha-1, rill erodibility reduced by 17.0%-92.8% and critical shear stress increased by 59.6%-127.2% across different treatments of straw incorporation. Rill erodibility had significant and negative correlations with soil organic matter content, aggregate stability, cohesion, root mass density, straw mass density and straw decomposition amount. The key mechanisms for promoting SER were derived by the direct and indirect effects of straw incorporation and its decomposition on soil physicochemical properties and crop roots. The amount of 9.0 t ha-1 was recommended as the optimum amount of straw incorporation in croplands in Northeast China. These findings are useful to understand how soil erosion resistance responds to the amount of straw incorporation and make rational environmental management policy for semi-humid and cool regions.
Collapse
Affiliation(s)
- Shukun Xing
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Guanghui Zhang
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Shiqi Chen
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Ning Zhang
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Chengshu Wang
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
10
|
Zhang L, Zhang F, Zhang K, Liao P, Xu Q. Effect of agricultural management practices on rice yield and greenhouse gas emissions in the rice-wheat rotation system in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170307. [PMID: 38272082 DOI: 10.1016/j.scitotenv.2024.170307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Agricultural management practices (AMPs) have the potential to significantly enhance crop yield, albeit with the possible side effect of escalating greenhouse gas emissions. Few studies have undertaken a comprehensive quantification of the impact of AMPs on crop production and soil GHG, particularly in identifying the optimal AMPs for rice cultivation within rice-wheat rotation system. Here, we combined data analysis and keyword search methods on 1433 individual experimental observations from 172 studies on diverse soil types in the subtropical monsoon climate zone of China to assess the impact of AMPs on rice yield, CH4 and N2O emissions, total greenhouse gas emissions (TGHGE). We focused on four key AMPs: mineral N fertilizer management (including ordinary N fertilizer and slow-/controlled-release fertilizer (SCRF)), organic material management (incorporating organic fertilizer, biochar amendment, and straw return), water-saving irrigation, and no-tillage. Our result showed the rice yield ranged from 2525 to 31,196 kg ha-1, and mineral N fertilizer and organic material management boosted rice yield by 2.84-16.19 % and 2.47-8.52 %, respectively. In terms of N2O emissions, biochar amendment resulted in a decrease of 13.05 %, while ordinary N fertilizer, organic fertilizer, and water-saving irrigation led to increases of 63.16 %, 136.66 %, and 37.41 %, respectively. The implementation of SCRF, water-saving irrigation, and no-tillage significantly curtailed CH4 (6.83 %-35.91 %) and TGHGE (6.22 %-20.59 %). Conversely, organic fertilizer and straw return significantly escalated CH4 emissions by 102.20 % and 33.64 % and TGHGE by 85.03 % and 32.40 %. Rice yield and GHG emissions are mainly influenced by variables such as soil bulk density, pH, soil organic carbon, soil texture, mean annual temperature, and total nitrogen. Our study demonstrates that the application of SCRF, water-saving irrigation, and no-tillage can effectively reduce GHG without compromising yield. These practices are particularly effective under climatic and soil conditions of rice-wheat rotation systems in China, thereby contributing to the sustainable rice farming.
Collapse
Affiliation(s)
- Li Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, China.
| | - Feng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Kaiping Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ping Liao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, China
| | - Qiang Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
11
|
Xiao Z, Lei H, Lian Y, Zhang Z, Pan H, Yin C, Dong Y. Impact of Aerated Drip Irrigation and Nitrogen Application on Soil Properties, Soil Bacterial Communities and Agronomic Traits of Cucumber in a Greenhouse System. PLANTS (BASEL, SWITZERLAND) 2023; 12:3834. [PMID: 38005731 PMCID: PMC10675765 DOI: 10.3390/plants12223834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
Root hypoxia stress and soil nutrient turnover have been related to reduced crop productivity. Aerated drip irrigation (ADI) can effectively enhance crop productivity and yield. However, the response of the soil bacterial community to different irrigation water dissolved oxygen (DO) concentrations remains elusive due to the extreme sensitivity of microorganisms to environmental variations. We investigated the effects of aerated irrigation with different concentrations of DO on soil properties and agronomic performance of cucumber, as well as the contribution of the bacterial community. We performed experiments on cucumber cultivation in Shouguang, China, including different irrigation methods (ADI: O2-10 and O3-20 mg L-1, non-aerated groundwater: O1-5 mg L-1) and nitrogen (N) application rates: 240 and 360 kg N ha-1. ADI (particularly O2) significantly improved soil properties, root growth, cucumber yields, and irrigation water use efficiency (IWUE), and appropriate DO concentrations reduced N fertilizer application and increased crop yields. Furthermore, these changes were associated with bacterial community diversity, aerobic bacteria abundance, and consolidated bacterial population stability within the network module. Environmental factors such as soil respiration rate (Rs), DO, and NO3--N have significant effects on bacterial communities. The FAPROTAX results demonstrated enhanced nitrification (Nitrospira) and aerobic nitrite oxidation by soil bacteria under ADI, promoting the accumulation of effective soil N and improved soil fertility and crop yield. Appropriate DO concentration is conducive to the involvement of soil bacterial communities in regulating soil properties and cucumber growth performance, which are vital for the sustainable development of facility agriculture.
