1
|
Bappy MMM, Rahman MM, Hossain MK, Moniruzzaman M, Yu J, Arai T, Paray BA, Hossain MB. Distribution and retention efficiency of micro- and mesoplastics and heavy metals in mangrove, saltmarsh and cordgrass habitats along a subtropical coast. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125908. [PMID: 39993705 DOI: 10.1016/j.envpol.2025.125908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Understanding how coastal ecosystems mitigate pollution is essential due to their critical role in safeguarding environmental health, and supporting restoration efforts. This study, for the first time, evaluated the contamination levels and retention capacities of micro- and mesoplastics, and heavy metals across coastal habitats-specifically mangrove (MH), invasive Kikuyu grass (KH), and salt marsh cord grass (SH)-along a subtropical intertidal beach. Of the 120 sediment samples collected, 60 were analyzed for micro- and mesoplastics using wet peroxide oxidation and FTIR spectroscopy, while the remaining 60 were examined for heavy metal concentrations via ICP-MS. Results showed that KH habitats retained the highest plastics (153 ± 10.9 items/kg), followed by MH (112 ± 4.58 items/kg), SH (73.17 ± 6.81 items/kg), and NV (50.83 ± 10.87 items/kg) areas with significantly different retention in MH and KH habitats. Heavy metals followed a decreasing retention order of Mn > Zn > Cu > Cr > Pb > Ni > As > Cd > Hg. Significant difference was observed in Pb, Cr retention by an invasive Kikuyu grass (KH1) station, and Cu retention in two invasive Kikuyu grass stations (KH1 and KH3). However, in general no habitats were significantly different in retaining the metals. Principal Component Analysis and Canonical Correspondence Analysis revealed that micro- and mesoplastics were strongly associated with Zn, Cu, and Pb. KH habitats showed the highest retention efficiency, however, the associated toxicity risk increased with retention levels, indicating a higher risk in KH habitats compared to NV areas. The study highlighted Kikuyu grass habitats as both efficient pollutant sinks and potential ecological risk zones, emphasizing the need for targeted remediation to optimize retention while safeguarding ecosystem health.
Collapse
Affiliation(s)
- Md Maheen Mahmud Bappy
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur, 3814, Bangladesh
| | - Md Mofizur Rahman
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur, 3814, Bangladesh
| | - Md Kamal Hossain
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr Qudrat-i-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Mohammad Moniruzzaman
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr Qudrat-i-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Jimmy Yu
- School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia
| | - Takaomi Arai
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - M Belal Hossain
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur, 3814, Bangladesh; School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia.
| |
Collapse
|
2
|
Nava V, Leoni B, Arienzo MM, Hogan ZS, Gandolfi I, Tatangelo V, Carlson E, Chea S, Soum S, Kozloski R, Chandra S. Plastic pollution affects ecosystem processes including community structure and functional traits in large rivers. WATER RESEARCH 2024; 259:121849. [PMID: 38851112 DOI: 10.1016/j.watres.2024.121849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Plastics in aquatic ecosystems rapidly undergo biofouling, giving rise to a new ecosystem on their surface, the 'plastisphere.' Few studies quantify the impact of plastics and their associated community on ecosystem traits from biodiversity and functional traits to metabolic function. It has been suspected that impacts on ecosystems may depend on its state but comparative studies of ecosystem responses are rare in the published literature. We quantified algal biomass, bacterial and algal biodiversity (16S and 18S rRNA), and metabolic traits of the community growing on the surface of different plastic polymers incubated within rivers of the Lower Mekong Basin. The rivers selected have different ecological characteristics but are similar regarding their high degree of plastic pollution. We examined the effects of plastics colonized with biofilms on ecosystem production, community dark respiration, and the epiplastic community's capability to influence nitrogen, phosphorus, organic carbon, and oxygen in water. Finally, we present conceptual models to guide our understanding of plastic pollution within freshwaters. Our findings showed limited microalgal biomass and bacterial dominance, with potential pathogens present. The location significantly influenced community composition, highlighting the role of environmental conditions in shaping community development. When assessing the effects on ecosystem productivity, our experiments showed that biofouled plastics led to a significant drop in oxygen concentration within river water, leading to hypoxic/anoxic conditions with subsequent profound impacts on system metabolism and the capability of influencing biogeochemical cycles. Scaling our findings revealed that plastic pollution may exert a more substantial and ecosystem-altering impact than initially assumed, particularly in areas with poorly managed plastic waste. These results highlighted that the plastisphere functions as a habitat for biologically active organisms which play a pivotal role in essential ecosystem processes. This warrants dedicated attention and investigation, particularly in sensitive ecosystems like the Mekong River, which supports a rich biodiversity and the livelihoods of 65 million people.
