1
|
Li KY, Zhou JL, Guo SY, Dou XX, Gu JJ, Gao F. Advances of microalgae-based enhancement strategies in industrial flue gas treatment: From carbon sequestration to lipid production. BIORESOURCE TECHNOLOGY 2025; 423:132250. [PMID: 39961522 DOI: 10.1016/j.biortech.2025.132250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/20/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
The acceleration of industrial development and urban expansion has led to a significant increase in flue gas emissions, posing a significant risk to human health and ecosystems. Recent studies have elucidated the significant potential of microalgae in the domain of sustainable industrial flue gas treatment. However, the inherent multifaceted factors within flue gas exert inhibitory effects on microalgal growth, thereby diminishing the overall system efficacy. Therefore, it is necessary to systematically analyze the flue gas components and propose complete intermediate treatment steps to alleviate their stressful effects on microalgae. Concurrently, to address the intrinsic limitations of the systemic functionality and enhance the applicability of microalgal biotechnology in industrial flue gas treatment, this review proposes a series of innovative solutions and strategies aimed at improving carbon fixation efficiency and lipid productivity of microalgae during flue gas treatment. In addition, the feasibility and potential limitations of these strategies in industrial applications are also discussed. Furthermore, through systematic comparative analysis, the optimal scheme and development trend of industrial flue gas emission reduction technology are explored. This comprehensive review not only establishes a theoretical foundation for the application of microalgae in industrial flue gas treatment, but also offers valuable insights for future research directions in related fields.
Collapse
Affiliation(s)
- Kai-Yuan Li
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Zhoushan 316000, China
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Zhoushan 316000, China
| | - Si-Yuan Guo
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Zhoushan 316000, China
| | - Xiao-Xiao Dou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Zhoushan 316000, China
| | - Jun-Jie Gu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Zhoushan 316000, China.
| |
Collapse
|
2
|
Zhao J, Peng L, Ma X. Innovative microalgae technologies for mariculture wastewater treatment: Single and combined microalgae treatment mechanisms, challenges and future prospects. ENVIRONMENTAL RESEARCH 2025; 266:120560. [PMID: 39647683 DOI: 10.1016/j.envres.2024.120560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The discharge of aquaculture wastewater, comprising nitrogen, phosphorus, heavy metals, and antibiotics from large-scale aquaculture, poses a significant threat to marine ecosystems and human health. Consequently, addressing the treatment of marine aquaculture wastewater is imperative. Conventional physicochemical treatment methods have various limitations, whereas microalgae-based biological treatment technologies have gained increasing attention in the field of water purification due to their ability to efficiently absorb organic matter from mariculture wastewater and convert CO₂ into biomass products. Microalgae offer potential for highly efficient and cost-effective mariculture wastewater treatment, with particularly noteworthy advancements in the application of combined microalgae technologies. This paper explores the research hotspots in this field through bibliometric analysis and systematically discusses the following aspects: (1) summarizing the current pollution status of mariculture wastewater, including the types and sources of pollutants in various forms of mariculture wastewater, treatment methods, and associated treatment efficiencies; (2) analyzing the factors contributing to the gradual replacement of single microalgae technology with combined microalgae technology, highlighting its synergistic effects, enhanced pollutant removal efficiencies, resource recovery potential, and alignment with sustainable development goals; (3) exploring the mechanisms of pollutant removal by combined microalgae technologies, focusing on their technical advantages in bacterial-algal coupling, immobilized microalgae systems, and microalgal biofilm technologies; (4) discussing the challenges faced by the three main categories of combined microalgae technologies and proposing future improvement strategies to further enhance their application effectiveness. In conclusion, this paper offers a detailed analysis of these emerging technologies, providing a forward-looking perspective on the future development of microalgae-based mariculture wastewater treatment solutions.
