1
|
Wang Y, Wang G, Liao F, Bi E, Mao H, Qiao Z, Wang H, Dou M, Wang C, Huang X. Sources and fate of nitrate in the unsaturated zone in an alluvial-lacustrine plain. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137721. [PMID: 40022928 DOI: 10.1016/j.jhazmat.2025.137721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Nitrate pollution in terrestrial and aquatic ecosystems in global agricultural areas poses an environmental concern. However, there is limited understanding of hydrogeological controls on the behavior of nitrogen compounds in unsaturated zones. Here, Self-Organizing Map and multiple isotopes approaches (δ15N-NO3-, δ18O-NO3-, and δ15N-NH4+) were used to investigate the sources, transport and transformation of N-species in the unsaturated zone in an alluvial-lacustrine plain, southeast China. The results revealed significant spatial heterogeneity in soil texture and physicochemical properties with vertically four soil geochemical and N-species zones (high NO₃⁻, high Fe(Ⅲ) and Mn, low ionic, and high NH₄⁺ contents), dominated by agricultural input, soil minerals and redox conditions. Nitrate in the unsaturated zone primarily originated from fertilizers and soil nitrogen. Excess nitrogen fertilizers infiltrated into the soil, where mineralization, nitrification, and dissimilatory nitrate reduction to ammonium (DNRA) acted as key mechanisms for nitrogen transformation. The change in the depositional environment from the plain to the lakeshore area led to nitrification gradual decrease and DNRA significant increase. Consequently, a conceptual model of reactive transport of N-species, influenced by hydrogeologic conditions and biogeochemical processes, was proposed. This study provides a new insight into the nitrate behaviors in unsaturated zone and contributes to groundwater nitrogen management strategies.
Collapse
Affiliation(s)
- Yuqin Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China.
| | - Fu Liao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Erping Bi
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China.
| | - Hairu Mao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Zhiyuan Qiao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Hanxiao Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Minyue Dou
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Chenyu Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Xujuan Huang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
2
|
Dong Y, Zhang X, Yi L. Hypoxia exerts greater impacts on shallow groundwater nitrogen cycling than seawater mixture in coastal zone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43812-43821. [PMID: 38907819 DOI: 10.1007/s11356-024-34045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
There is no doubt that hypoxia and seawater mixture are profoundly affecting the global nitrogen (N) cycle. However, their mechanisms for altering N cycling patterns in shallow coastal groundwater are largely unknown. Here, we examined shallow groundwater N transformation characteristics (dissolved inorganic N and related chemical properties) in the coastal area of east and west Shenzhen City. Results showed that common hypoxic conditions exist in this study area. Ions/Cl- ratios indicated varying levels of saltwater mixture and sulfide formation across this study area. Dissolved oxygen (DO) affects the N cycle process by controlling the conditions of nitrification and the formation of sulfides. Salinity affects nitrification and denitrification processes by physiological effects, while sulfide impacts nitrification, denitrification, and dissimilatory nitrate reduction to ammonium (DNRA) processes through its own toxicity mechanism and the provision of electron donors for DNRA organisms. Redundancy analysis (RDA) results indicate that the influence magnitude is in the following order: DO > sulfide > salinity. Seawater mixture weakened the nitrification and denitrification of groundwater by changing salinity, while hypoxia and its controlled sulfide formation not only weaken nitrification and denitrification but also stimulated the DNRA process and promotes N regeneration. In this study area, hypoxia is considered to exert greater impacts on N cycling in the coastal shallow groundwater than seawater mixture. These findings greatly improve our understanding of the consequences of hypoxia and seawater mixture on coastal groundwater N cycling.
Collapse
Affiliation(s)
- Yingchun Dong
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Xiang Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Lixin Yi
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| |
Collapse
|
3
|
Zheng J, Arif M, Li L, He X, Wu Y, Cao W, Yan P, Li C. Dam inundation reduces ecosystem multifunctionality following riparian afforestation in the Three Gorges Reservoir Region. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121188. [PMID: 38759556 DOI: 10.1016/j.jenvman.2024.121188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Afforestation is an acknowledged method for rehabilitating deteriorated riparian ecosystems, presenting multiple functions to alleviate the repercussions of river damming and climate change. However, how ecosystem multifunctionality (EMF) responds to inundation in riparian afforestation ecosystems remains relatively unexplored. Thus, this article aimed to disclose how EMF alters with varying inundation intensities and to elucidate the key drivers of this variation based on riparian reforestation experiments in the Three Gorges Reservoir Region in China. Our EMF analysis encompassed wood production, carbon storage, nutrient cycling, decomposition, and water regulation under different inundation intensities. We examined their correlation with soil properties and microbial diversity. The results indicated a substantial reduction in EMF with heightened inundation intensity, which was primarily due to the decline in most individual functions. Notably, soil bacterial diversity (23.02%), soil properties such as oxidation-reduction potential (ORP, 11.75%), and temperature (5.85%) emerged as pivotal variables elucidating EMF changes under varying inundation intensities. Soil bacterial diversity and ORP declined as inundation intensified but were positively associated with EMF. In contrast, soil temperature rose with increased inundation intensity and exhibited a negative correlation with EMF. Further insights gleaned from structural equation modeling revealed that inundation reduced EMF directly and indirectly by reducing soil ORP and bacterial diversity and increasing soil temperature. This work underscores the adverse effects of dam inundation on riparian EMF and the crucial role soil characteristics and microbial diversity play in mediating EMF in response to inundation. These insights are pivotal for the conservation of biodiversity and functioning following afforestation in dam-induced riparian habitats.
