1
|
Kim J, Kim J, Kaown D, Joun WT. Natural and anthropogenic factors controlling hydrogeochemical processes in a fractured granite bedrock aquifer, Korea. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:613. [PMID: 40304809 PMCID: PMC12043750 DOI: 10.1007/s10661-025-14037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025]
Abstract
Contamination of groundwater has become a critical environmental concern, prompting international inquiries. In this study, the impacts of natural and anthropogenic factors in the granite bedrock groundwater system were identified based on the hydrogeochemical compositions including environmental isotopes (δ18O, δ2H, 222Rn, δ34SSO4, δ18OSO4) using multivariate statistical methods. Hierarchical clustering analysis classified the groundwater samples into three groups for both dry and wet seasons. The first group, observed in both seasons, represents groundwater influenced by water-rock interactions in low flow and also demonstrates anthropogenic contamination near densely populated residential areas. The second group corresponds to higher flow groundwater, where surface water interaction affects with minimal anthropogenic impact. The third group characterizes relatively radon-contaminated groundwater, representing the predominant groundwater type in the study area. The isotope mixing model based on δ34SSO4 and δ18OSO4 identified proportional contributions of precipitation (~ 14%), sewage (~ 22%), soil (~ 78%), and sulfide oxidation (~ 27%) sources. The redox processes of bacterial sulfate reduction and sulfide oxidation were determined to have a minimal influence on sulfur isotope fractionation within the system. By integrating hydrogeochemical analysis, sulfur isotopes, and the MixSIAR model to trace sulfate sources, uncertainties are able be accounted in source contributions. The groundwater system was mainly influenced by natural factors through infiltration, particularly via the unsaturated soil layer during the wet season. This also indicates enhanced mixing of multiple factors during the recharge or discharge processes triggered by rainfall events. In contrast, anthropogenic contributions declined indicating strong seasonal influences, especially from sewage which decreased from 22 to 6% in groundwater most affected by human activity. This highlights the role of rainfall in diluting human-induced contaminants from the groundwater system. To understand the fractured granite groundwater system, a conceptual model was developed, detailing groundwater types and identifying sulfur sources.
Collapse
Affiliation(s)
- Jiyun Kim
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jaeyeon Kim
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dugin Kaown
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won-Tak Joun
- Disposal Performance Demonstration R&D Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| |
Collapse
|
2
|
Zhang Q, Liu W, Gao Z, Geng J, Dzakpasu M, Wang XC. Advanced treatment of first flush roof runoff via a dry-wet polymorphic constructed wetland system: Performance and mechanistic insights. ENVIRONMENTAL RESEARCH 2025; 269:120918. [PMID: 39848527 DOI: 10.1016/j.envres.2025.120918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/31/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Controlling runoff pollution is crucial to improving ecological environments in the context of urbanization and climate change. However, a significant research gap remains in the treatment and reuse of roof runoff, particularly during the first flush. To address this, a novel dry-wet polymorphic constructed wetland (DWP-CW) system was developed to purify first flush runoff efficiently and reliably. The performance and stability of the DWP-CW system were evaluated under varying conditions, including rainfall intensities, pollution load levels, and antecedent dry days (ADDs). The purification mechanisms and pollutant metabolism were further analyzed using bioinformatics. Results demonstrated that the DWP-CW system achieved excellent pollutant removal efficiencies, with average removal rates exceeding 99% for chemical oxygen demand (COD) and ammonia-nitrogen (NH3-N), and stable removal rates above 80% for total nitrogen (TN) and total phosphorus (TP). The dominant aerobic microbial community played a key role in the system's purification process, while the superior water-retention capacity of the upper sandy soil layer provided a favorable environment for microbial survival during ADDs. This study offers robust theoretical support for practical application of DWP-CW systems in runoff pollution control.