Collapse
Affiliation(s)
- Jinjin Zhao
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/School of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Xiangmeng Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi Nanning, 530004, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, China.
| |
Collapse
|
3
|
Cao M, Bai Y, Wang Y, Su J, Feng J. Simultaneous removal of ammonia, copper ions and sulfamethoxazole from aquaculture wastewater with low carbon to nitrogen ratio enhanced by manganese redox driven by a two-stage synergistic bioreactor: Optimization and potential mechanism. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136586. [PMID: 39577287 DOI: 10.1016/j.jhazmat.2024.136586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
The problem of low carbon-nitrogen ratio (C/N) in wastewater is a major challenge for biological treatment, especially the complex pollution of ammonia nitrogen (NH4+-N), sulfamethoxazole (SMX), and copper ions (Cu(II)). Herein, a strain of Pseudoxanthomonas sp. MA23 with manganese (Mn) reduction-coupled ammonia oxidation properties was isolated. Subsequently, kaolin and bentonite were used as the main raw materials, and a mixture of coconut shell biochar (CSBC) and different Mn ores were added to make ceramsite carriers to load the target strain MA23. To achieve complete N removal and Mn redox process, Dechloromonas sp. YZ8 with Mn redox and denitrification performance was introduced, and a second-stage bioreactor was constructed with volcanic rock as the biocarrier. The results showed that the bioreactor was most effective when the hydraulic retention time (HRT) was 20.0 and 2.0 h, C/N was 1.5, and pH was 6.5. The response of the bioreactors was investigated by inflowing different concentrations of Cu(II) and SMX. Appropriate Cu(II) concentrations promoted the electron transfer in the system, and Cu(II) and SMX were together removed by biological action and chemisorption. Furthermore, genes involved in N metabolism were enriched in the bioreactors and the microorganisms responded to environmental changes by up or down-regulating relevant metabolic genes. The synergistic system proposed in this study provided a promising attempt to simultaneously address NH4+-N-Cu(II)-SMX pollution in low C/N wastewater.
Collapse
Affiliation(s)
- Meng Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Jingting Feng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
4
|
Zulekha R, Mubashar M, Muzamil Sultan M, Wang Z, Li J, Zhang X. An assessment of the autotrophic/heterotrophic synergism in microalgae under mixotrophic mode and its contribution in high-rate phosphate recovery from wastewater. BIORESOURCE TECHNOLOGY 2024; 413:131450. [PMID: 39265752 DOI: 10.1016/j.biortech.2024.131450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
Dual carbon metabolisms and the synergism contribute to improving nutrient recovery under mixotrophy. However, how synergism influences nutrient recovery has yet to be understood, which is revealed in the current study. Due to dual carbon metabolisms and synergism,the PO4--P recovery rate under mixotrophy reached 0.34 mg L-1 h-1. Due to the internal cycling of respiratory CO2, the mutualistic index (MI) in terms of synergism helped Scenedesmus accumulate 27.49 % more biomass under mixotrophy than sum of the two controls. In contrast, MI contributed 0.26 g L-1 d-1 to the total modeled mixotrophic productivity of 1.15 g L-1 d-1. To total modeled PO4--P recovery, mixotrophic-auto, and mixotrophic-hetero shares were 42 % and 58 %. The synergism under mixotrophy contributed 20 % in total PO4--P recovery. The PO4--P recovery rate under mixotrophywas comparable to other biological P removal methods. These findings emphasize the potential of synergism in improving productivityand promoting resource recovery for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Rabail Zulekha
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Mubashar
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Muhammad Muzamil Sultan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zimin Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xuezhi Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
5
|
Shitu A, Tadda MA, Zhao J, Danhassan UA, Ye Z, Liu D, Chen W, Zhu S. Review of recent advances in utilising aquaculture wastewater for algae cultivation and microalgae-based bioproduct recovery. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:485. [PMID: 39508916 DOI: 10.1007/s10653-024-02286-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Aquaculture operations produce large amounts of wastewater contaminated with organic matter, nitrogenous compounds, and other emerging contaminants; when discharged into natural water bodies, it could result in ecological problems and severely threaten aquatic habitats and human health. However, using aquaculture wastewater in biorefinery systems is becoming increasingly crucial as advancements in valuable bioproduct production continue to improve economic feasibility. Research on utilising microalgae as an alternative to producing biomass and removing nutrients from aquaculture wastewater has been extensively studied over the past decades. Microalgae have the potential to use carbon dioxide (CO2) effectively and significantly reduce carbon footprint, and the harvested biomass can also be used as aquafeed. Furthermore, aquaculture wastewater enriched with phosphorus (P) is a potential resource for P recovery for the production of biofertiliser. This will reduce the P supply shortage and eliminate the environmental consequences of eutrophication. In this context, the present review aims to provide a comprehensive overview of the current state of the art in a generation, as well as the characteristics and environmental impact of aquaculture wastewater reported by the most recent research. Furthermore, the review synthesized recent developments in algal biomass cultivation using aquaculture wastewater and its utilisation as biorefinery feedstocks for producing value-added products, such as aquafeeds, bioethanol, biodiesel, biomethane, and bioenergy. This integrated process provides a sustainable method for recovering biomass and water, fully supporting the framework of a circular economy in aquaculture wastewater treatment via resource recovery.
