1
|
Cheng S, Zhang R, Liu Q, He S, Sun J, Xing L. Occurrence, removal, and ecological risk of antibiotics and antibiotic resistance genes in township wastewater treatment plants in the upper reaches of the Yangtze River, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1223-1235. [PMID: 39715926 DOI: 10.1007/s11356-024-35832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
The excessive use of antibiotics contributes significantly to environmental pollution and the widespread presence of antibiotic resistance genes (ARGs), which poses a serious threat to aquatic ecosystems and human health. Despite being a critical source of antibiotics and ARGs in the environment, research exploring their occurrence and removal characteristics in township wastewater treatment plants (WWTPs) remains limited. This study investigated the abundance and removal efficiencies of 39 antibiotics and 8 ARGs in influent and effluent samples from 40 township WWTPs located in the upper reaches of the Yangtze River. Antibiotics were detected in both influents and effluents, with detection frequencies (DFs) ranging from 2.44% to 100%. In contrast, all targeted ARGs exhibied 100% DFs in both influents and effluents. The average concentrations of antibiotics in influents and effluents were 370.67 ng/L and 242.06 ng/L, respectively, and the ARGs concentrations were 9.88 × 106 and 7.10 × 105 copies/mL, respectively. Among the antibiotics analyzed, macrolides and fluoroquinolones accounted for over 70% of the total antibiotic concentrations in both influent and effluent samples. Additionally, sul1 and sul2 were identified as the predominant ARGs, constituting more than 99% of the total abundance in both influent and effluent samples. Notably, significant correlations between the ARGs and their respective antibiotics were not consistently observed. The average removal efficiencies for total antibiotics and ARGs by township WWTPs were 34.70% and 93.30%, respectively. Furthermore, all calculated ecological risk values (risk quotient, RQ) for individual antibiotics in effluent samples were below one, except for oxytetracycline, which had RQ values greater than one in three effluents. The total RQs, representing the sum of individual RQs, indicated that 11 effluents presented a high risk (27.50%), while 17 effluents exhibited a moderate risk (42.50%). These findings suggest that township WWTPs may represent a significant source of antibiotics and ARGs in the environment, necessitating further process improvements for their effective elimination.
Collapse
Affiliation(s)
- Subin Cheng
- College of Civil Engineering, Tongji University, Shanghai, 200092, China
- Hemei Environmental Protection Group Co. Ltd., Hefei, 230000, China
| | - Rutao Zhang
- Suzhou Capital Greinworth Environmental Protection Technology Co., Ltd., Suzhou, 215126, China
| | - Qixuan Liu
- Suzhou Capital Greinworth Environmental Protection Technology Co., Ltd., Suzhou, 215126, China
| | - Shangwei He
- School of Wetlands, Yancheng Teachers University, Yancheng, 224007, China
| | - Jie Sun
- Hemei Environmental Protection Group Co. Ltd., Hefei, 230000, China
- Suzhou Capital Greinworth Environmental Protection Technology Co., Ltd., Suzhou, 215126, China
| | - Liqun Xing
- Nanjing University & Yancheng Academy of Environmental Protection Technology and Engineering, Yancheng, 224000, China.
- School of Wetlands, Yancheng Teachers University, Yancheng, 224007, China.
| |
Collapse
|
2
|
Cao W, Du W, Fang S, Wu Q, Wei Z, Xie Z, Su Y, Wu Y, Luo J. Parachlorometaxylenol stress caused multidrug-type antibiotic resistance genes proliferation via simultaneously reshaping microbial community and interfering metabolic traits during wastewater treatment process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124454. [PMID: 38936035 DOI: 10.1016/j.envpol.2024.124454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/05/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024]
Abstract
Despite biological wastewater treatment processes (e.g., sequencing batch reactors (SBR)) being able to reduce the dissemination of antibiotic resistance genes (ARGs), the variation of ARGs under exogenous pollutant stress is an open question. This work investigated the impacts of para-chloro-meta-xylenol (PCMX, typical antibacterial contaminants) on ARGs spread in long-term SBR operation. Although the SBR process inherently decreased ARGs abundance, the presence of PCMX substantially amplified both the prevalence (mainly multidrug) and abundance of total ARGs (1.17-fold of the control). Further analysis demonstrated that PCMX disintegrated sludge structures as well as increased membrane permeability, facilitating the release of mobile genetic elements and subsequent horizontal transfer of ARGs. In addition, PCMX selectively enriched potential ARG hosts, notably Nitrospira and Candidatus Accumulibacter, which predominantly served as multidrug ARG hosts. Concurrently, the self-adaptive functions of ARGs hosts in the PCMX-exposed SBR system were activated via quorum sensing, two-component regulatory system, ATP-binding cassette transporters, and bacterial secretion system. The upregulation of these metabolic pathways also contributed to the dissemination of ARGs.