Collapse
Affiliation(s)
- Qionghua Zhang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China.
| | - Weiping Liu
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zan Gao
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jiaxuan Geng
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Mawuli Dzakpasu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
3
|
Lancellotti BV, Hensley DA. Controls on nitrogen export to an ephemeral stream network of St. Croix, US Virgin Islands. JOURNAL OF ENVIRONMENTAL QUALITY 2025; 54:465-482. [PMID: 39746877 PMCID: PMC11893289 DOI: 10.1002/jeq2.20667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
Ephemeral streams are important pollutant conduits, but the mechanisms that control nutrient transport to these systems remain unclear. In the US Virgin Islands (USVI), where most streams flow ephemerally, a lack of continuous hydrologic and water quality data limits our understanding of streamflow behavior and its influence on water quality. We therefore assessed the impact of soil moisture and hydrometeorological conditions on nitrogen (N) concentrations within an ephemeral stream on St. Croix, USVI. Stream N concentrations were usually highest during initial flow events, after prolonged dryness, and declined thereafter. Nitrogen increased with shallow antecedent soil moisture and rainfall intensity and decreased with deep soil moisture and baseflow emergence, indicating it was predominantly exported to the stream via surface runoff, as opposed to subsurface leaching. Our results are the first of their kind for the USVI and could be used to improve water quality of freshwater and marine systems.
Collapse
Affiliation(s)
| | - David A. Hensley
- Agricultural Experiment StationUniversity of the Virgin IslandsKingshillVirgin IslandsUSA
- Crop, Soil & Environmental Sciences DepartmentAuburn UniversityAuburnAlabamaUSA
| |
Collapse
|
4
|
Kasimov NS, Vasil'chuk JY, Tereshina MA, Chalov SR, Erina ON, Kosheleva NE, Shinkareva G, Sokolov DI, Vlasov D, Konoplev AV. Metals and metalloids pollution levels, partitioning, and sources in the environmental compartments of a small urban catchment in Moscow megacity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125552. [PMID: 39701369 DOI: 10.1016/j.envpol.2024.125552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
This study examines the contamination levels and sources of 32 metals and metalloids (MMs) in environmental compartments (roadside soil, road dust, and river suspended sediments) of a small urbanized river catchment located in Moscow megacity. MMs partitioning between particle size fractions (PM1000, PM1-10, and PM1) was analyzed by ICP-MS and ICP-AES methods. The pollution level of particle size fractions with MMs decreases in the following series: road dust > suspended sediments > soils. Absolute principal component analysis with multiple linear regression (PCA/APCS-MLR) shows that in both relatively coarse (PM1-10) and fine (PM1) fractions, traffic emissions are the primary contributors to pollution, whereas natural sources are dominant providers of chemical elements in bulk samples (PM1000). The predominance of fractions with a diameter over 10 μm in all three studied compartments indicates that the mineral matrix of all compartments is formed predominantly by natural material. Across all compartments and their fractions, Sb, Cd, Zn, Mo, W, Sn, Cu, Pb, and Bi are consistently accumulated. PM1 and PM1-10 particles of road dust and suspended sediments also absorb Ni and Cr, suspended sediments retain Mn and As, and soils additionally accumulate As. Anthropogenic influence is more pronounced in PM1 and PM1-10 particles compared to bulk samples due to a large impact of industrial sources, traffic, construction activities, and waste storage. Polluted soils are an additional source of MMs to PM1 and PM1-10 of road dust and PM1-10 of suspended sediments, and road dust acts as a source of MMs to PM1-10 of soils.