Collapse
Affiliation(s)
- Abubakar Shitu
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
- Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, 700241, Nigeria.
| | - Musa Abubakar Tadda
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, 700241, Nigeria
| | - Jian Zhao
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Umar Abdulbaki Danhassan
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhangying Ye
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Ocean Academy, Zhejiang University, Zhoushan, 316000, China
| | - Dezhao Liu
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Songming Zhu
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
- Ocean Academy, Zhejiang University, Zhoushan, 316000, China.
| |
Collapse
|
6
|
Nagarajan D, Chen CW, Ponnusamy VK, Dong CD, Lee DJ, Chang JS. Sustainable aquaculture and seafood production using microalgal technology - A circular bioeconomy perspective. CHEMOSPHERE 2024; 366:143502. [PMID: 39384130 DOI: 10.1016/j.chemosphere.2024.143502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
The aquaculture industry is under the framework of the food-water-energy nexus due to the extensive use of water and energy. Sustainable practices are required to support the tremendous growth of this sector. Currently, the aquaculture industry is challenged by its reliance on capture fisheries for feed, increased use of pharmaceuticals, infectious outbreaks, and solid/liquid waste management. This review posits microalgal technology as a comprehensive solution for the current predicaments in aquaculture in a sustainable way. Microalgae are microscopic, freshwater and marine photosynthetic organisms, capable of carbon mitigation and bioremediation. They are indispensable in aquaculture due to their key role in marine productivity and their position in the marine food chain. Microalgae are nutritious and are currently used as feed in specific sectors of aquaculture. Due to their bioremediation potential, direct application of microalgae in shellfish ponds and in recirculating systems have been adopted to improve water quality and aquatic animal health. The potential of microalgae for integration into various aspects of aquaculture processes, namely hatcheries, feed, and waste management has been critically analyzed. Seamless integration of microalgal technology in aquaculture is feasible, and this review will provide new insights into using microalgal technology for sustainable aquaculture.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, 811532, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, 811532, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 811532, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry & Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, 811532, Taiwan; Department of Medicinal and Applied Chemistry & Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan.
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, ROC, Taiwan; Research Center for Smart and Sustainable Circular Economy, Tunghai University, Tainan, 407224, ROC, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, 407224, ROC, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| |
Collapse
|
7
|
Mao BD, Vadiveloo A, Qiu J, Gao F. Artificial photosynthesis: Promising approach for the efficient production of high-value bioproducts by microalgae. BIORESOURCE TECHNOLOGY 2024; 401:130718. [PMID: 38641303 DOI: 10.1016/j.biortech.2024.130718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
Recently, microalgae had received extensive attention for carbon capture and utilization. But its overall efficiency still could not reach a satisfactory degree. Artificial photosynthesis showed better efficiency in the conversion of carbon dioxide. However, artificial photosynthesis could generally only produce C1-C3 organic matters at present. Some studies showed that heterotrophic microalgae can efficiently synthesize high value organic matters by using simple organic matter such as acetate. Therefore, the combination of artificial photosynthesis with heterotrophic microalgae culture showed great potential for efficient carbon capture and high-value organic matter production. This article systematically analyzed the characteristics and challenges of carbon dioxide conversion by microalgae and artificial photosynthesis. On this basis, the coupling mode and development trend of artificial photosynthesis combined with microalgae culture were discussed. In summary, the combination of artificial photosynthesis and microalgae culture has great potential in the field of carbon capture and utilization, and deserves further study.