Collapse
Affiliation(s)
- Zheyuan Xiao
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Z.X.); (Y.L.); (H.P.); (C.Y.); (Y.D.)
| | - Hongjun Lei
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Z.X.); (Y.L.); (H.P.); (C.Y.); (Y.D.)
| | - Yingji Lian
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Z.X.); (Y.L.); (H.P.); (C.Y.); (Y.D.)
| | - Zhenhua Zhang
- School of Hydraulic Engineering, Ludong University, Yantai 264025, China;
| | - Hongwei Pan
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Z.X.); (Y.L.); (H.P.); (C.Y.); (Y.D.)
| | - Chen Yin
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Z.X.); (Y.L.); (H.P.); (C.Y.); (Y.D.)
| | - Yecheng Dong
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Z.X.); (Y.L.); (H.P.); (C.Y.); (Y.D.)
| |
Collapse
|
12
|
Chang G, Liu H, Yin Z, Wang J, Li K, Gao T. Agricultural Production Can Be a Carbon Sink: A Case Study of Jinchang City. SUSTAINABILITY 2023; 15:12872. [DOI: 10.3390/su151712872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
In the context of China’s commitment to the “double carbon” goal, promoting agricultural carbon emission reduction is currently an important research topic. Assessing the carbon sequestration level of crops has a positive impact on enhancing agricultural carbon sinks and reducing carbon emissions. The carbon budget for agricultural planting on the arid oasis of Jinchang, northwest China, is quantitatively calculated from 2018 to 2020. The average value of total carbon absorption by crops in Jinchang was greater than the average value of total carbon emissions in the past three years. In 2020, the total carbon absorption was the highest (1,744,725 t CO2-eq), and the carbon emission was 102,641 t CO2-eq. The crops had a strong carbon absorption function. Among the investigated crops, the largest average annual carbon sequestration was found in corn, which accounted for 45% of the total carbon sequestration in the city. Among the carbon emission pathways, chemical fertilizer and agricultural film were the main carbon sources, accounting for more than 40% of total carbon emissions. The carbon budget analysis in the region clearly showed that the structure of agricultural cropping and the planting area proportion of crops significantly affected the carbon balance of the whole agricultural region and that increasing the proportion of the area planted with corn was beneficial in enhancing regional carbon sequestration.
Collapse
Affiliation(s)
- Guohua Chang
- College of Urban Environment, Lanzhou City University, The Engineering Research Center of Mining Pollution Treatment and Ecological Restoration of Gansu Province, Lanzhou 730070, China
| | - Hao Liu
- College of Urban Environment, Lanzhou City University, The Engineering Research Center of Mining Pollution Treatment and Ecological Restoration of Gansu Province, Lanzhou 730070, China
| | - Zhuoxin Yin
- College of Urban Environment, Lanzhou City University, The Engineering Research Center of Mining Pollution Treatment and Ecological Restoration of Gansu Province, Lanzhou 730070, China
| | - Jinxiang Wang
- College of Urban Environment, Lanzhou City University, The Engineering Research Center of Mining Pollution Treatment and Ecological Restoration of Gansu Province, Lanzhou 730070, China
| | - Kaiming Li
- College of Urban Environment, Lanzhou City University, The Engineering Research Center of Mining Pollution Treatment and Ecological Restoration of Gansu Province, Lanzhou 730070, China
| | - Tianpeng Gao
- College of Urban Environment, Lanzhou City University, The Engineering Research Center of Mining Pollution Treatment and Ecological Restoration of Gansu Province, Lanzhou 730070, China
- College of Biological and Environmental Engineering, Xi’an University, Xi’an 710065, China
| |
Collapse
|
13
|
Wu Y, He J, Liu W, Cheng W, Shaaban M, Jiang Y. The effects of continuous straw returning strategies on SOC balance upon fresh straw incorporation. ENVIRONMENTAL RESEARCH 2023:116225. [PMID: 37247652 DOI: 10.1016/j.envres.2023.116225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Continuous straw returning is widely encouraged for augmenting soil organic carbon (SOC) in arable lands. However, the magnitude of changes in net SOC related to native SOC mineralization and new SOC development upon fresh straw incorporation remains elusive, particularly in soils after continuous straw returning with different strategies. To address this, soil that had undergone nine years of straw returning with different strategies (NS, non-straw returning; DS, direct straw returning; IS, indirect straw returning) was incubated with fresh 13C-labeled straw for 45 days. Fresh straw incorporation stimulated native SOC-derived CO2 emission in DS soil, which in turn promoted straw-derived CO2 emission in IS soil. Overall, the amounts of newly developed SOC from straw (2.41-2.59 g C/kg soil) overcompensated for the native SOC losses (0.91-1.37 g C/kg soil) by mineralization, and led to net C sequestration in all treatments. No obvious difference was found in the amounts of SOC sequestrated from straw between the DS and NS soils, while the amount of native SOC mineralization increased by 40-50% in the DS soil relative to other treatments, thus resulting in lower net C sequestration in the DS soil (1.21 g C/kg soil) than IS and NS soil (1.43 and 1.65 g C/kg for IS and NS soil, respectively). Spearman's correlation analyses indicated a significant (p < 0.01) and positive correlation between SOC contents and native soil C mineralization, while the soil microbial index played a greater role in influencing fresh straw sequestration (p < 0.01). In conclusion, the DS soil showed a weaker effect on SOC sequestration than IS after 9 years of practices, upon fresh straw incorporation. This difference may be attributed to the magnitude of native SOC mineralization in the soil. Besides the straw-C input rate, results emphasize that native soil C protection should be also considered in long-term SOC sequestration practices.
Collapse
Affiliation(s)
- Yupeng Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianli He
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Liu
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Weiguo Cheng
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan
| | - Muhammad Shaaban
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China.
| | - Yanbin Jiang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|