Collapse
Affiliation(s)
- Nikolay S Kasimov
- Faculty of Geography, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russian Federation
| | - Jessica Yu Vasil'chuk
- Faculty of Geography, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russian Federation
| | - Maria A Tereshina
- Faculty of Geography, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russian Federation.
| | - Sergey R Chalov
- Faculty of Geography, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russian Federation
| | - Oxana N Erina
- Faculty of Geography, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russian Federation
| | - Natalia E Kosheleva
- Faculty of Geography, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russian Federation
| | - Galina Shinkareva
- Department of Geosciences, Middle Tennessee State University, MTSU PO Box 9, Davis Science Building 241, 37132, Murfreesboro, TN, USA
| | - Dmitrii I Sokolov
- Faculty of Geography, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russian Federation
| | - Dmitrii Vlasov
- School of Agriculture, Middle Tennessee State University, MTSU PO Box 5, Stark Agribusiness & Agriscience Center, 37132, Murfreesboro, TN, USA; Department of Geography, Geology, and the Environment, Illinois State University, Campus Box 4400, 61790, Normal, IL, USA
| | - Alexey V Konoplev
- Faculty of Geography, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russian Federation; Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima Prefecture, 960-1296, Japan
| |
Collapse
|
5
|
Wei H, Qiu H, Liu J, Li W, Zhao C, Xu H. Evaluation and source identification of water pollution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117499. [PMID: 39672036 DOI: 10.1016/j.ecoenv.2024.117499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/15/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Maintaining good surface water quality is essential for protecting ecosystems and human health. Henan Province has long faced challenges related to water scarcity and severe water pollution. To support effective management of water pollution in Henan Province and provide insights for regional water pollution management, we collected extensive water quality monitoring data and applied spatial autocorrelation along with random forest to analyze the sources of heavily polluted areas. Results indicate that the spatial pollution pattern of surface water quality in Henan Province can be generally classified as insignificant pollution in the north, heavy pollution in the central regions, and light pollution in the south. Heavily polluted areas are mainly located in Zhengzhou, Luoyang, and Kaifeng. Key indicators affecting water quality in these regions are chemical oxygen demand (CODMn), dissolved oxygen (DO), ammonia nitrogen (NH3-N), and total phosphorus (TP), with urban sewage and industrial wastewater identified as the main causes of deterioration. These results not only provide a scientific basis for the systematic management of surface water quality pollution in Henan Province but also provide a reference for regional water pollution management.
Collapse
Affiliation(s)
- Huaibin Wei
- School of Management and Economics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China.
| | - Haojie Qiu
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Jing Liu
- College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | - Wen Li
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Chenchen Zhao
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Hanfei Xu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| |
Collapse
|
6
|
Zhu L, Ma Y, Goonetilleke A. Fingerprinting to trace sources of suspended solids in the transport of heavy metals in urban stormwater runoff. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125088. [PMID: 39383989 DOI: 10.1016/j.envpol.2024.125088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Suspended solids are an important pollutant in urban stormwater runoff. Past studies have mainly focused on a single transport stage of pollutants, constraining source identification of suspended solids at the catchment scale. Therefore, identifying the sources of suspended solids in stormwater runoff for the formulation of effective pollution mitigation measures is an effective way to manage suspended solids pollution in receiving waters. Sediment source fingerprinting is a widely used technique to trace the sources of river sediments, which can accurately identify the source of sediment through widely used tracers. This study used six heavy metals including Cd, Cr, Ni, Cu, Zn and Pb as tracers to quantify the sources of suspended solids in stormwater runoff from urban catchments. The spatial and temporal distribution characteristics of suspended solids during stormwater transport were investigated. The study results showed that the concentration of suspended solids was the highest in road runoff and sewer flow, especially particles <44 μm. In addition, relatively large rainfall depth, high rainfall intensity and long antecedent dry periods can lead to higher concentrations of suspended solids in roof and road runoff whereas longer rainfall duration can result in more suspended solids in sewer runoff. Sediment source fingerprinting and principal component analysis confirmed that coarse (>105 μm) particles primarily originate from road deposited sediments (63.80%), while fine (<105 μm) particles primarily originate from stormwater grate sediments and soil. The outcomes derived can help to comprehensively understand the sources of suspended solids and provide guidance for the management of urban stormwater particulate pollution, as well as being a technical reference for pollutant source traceability in urban stormwater runoff.