Collapse
Affiliation(s)
- Wangbei Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Wei Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Qian Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Zihao Wei
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Zhihuai Xie
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
3
|
Zhang S, Cui T, Liu X, Zhan M, Song X, Xu Y, Yu R. Sludge biolysis pretreatment to reduce antibiotic resistance genes (ARGs): Insight into the relationship between potential ARGs hosts and BALOs' preferred prey. WATER RESEARCH 2024; 260:121949. [PMID: 38901315 DOI: 10.1016/j.watres.2024.121949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
As an important reservoir of antibiotic resistance genes (ARGs), the sludge discharged from wastewater treatment plants is the key intermediate for ARG transport into the environment. Bdellovibrio-and-like organisms (BALOs) are predatory bacteria that are expected to attack antibiotic-resistant bacteria (ARB). In this study, the screened BALOs (C3 & D15) were mixed with the sludge for biolysis to achieve the satisfying removal efficiencies of six tet genes, two sul genes, and one mobile genetic element (intl 1). Among them, tet(Q) demonstrated the highest reduction rate in relative abundance at 87.3 ± 1.0 %, while tet(X) displayed the lowest of 11.7 ± 0.2 %. The microorganisms, including Longilinea, Methanobacterium, Acetobacterium, Sulfurimonas, allobaculum, Gaiella, AAP99, Ellin6067, Rhodoferax, Ferruginibacter and Thermomonas, were expected to play a dual role in the reduction of ARGs by serving as ARB and BALOs' preferred prey. Meanwhile, BALOs consortium improved ARGs reduction efficiency via the expansion of the prey profile. Additionally, BALOs decreased the relative abundance of not only pathogens (Shinella, Rickettsia, Burkholderia, Acinetobacter, Aeromonas, Clostridium, Klebsiella and Pseudomonas), but also the ARGs' host pathogens (Mycobacterium, Plesiocystis, Burkholderia, and Bacteroides). Therefore, the application of BALOs for sludge biolysis are promising to decrease the sludge's public health risks via limiting the spread of ARGs and pathogens into the environment.
Collapse
Affiliation(s)
- Siyuan Zhang
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Tingting Cui
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xiaowen Liu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Manjun Zhan
- Nanjing Research Institute of Environmental Protection, Nanjing Environmental Protection Bureau, Nanjing, Jiangsu, 210013, China
| | - Xin Song
- SUMEC Complete Equipment & Engineering CO. LTD, Nanjing 210018, China
| | - Yi Xu
- Nanjing No.1 Middle School, Nanjing, Jiangsu, 210013, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
4
|
Li YQ, Zhang CM, Wang Q, Jiao XR. Metagenomic insights into effects of carbon/nitrogen ratio on microbial community and antibiotic resistance in moving bed biofilm reactor. BIORESOURCE TECHNOLOGY 2024; 406:131007. [PMID: 38901747 DOI: 10.1016/j.biortech.2024.131007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
This study investigated the effects of carbon/nitrogen (C/N) ratio on microbial community in moving bed biofilm reactor (MBBR) using metagenomic analysis, and the dynamic changes of relevant antibiotic resistance genes (ARGs) were also analyzed. The results showed that under low C/N ratio, MBBR exhibited average removal rates of 98.41 % for ammonia nitrogen and 75.79 % for total nitrogen. Metagenomic analysis showed low C/N ratio altered the structure of biofilm and water microbiota, resulting in the detachment of bacteria such as Actinobacteria from biofilm into water. Furthermore, sulfamethazine (SMZ)-resistant bacteria and related ARGs were released into water under low C/N ratio, which lead to the increase of SMZ resistance rate to 90%. Moreover, most dominant genera are potential hosts for both nitrogen cycle related genes and ARGs. Specifically, Nitrosomonas that carried gene sul2 might be released from biofilm into water. These findings implied the risks of antibiotic resistance dissemination in MBBR under low C/N ratio.