Collapse
Affiliation(s)
- Jie Zheng
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, 400715, China.
| | - Muhammad Arif
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, 400715, China.
| | - Lijuan Li
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xinrui He
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Yuanyuan Wu
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Wenqiu Cao
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Peixuan Yan
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Changxiao Li
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Luo J, Wu Y, Fu H, Fu M, Liu M, Guo H, Jin L, Wang S. Shift in microorganism and functional gene abundance during completely autotrophic nitrogen removal over nitrite (CANON) process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121009. [PMID: 38718600 DOI: 10.1016/j.jenvman.2024.121009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
Nitrification-denitrification process has failed to meet wastewater treatment standards. The completely autotrophic nitrite removal (CANON) process has a huge advantage in the field of low carbon/nitrogen wastewater nitrogen removal. However, slow start-up and system instability limit its applications. In this study, the time of the start-up CANON process was reduced by using bio-rope as loading materials. The establishing of graded dissolved oxygen improved the stability of the CANON process and enhanced the stratification effect between functional microorganisms. Microbial community structure and the abundance of nitrogen removal functional genes are also analyzed. The results showed that the CANON process was initiated within 75 days in the complete absence of anaerobic ammonium oxidizing bacteria (AnAOB) inoculation. The ammonium and nitrogen removal efficiencies of CANON process reached to 94.45% and 80.76% respectively. The results also showed that the relative abundance of nitrogen removal bacterial in the biofilm gradually increases with the dissolved oxygen content in the solution decreases. In contrast, the relative abundance of ammonia oxidizing bacteria was positively correlated with the dissolved oxygen content in the solution. The relative abundance of g__Candidatus_Brocadia in biofilm was 15.56%, and while g__Nitrosomonas was just 0.6613%. Metagenomic analysis showed that g__Candidatus_Brocadia also contributes 66.37% to the partial-nitrification functional gene Hao (K10535). This study presented a new idea for the cooperation between partial-nitrification and anammox, which improved the nitrogen removal system stability.
Collapse
Affiliation(s)
- Jiajun Luo
- Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen, 361024, China
| | - Yicheng Wu
- Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen, 361024, China
| | - Haiyan Fu
- Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen, 361024, China.
| | - Muxing Fu
- Xiamen Zhongrenhemei Biotechnology Co., Xiamen, 361024, China
| | - Mian Liu
- Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen, 361024, China
| | - Huibin Guo
- Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen, 361024, China
| | - Lei Jin
- Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen, 361024, China
| | | |
Collapse
|
5
|
Song A, Liang S, Li H, Yan B. Effects of biodiversity on functional stability of freshwater wetlands: a systematic review. Front Microbiol 2024; 15:1397683. [PMID: 38650885 PMCID: PMC11033414 DOI: 10.3389/fmicb.2024.1397683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Freshwater wetlands are the wetland ecosystems surrounded by freshwater, which are at the interface of terrestrial and freshwater ecosystems, and are rich in ecological composition and function. Biodiversity in freshwater wetlands plays a key role in maintaining the stability of their habitat functions. Due to anthropogenic interference and global change, the biodiversity of freshwater wetlands decreases, which in turn destroys the habitat function of freshwater wetlands and leads to serious degradation of wetlands. An in-depth understanding of the effects of biodiversity on the stability of habitat function and its regulation in freshwater wetlands is crucial for wetland conservation. Therefore, this paper reviews the environmental drivers of habitat function stability in freshwater wetlands, explores the effects of plant diversity and microbial diversity on habitat function stability, reveals the impacts and mechanisms of habitat changes on biodiversity, and further proposes an outlook for freshwater wetland research. This paper provides an important reference for freshwater wetland conservation and its habitat function enhancement.
Collapse
Affiliation(s)
- Aiwen Song
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shen Liang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huai Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Baixing Yan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|