Collapse
Affiliation(s)
- Ling Zhu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 19 Xinjiekou Outer Street, Beijing, 100875, PR China
| | - Yukun Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 19 Xinjiekou Outer Street, Beijing, 100875, PR China.
| | - Ashantha Goonetilleke
- Faculty of Engineering, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, Queensland, 4001, Australia
| |
Collapse
|
7
|
Gao Z, Zhang Q, Gao S, Dzakpasu M, Wang XC. Optimizing roof-harvested rainwater storage: Impact of dissolved oxygen regime on self-purification and quality dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176574. [PMID: 39368504 DOI: 10.1016/j.scitotenv.2024.176574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Roof-harvested rainwater presents a promising, unconventional, and sustainable water resource for both potable and non-potable uses. However, there is a significant gap in understanding the quality evolution of stored rainwater under varying dissolved oxygen conditions and its suitability for various applications. This study investigated the evolution of rainwater quality under three distinct storage conditions: aerated, open, and sealed. Additionally, the microbial community and metabolic functions were analyzed to systematically evaluate the self-purification performance over long-term storage durations. The results indicate that aerated storage enhances microbial carbon metabolism, leading to a degradation rate of 54.4 %. Sealed and open storage conditions exhibited primary organic matter degradation during the early and late stages, respectively. Roof-rainwater harvesting (RRWH) systems showed limited denitrification activity across all three dissolved oxygen conditions. The maximum accumulation of NO3-N during the storage period reached 5.23 mg/L. In contrast, sealed storage demonstrated robust self-purification performance, evidenced by a comprehensive coefficient of 15.83 calculated by Streeter-Phelps model. These findings provide valuable insights into the mechanisms governing rainwater quality changes under various storage conditions, emphasizing the necessity for developing effective management strategies for the storage and utilization of roof-harvested rainwater.
Collapse
Affiliation(s)
- Zan Gao
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qionghua Zhang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China.
| | - Shiyi Gao
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mawuli Dzakpasu
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| |
Collapse
|
8
|
Cojoc L, de Castro-Català N, de Guzmán I, González J, Arroita M, Besolí-Mestres N, Cadena I, Freixa A, Gutiérrez O, Larrañaga A, Muñoz I, Elosegi A, Petrovic M, Sabater S. Pollutants in urban runoff: Scientific evidence on toxicity and impacts on freshwater ecosystems. CHEMOSPHERE 2024; 369:143806. [PMID: 39603359 DOI: 10.1016/j.chemosphere.2024.143806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Urban runoff effluents transport multiple pollutants collected from urban surfaces. which ultimately reach freshwater ecosystems. We here collect the existing scientific evidence on the urban runoff impacts on aquatic organisms and ecosystem functions, assessed the potential toxicity of the most common pollutants present in urban runoff, and characterized the ecotoxicological risk for freshwaters. We used the Toxic Units models to estimate the toxicity of individual chemicals to freshwater biota and observed that the highest ecotoxicological risk of urban runoff was associated to metals, polycyclic aromatic hydrocarbons (PAHs) and pesticides and, in a few cases, to phthalates. The potential risk was highest for copper and zinc, as well as for anthracene, fluoranthene, Di(2-ethylhexyl) phthlate (DEHP), imidacloprid, cadmium, mercury, and chromium. These pollutants had contrasting effects on freshwater biological groups, though the risk overall decreased from basal to upper trophic levels. Our analysis evidenced a lack of data on ecotoxicological effects of several pollutants present in urban runoff effluents, caused by lack of toxicity data and by the inadequate representation of biological groups in the ecotoxicological databases. Nevertheless, evidence indicates that urban runoff presents ecotoxicological risk for freshwater biota, which might increase if hydrological patterns become extreme, such as long dry periods and floods. Our study highlights the importance of considering both the acute and chronic toxicity of urban effluent pollutants, as well as recognizing the interplay with other environmental stressors, to design adequate environmental management strategies on urban freshwater ecosystems receiving urban runoff.