Collapse
Affiliation(s)
- Veronica Nava
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano MI, Italy
| | - Barbara Leoni
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano MI, Italy.
| | - Monica M Arienzo
- Desert Research Institute, 2215 Raggio Pkwy, Reno, NV 89512, United States
| | - Zeb S Hogan
- Global Water Center and Biology Department, University of Nevada, 1664 N. Virginia, Reno, NV 89557-0314, United States
| | - Isabella Gandolfi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano MI, Italy
| | - Valeria Tatangelo
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano MI, Italy
| | - Emily Carlson
- Global Water Center and Biology Department, University of Nevada, 1664 N. Virginia, Reno, NV 89557-0314, United States
| | - Seila Chea
- Institute of Technology of Cambodia, PO Box 86, Russian Conf. Blvd. Phnom Penh, Cambodia
| | - Savoeurn Soum
- Royal University of Phnom Penh, Russian Federation Blvd (110), Phnom Penh, Cambodia
| | - Rachel Kozloski
- Desert Research Institute, 2215 Raggio Pkwy, Reno, NV 89512, United States
| | - Sudeep Chandra
- Global Water Center and Biology Department, University of Nevada, 1664 N. Virginia, Reno, NV 89557-0314, United States.
| |
Collapse
|
3
|
Bocci V, Galafassi S, Levantesi C, Crognale S, Amalfitano S, Congestri R, Matturro B, Rossetti S, Di Pippo F. Freshwater plastisphere: a review on biodiversity, risks, and biodegradation potential with implications for the aquatic ecosystem health. Front Microbiol 2024; 15:1395401. [PMID: 38699475 PMCID: PMC11064797 DOI: 10.3389/fmicb.2024.1395401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
The plastisphere, a unique microbial biofilm community colonizing plastic debris and microplastics (MPs) in aquatic environments, has attracted increasing attention owing to its ecological and public health implications. This review consolidates current state of knowledge on freshwater plastisphere, focussing on its biodiversity, community assembly, and interactions with environmental factors. Current biomolecular approaches revealed a variety of prokaryotic and eukaryotic taxa associated with plastic surfaces. Despite their ecological importance, the presence of potentially pathogenic bacteria and mobile genetic elements (i.e., antibiotic resistance genes) raises concerns for ecosystem and human health. However, the extent of these risks and their implications remain unclear. Advanced sequencing technologies are promising for elucidating the functions of plastisphere, particularly in plastic biodegradation processes. Overall, this review emphasizes the need for comprehensive studies to understand plastisphere dynamics in freshwater and to support effective management strategies to mitigate the impact of plastic pollution on freshwater resources.
Collapse
Affiliation(s)
- Valerio Bocci
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Silvia Galafassi
- Water Research Institute, CNR-IRSA, National Research Council, Verbania, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Caterina Levantesi
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
| | - Simona Crognale
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Stefano Amalfitano
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Roberta Congestri
- Laboratory of Biology of Algae, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Bruna Matturro
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Simona Rossetti
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
| | - Francesca Di Pippo
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
| |
Collapse
|
4
|
Ridley RS, Conrad RE, Lindner BG, Woo S, Konstantinidis KT. Potential routes of plastics biotransformation involving novel plastizymes revealed by global multi-omic analysis of plastic associated microbes. Sci Rep 2024; 14:8798. [PMID: 38627476 PMCID: PMC11021508 DOI: 10.1038/s41598-024-59279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Despite increasing efforts across various disciplines, the fate, transport, and impact of synthetic plastics on the environment and public health remain poorly understood. To better elucidate the microbial ecology of plastic waste and its potential for biotransformation, we conducted a large-scale analysis of all publicly available meta-omic studies investigating plastics (n = 27) in the environment. Notably, we observed low prevalence of known plastic degraders throughout most environments, except for substantial enrichment in riverine systems. This indicates rivers may be a highly promising environment for discovery of novel plastic bioremediation products. Ocean samples associated with degrading plastics showed clear differentiation from non-degrading polymers, showing enrichment of novel putative biodegrading taxa in the degraded samples. Regarding plastisphere pathogenicity, we observed significant enrichment of antimicrobial resistance genes on plastics but not of virulence factors. Additionally, we report a co-occurrence network analysis of 10 + million proteins associated with the plastisphere. This analysis revealed a localized sub-region enriched with known and putative plastizymes-these may be useful for deeper investigation of nature's ability to biodegrade man-made plastics. Finally, the combined data from our meta-analysis was used to construct a publicly available database, the Plastics Meta-omic Database (PMDB)-accessible at plasticmdb.org. These data should aid in the integrated exploration of the microbial plastisphere and facilitate research efforts investigating the fate and bioremediation potential of environmental plastic waste.