Collapse
Affiliation(s)
- Yong-Qiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Qian Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan-Ru Jiao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
5
|
Hou Y, Diao W, Jia R, Sun W, Feng W, Li B, Zhu J. Variations in antibiotic resistomes associated with archaeal, bacterial, and viral communities affected by integrated rice-fish farming in the paddy field ecosystem. ENVIRONMENTAL RESEARCH 2024; 251:118717. [PMID: 38518910 DOI: 10.1016/j.envres.2024.118717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
Antibiotic resistance genes (ARGs) serving as a newly recognized pollutant that poses potential risks to global human health, which in the paddy soil can be potentially altered by different agricultural production patterns. To elucidate the impacts and mechanisms of the widely used and sustainable agricultural production pattern, namely integrated rice-fish farming, on the antibiotic resistomes, we applied metagenomic sequencing to assess ARGs, mobile genetic elements (MGEs), bacteria, archaea, and viruses in paddy soil. There were 20 types and 359 subtypes of ARGs identified in paddy soil. The integrated rice-fish farming reduced the ARG and MGE diversities and the abundances of dominant ARGs and MGEs. Significantly decreased ARGs were mainly antibiotic deactivation and regulator types and primarily ranked level IV based on their potential threat to human health. The integrated rice-fish farming decreased the alpha diversities and altered microbial community compositions. MGEs, bacteria, archaea, and virus exhibited significant correlations with ARGs, while integrated rice-fish farming effectively changed their interrelationships. Viruses, bacteria, and MGEs played crucial roles in affecting the ARGs by the integrated rice-fish farming. The most crucial pathway by which integrated rice-fish farming affected ARGs was through the modulation of viral communities, thereby directly or indirectly influencing ARG abundance. Our research contributed to the control and restoration of ARGs pollution from a new perspective and providing theoretical support for the development of clean and sustainable agricultural production.
Collapse
Affiliation(s)
- Yiran Hou
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Weixu Diao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Rui Jia
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Wei Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenrong Feng
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Bing Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Jian Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| |
Collapse
|
6
|
Xu M, Gao P, Gao Y, Xiong SJ, Chen HQ, Shen XX. Impacts of microplastic type on the fate of antibiotic resistance genes and horizontal gene transfer mechanism during anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121090. [PMID: 38772228 DOI: 10.1016/j.jenvman.2024.121090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) are important pollutants in waste activated sludge (WAS), but their interactions during anaerobic digestion (AD) still need to be further explored. This study investigated variations in ARGs, mobile genetic elements (MGEs), and host bacteria during AD under the pressure of polyamide (PA), polyethylene (PE), and polypropylene (PP). The results showed that the MPs increased methane production by 11.7-35.5%, and decreased ARG abundance by 5.6-24.6%. Correlation analysis showed that the decrease of MGEs (plasmid, prophage, etc.) promoted the decrease of the abundance of multidrug, aminoglycoside and tetracycline resistance genes. Metagenomic annotation revealed that the reduction of key host bacteria (Arenimonas, Lautropia, etc.) reduced the abundance of major ARGs (rsmA, rpoB2, etc.). Moreover, PP MPs contributed to a reduction in the abundance of functional genes related to the production of reactive oxygen species, ATP synthesis, and cell membrane permeability, which was conducive to reducing the potential for horizontal gene transfer of ARGs. These findings provide insights into the treatment of organic waste containing MPs.
Collapse
Affiliation(s)
- Ming Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Peng Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Yuan Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Shi-Jin Xiong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Hao-Qiang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiao-Xiao Shen
- Institute of Water Science and Technology, Hohai University, Nanjing, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China.
| |
Collapse
|