Collapse
Affiliation(s)
- Lorena Cojoc
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Núria de Castro-Català
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.
| | - Ioar de Guzmán
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Julene González
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Maite Arroita
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Neus Besolí-Mestres
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Isabel Cadena
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Anna Freixa
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Oriol Gutiérrez
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Aitor Larrañaga
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Isabel Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.
| | - Arturo Elosegi
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Sergi Sabater
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain; Institut d'Ecologia Aquàtica (IEA), Universitat de Girona, Campus de Montilivi, 17003, Girona, Spain.
| |
Collapse
|
9
|
Shi CH, He BB, Zhao JL, Liu YH, Liu A. Characterising polycyclic aromatic hydrocarbons in road dusts and stormwater in urban environments. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:791. [PMID: 39110317 DOI: 10.1007/s10661-024-12951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/01/2024] [Indexed: 09/14/2024]
Abstract
The presence of polycyclic aromatic hydrocarbons (PAHs) pollution on urban road surfaces is one of the major environmental concerns. However, knowledge on the distribution variability of PAHs in road dusts (RDS) and stormwater is limited, which would restrict the further risk evaluation and mitigation implementation of PAHs in road stormwater runoff. This study collected RDS samples and stormwater samples on fourteen urban roads in Shenzhen, China. This study investigated the variation of sixteen PAHs species in RDS and stormwater, and further evaluated the intrinsic and extrinsic factors which influence PAHs accumulation on urban road surfaces. The research outcomes showed significant differences on spatial distribution of PAHs in RDS and in stormwater. The land use types, industrial, commercial and port areas and vehicular volume have a positive relationship with PAHs abundance while dust particle size showed a negative correlation with PAHs abundance. For two phases in stormwater, fluctuation of PAHs with the rainfall duration in total dissolved solid (TDS) was more intensive than in dissolved liquid phase (DLP). This indicated when PAHs attached to RDS enter stormwater, most of PAHs still tend to be on solid particles than in liquid. The study outcomes are expected to contribute to efficient designs of PAHs polluted stormwater mitigation.
Collapse
Affiliation(s)
- Chen-Hao Shi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bei-Bei He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jian-Liang Zhao
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yue-Hong Liu
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - An Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
10
|
Huang X, Zhu Y, Lin H, She D, Li P, Lang M, Xia Y. High-frequency monitoring during rainstorm events reveals nitrogen sources and transport in a rural catchment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121308. [PMID: 38823301 DOI: 10.1016/j.jenvman.2024.121308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Rural areas lacking essential sewage treatment facilities and collection systems often experience eutrophication due to elevated nutrient loads. Understanding nitrogen (N) sources and transport mechanisms in rural catchments is crucial for improving water quality and mitigating downstream export loads, particularly during storm events. To further elucidate the sources, pathways, and transport mechanisms of N from a rural catchment with intensive agricultural activities during storm events, we conducted an analysis of 21 events through continuous sampling over two rainy seasons in a small rural catchment from the lower reaches of the Yangtze River. The results revealed that ammonia-N (NH4+-N) and nitrate-N (NO3--N) exhibited distinct behaviors during rainstorm events, with NO3--N accounting for the primary nitrogen loss, its load being approximately forty times greater than that of NH4+-N. Through examinations of the concentration-discharge (c-Q) relationships, the findings revealed that, particularly in prolonged rainstorms, NH4+-N exhibited source limited pattern (b = -0.13, P < 0.01), while NO3--N displayed transport limited pattern (b = -0.21, P < 0.01). The figure-eight hysteresis pattern was prevalent for both NH4+-N and NO3--N (38.1% and 52.0%, respectively), arising from intricate interactions among diverse sources and pathways. For NO3--N, the hysteresis pattern shifted from clockwise under short-duration rainstorms to counter-clockwise under long-duration rainstorms, whereas hysteresis remained consistently clockwise for NH4+-N. The hysteresis analysis further suggests that the duration of rainstorms modifies hydrological connectivity, thereby influencing the transport processes of N. These insights provide valuable information for the development of targeted management strategies to reduce storm nutrient export in rural catchments.