Collapse
Affiliation(s)
- Rodney S Ridley
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Roth E Conrad
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Blake G Lindner
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Seongwook Woo
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Konstantinos T Konstantinidis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
5
|
Huang JN, Xu L, Wen B, Gao JZ, Chen ZZ. Reshaping the plastisphere upon deposition: Promote N 2O production through affecting sediment microbial communities in aquaculture pond. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133290. [PMID: 38134685 DOI: 10.1016/j.jhazmat.2023.133290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Microplastics (MPs) could provide vector for microorganisms to form biofilm (plastisphere), but the shaping process of MPs biofilm and its effects on the structure and function of sedimentary microbial communities especially in aquaculture environments are not reported. For this, we incubated MPs biofilm in situ in an aquaculture pond and established a sediment microcosm with plastisphere. We found that the formation of MPs biofilm in surface water was basically stable after 30 d incubation, but the biofilm communities were reshaped after deposition for another 30 d, because they were more similar to plastisphere communities incubated directly within sediment but not surface water. Moreover, microbial communities of MPs-contaminated sediment were altered, which was mainly driven by the biofilm communities present on MPs, because they but not sediment communities in proximity to MPs had a more pronounced separation from the control sediment communities. In the presence of MPs, increased sediment nitrification, denitrification and N2O production rates were observed. The K00371 (NO2-⇋NO3-) pathway and elevated abundance of nxrB and narH genes were screened by metagenomic analysis. Based on structural equation model, two key bacteria (Alphaproteobacteria bacterium and Rhodobacteraceae bacterium) associated with N2O production were further identified. Overall, the settling of MPs could reshape the original biofilm and promote N2O production by selectively elevating sedimental microorganisms and functional genes in aquaculture pond.
Collapse
Affiliation(s)
- Jun-Nan Huang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Lei Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Wen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Jian-Zhong Gao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zai-Zhong Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
6
|
Xu L, Bai X, Li K, Zhang G, Zhang M, Hu M, Huang Y. Human Exposure to Ambient Atmospheric Microplastics in a Megacity: Spatiotemporal Variation and Associated Microorganism-Related Health Risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3702-3713. [PMID: 38356452 DOI: 10.1021/acs.est.3c09271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Microplastics are found in various human tissues and are considered harmful, raising concerns about human exposure to microplastics in the environment. Existing research has analyzed indoor and occupational scenarios, but long-term monitoring of ambient atmospheric microplastics (AMPs), especially in highly polluted urban regions, needs to be further investigated. This study estimated human environmental exposure to AMPs by considering inhalation, dust ingestion, and dermal exposure in three urban functional zones within a megacity. The annual exposure quantity was 7.37 × 104 items for children and 1.06 × 105 items for adults, comparable with the human microplastic consumption from food and water. Significant spatiotemporal differences were observed in the characteristics of AMPs that humans were exposed to, with wind speed and rainfall frequency mainly driving these changes. The annual human AMP exposure quantity in urban green land spaces, which were recognized as relatively low polluted zones, was comparable with that in public service zones and residential zones. Notably, significant positive correlations between the AMP characteristics and the pathogenicity of the airborne bacterial community were discovered. AMP size and immune-mediated disease risks brought by atmospheric microbes showed the most significant relationship, where Sphingomonas might act as the potential key mediator.
Collapse
Affiliation(s)
- Libo Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinyi Bai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Guangbao Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mengjun Zhang
- Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China
- PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, Guangdong 518057, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
7
|
Xu L, Li K, Bai X, Zhang G, Tian X, Tang Q, Zhang M, Hu M, Huang Y. Microplastics in the atmosphere: Adsorb on leaves and their effects on the phyllosphere bacterial community. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132789. [PMID: 37862903 DOI: 10.1016/j.jhazmat.2023.132789] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Phyllosphere is the largest interface between the atmosphere and terrestrial ecosystems and serves as a major sink for atmospheric microplastics (MPs). It is also a unique habitat for microbiota with diverse ecological functions. This field study investigated the characteristics of atmospheric MPs adsorbed on leaves with automatic technology, and found their abundance was 3.62 ± 1.29 items cm-2. MPs on leaves were mainly below 80 µm, and dominated by polyamide, polyethene, and rubber. MPs on leaves correlated significantly with the structure and functions of the phyllosphere bacterial community (PBC). Both the MPs abundance and size distribution (MSD) were positively correlated with the α diversity and negatively correlated with the β diversity and network complexity of PBC. PBC functions of environmental and genetic information process were negatively correlated with MPs abundance, and functions related to human diseases and cellular process were positively correlated with MSD significantly. The relative abundance of Sphingomonas was significantly correlated with the MSD, suggesting that Sphingomonas might emerge as the key genus involved in the pathogenicity of PBC mediated by MPs. These results highlighted the ecological health risks of atmospheric MPs as they can be transferred anywhere and potentially increase the pathogenicity of local phyllosphere microflora.
Collapse
Affiliation(s)
- Libo Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinyi Bai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Guangbao Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xudong Tian
- Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control of Zhejiang, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Qian Tang
- Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control of Zhejiang, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Mengjun Zhang
- Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China; PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, Guangdong 518057, China.
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|