Collapse
Affiliation(s)
- Xuan Huang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Yi Zhu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China; State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Han Lin
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China; State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Dongli She
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Ping Li
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Man Lang
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Yongqiu Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| |
Collapse
|
11
|
Assaf MN, Manenti S, Creaco E, Giudicianni C, Tamellini L, Todeschini S. New optimization strategies for SWMM modeling of stormwater quality applications in urban area. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 361:121244. [PMID: 38815430 DOI: 10.1016/j.jenvman.2024.121244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Build-up/wash-off models were originally developed for small-scale laboratory facilities with uniform properties. The effective translation of these models to catchment scale necessitates the meticulous calibration of model parameters. The present study combines the Mat-SWMM tool with a genetic algorithm (GA) to improve the calibration of build-up and wash-off parameters. For this purpose, Mat-SWMM was modified to equip it with the capacity to provide comprehensive water quality analysis outcomes. Additionally, this research also conducts a comparative examination of two distinct types of objective functions in the optimization. Rather than depending on previous literature, this study undertook a numerical campaign to ascertain an appropriate range for the relevant parameters within the case study, thereby ensuring the optimization algorithm's efficient functionality. This research also implements an integrated event calibration approach, i.e., a novel method that calibrates all rainfall events collectively, thus improving systemic interaction representation and model robustness. The findings indicate that employing this methodology significantly enhances the reliability of the outcomes, thereby establishing a more robust procedure. The first objective function (TSS instantaneous less squared difference function, OF 1), which is widely employed in the literature, was designed to minimize the difference between observed and predicted instantaneous Total Suspended Solids (TSS) concentrations. In contrast, the second function (mass and mass peak consistency function, OF 2) considers integral model outputs, i.e., the overall mass balance, the time of the peak mass flow rate, and its intensity. The analysis of the outputs revealed that both objective functions demonstrated sufficient performance. OF 1 provided slightly better performance in predicting the TSS concentrations, whereas OF 2 demonstrated superior ability in capturing global event characteristics. Notably, the optimal parameter set identified through OF 2 aligned with the physically plausible ranges traditionally recommended in technical manuals for urban catchments. In contrast, OF 1's optimal set necessitated an expansion in the acceptable parameter ranges. Finally, from a computational burden viewpoint, OF 1 demanded a significantly higher number of function evaluations, thus implying an escalating computational cost as the range expands. Conversely, OF 2 necessitated fewer evaluations to converge toward the optimal solution.
Collapse
Affiliation(s)
- Mohammed N Assaf
- Department of Civil Engineering and Architecture (DICAr), University of Pavia, Pavia, Italy.
| | - Sauro Manenti
- Department of Civil Engineering and Architecture (DICAr), University of Pavia, Pavia, Italy; Interdepartmental Centre for Water Research (CRA), University of Pavia, Pavia, Italy
| | - Enrico Creaco
- Department of Civil Engineering and Architecture (DICAr), University of Pavia, Pavia, Italy; Interdepartmental Centre for Water Research (CRA), University of Pavia, Pavia, Italy
| | - Carlo Giudicianni
- Department of Civil Engineering and Architecture (DICAr), University of Pavia, Pavia, Italy
| | - Lorenzo Tamellini
- CNR-IMATI, National Research Council - Institute for Applied Mathematics and Information Technologies, Pavia, Italy
| | - Sara Todeschini
- Department of Civil Engineering and Architecture (DICAr), University of Pavia, Pavia, Italy; Interdepartmental Centre for Water Research (CRA), University of Pavia, Pavia, Italy
| |
Collapse
|
12
|
Buates J, Sun Y, He M, Mohanty SK, Khan E, Tsang DCW. Performance of wood waste biochar and food waste compost in a pilot-scale sustainable drainage system for stormwater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123767. [PMID: 38492753 DOI: 10.1016/j.envpol.2024.123767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/28/2023] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
Sustainable drainage system (SuDS) for stormwater reclamation has the potential to alleviate the water scarcity and environmental pollution issues. Laboratory studies have demonstrated that the capacity of SuDS to treat stormwater can be improved by integrating biochar and compost in the filter media, whereas their performance in scaled-up applications is less reported. This study examines the effectiveness of a pilot-scale SuDS, bioswale followed by bioretention, amended with wood waste biochar (1, 2, and 4 wt.%) and food waste compost (2 and 4 wt.%) to simultaneously remove multiple pollutants including nutrients, heavy metals, and trace organics from the simulated stormwater. Our results confirmed that SuDS modified with both biochar (2 wt.%) and compost (2 wt.%) displayed superior water quality improvement. The system exhibited high removal efficiency (> 70%) for total phosphorus and major metal species including Ni, Pb, Cd, Cr, Cu, and Zn. Total suspended solids concentration was approaching the detection limit in the effluent, thereby confirming its capability to reduce turbidity and particle-associated pollutants from stormwater. Co-application of biochar and compost also moderately immobilized trace organic contaminants such as 2,4-dichlorophenoxyacetic acid, diuron, and atrazine at field-relevant concentrations. Moreover, the soil amendments amplified the activities of enzymes including β-D-cellobiosidase and urease, suggesting that the improved soil conditions and health of microbial communities could possibly increase phyto and bioremediation of contaminants accumulated in the filter media. Overall, our pilot-scale demonstration confirmed that the co-application of biochar and compost in SuDS can provide a variety of benefits for soil/plant health and water quality.
Collapse
Affiliation(s)
- Jittrera Buates
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuqing Sun
- School of Agriculture, Sun Yat-sen University, Guangdong, China
| | - Mingjing He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Sanjay K Mohanty
- Department of Civil and Environmental Engineering, University of California Los Angeles, United States
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 89154, United States
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
13
|
Mao J, Li J, Li L, Zhao H. Characterization of road-deposited sediment wash-off and accurate splitting of initial runoff pollution in heterogeneous urban spaces. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123766. [PMID: 38492751 DOI: 10.1016/j.envpol.2024.123766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/06/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
Particulate materials arising from road-deposited sediments (RDS) are an essential target for the control and management of surface runoff pollution. However, the heterogeneity of urban spaces hinders the identification and quantification of particulate pollution, which is challenging when formulating precise control measures. To elucidate the factors that drive particulate pollution in heterogeneous urban spaces, the accumulation of RDS on dry days and the total suspended solids during six natural rainfall events were investigated across three urban-rural spatial units (central urban, central suburban, and remote suburban). The underlying surface type (asphalt or cement roads) and particle size composition jointly determined the spatial heterogeneity in the static accumulation and dynamic output loads of RDS during rainfall. These two factors explained 59.6% and 18.9% of the spatial heterogeneity, respectively, according to principal component analysis. A novel CPSI exponential wash-off equation that incorporates particle size composition and underlying surface type was applied. It precisely described the spatial heterogeneity of RDS wash-off loads, the estimated values exhibiting event mean concentration errors of 10.8-18.2%. When coupled with the M(V) curve, this CPSI exponential wash-off equation more precisely split the initial volume of runoff: a lower total volume (17.6-38.0%) was shown to carry a higher proportion of the load (70.0-93.7%) compared to the traditional coupled exponential wash-off equation (volume: 31.6-49.0%, load: 37-90%). This study provides a new approach to characterizing RDS wash-off processes and splitting initial runoff in heterogeneous spaces.
Collapse
Affiliation(s)
- Jintao Mao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, China
| | - Jiali Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, China
| | - Longbo Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hongtao Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Gao Z, Zhang Q, Wang Y, Jv X, Dzakpasu M, Wang XC. Evolution of water quality in rainwater harvesting systems during long-term storage in non-rainy seasons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168784. [PMID: 38000760 DOI: 10.1016/j.scitotenv.2023.168784] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
The development of rainwater utilization strategies has relied on rainwater harvesting (RWH) systems for centuries to alleviate the pressure on water resources. However, there are still significant knowledge gaps regarding the changes in water quality in RWH systems during long-term storage in non-rainy seasons. This study evaluated the water quality processes in RWH systems through static rainwater storage experiments for approximately 60 days. The results revealed that nutrients in rainwater accumulated in sediment during storage. Disturbance and redox conditions at the rainwater-sediment interface contribute to the release of sedimentary facies materials. The rainwater showed distinct DO stratification, with the biochemical reactions of sedimentary facies being the primary factor driving oxygen consumption. ORP and turbidity showed positive correlations with COD (r = 0.582; 0.572), TOC (r = 0.678; 0.681), TN (r = 0.452; 0.439), and NH4+-N (r = 0.502; 0.553) (P < 0.05). The regulation of water quality and extension of the usage cycle were identified as critical factors influenced by DO. In addition, bacteria share similar ecological niche preferences. These findings provide scientific evidence for the high-quality reuse of rainwater in decentralized RWH systems during long-term storage in non-rainy seasons.
Collapse
Affiliation(s)
- Zan Gao
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qionghua Zhang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China.
| | - Yufei Wang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xinyue Jv
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mawuli Dzakpasu
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| |
Collapse
|
15
|
Liu H, Qiu F, Gao M, Che Y, Tan C, Zhang Z, Yan R, Li H, Jian M. Migration and adsorption of naphthalene in road-deposited sediments from stormwater runoff: Impact of the particle size. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166673. [PMID: 37659539 DOI: 10.1016/j.scitotenv.2023.166673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/20/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
In this study, we explored the impact of RDS particle size on the migration dynamics of RDS and naphthalene through rigorous wash-off experiments. The results illuminated that smaller RDS particles showed higher mobility in stormwater runoff. On the other hand, RDS particles larger than 150 μm showed migration ratios below 2 %, suggesting that naphthalene adsorbed on larger RDS primarily migrated in dissolved form. Furthermore, we investigated the migration behaviors of RDS and naphthalene under varied conditions, including rainfall intensity, duration, and naphthalene concentrations. Larger rainfall intensity promoted the naphthalene release from RDS, while long rainfall duration (≥10 min) impeded the migration velocities (≤2.91 %/5 min for RDS, and ≤3.32 %/5 min for corresponding naphthalene) of RDS and naphthalene. Additionally, higher naphthalene concentrations in RDS diminished migration ratios of dissolved naphthalene. Significantly, the maximum uptake of naphthalene on RDS was 6.02 mg/g by the adsorption Langmuir isotherm. Importantly, the adsorption process of naphthalene in RDS is primarily governed by the physical adsorption, as demonstrated by the successive desorption experiments, which showed the desorption rate of up to 87.32 %. Moreover, advanced characterizations such as XPS, FTIR and Raman spectra further confirmed the physical nature of the adsorption process. These findings may help the understanding of the migration behavior of other pollutants in urban surface particulates.
Collapse
Affiliation(s)
- Hongze Liu
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Fuguo Qiu
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Mingchen Gao
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yongjian Che
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chaohong Tan
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Ziyang Zhang
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Rui Yan
- Beijing Drainage Group Co., Ltd, Beijing 100044, China
| | - Haiyan Li
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Meipeng Jian
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|