Collapse
Affiliation(s)
- Bin-Di Mao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Ashiwin Vadiveloo
- Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Jian Qiu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
8
|
Zhou JL, Li JN, Zhou D, Wang JM, Ye YH, Zhang C, Gao F. Dialysis bag-microalgae photobioreactor: Novel strategy for enhanced bioresource production and wastewater purification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120439. [PMID: 38401502 DOI: 10.1016/j.jenvman.2024.120439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Cultivating microalgae in wastewater offers various advantages, but it still faces limitations such as bacteria and other impurities in wastewater affecting the growth and purity of microalgae, difficulty in microalgae harvesting, and extracellular products of microalgae affecting effluent quality. In this study, a novel dialysis bag-microalgae photobioreactor (Db-PBR) was developed to achieve wastewater purification and purer bioresource recovery by culturing microalgae in a dialysis bag. The dialysis bag in the Db-PBR effectively captured the microalgae cells and promoted their lipid accumulation, leading to higher biomass (1.53 times of the control) and lipid production (2.50 times of the control). During the stable operation stage of Db-PBR, the average soluble microbial products (SMP) content outside the dialysis bag was 25.83 mg L-1, which was significantly lower than that inside the dialysis bag (185.63 mg L-1), indicating that the dialysis bag effectively intercepted the SMP secreted by microalgae. As a result, the concentration of dissolved organic carbon (DOC) in Db-PBR effluent was significantly lower than that of traditional photobioreactor. Furthermore, benefiting from the dialysis bag in the reactor effectively intercepted the microorganisms in wastewater, significantly improving the purity of the cultured microalgae biomass, which is beneficial for the development of high-value microalgae products.
Collapse
Affiliation(s)
- Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Jia-Nan Li
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Dan Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Jia-Ming Wang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Yi-Hang Ye
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Ci Zhang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China.
| |
Collapse
|
9
|
Zhou JL, Yang ZY, Vadiveloo A, Li C, Chen QG, Chen DZ, Gao F. Enhancing lipid production and sedimentation of Chlorella pyrenoidosa in saline wastewater through the addition of agricultural phytohormones. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120445. [PMID: 38412732 DOI: 10.1016/j.jenvman.2024.120445] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
In this study, the effect of external agricultural phytohormones (mixed phytohormones) addition (1.0, 5.0, 10.0, and 20.0 mg L-1) on the growth performance, lipid productivity, and sedimentation efficiency of Chlorella pyrenoidosa cultivated in saline wastewater was investigated. Among the different concentrations evaluated, the highest biomass (1.00 g L-1) and lipid productivity (11.11 mg L-1 d-1) of microalgae were obtained at 10.0 mg L-1 agricultural phytohormones addition. Moreover, exogenous agricultural phytohormones also improved the sedimentation performance of C. pyrenoidosa, which was conducive to the harvest of microalgae resources, and the improvement of sedimentation performance was positively correlated with the amount of agricultural phytohormones used. The promotion of extracellular polymeric substances synthesis by phytohormones in microalgal cells could be considered as the reason for its promotion of microalgal sedimentation. Transcriptome analysis revealed that the addition of phytohormones upregulated the expression of genes related to the mitogen-activated protein kinase (MAPK)-mediated phytohormone signaling pathway and lipid synthesis, thereby improving salinity tolerance and lipid production in C. pyrenoidosa. Overall, agricultural phytohormones provide an effective and inexpensive strategy for increasing the lipid productivity and sedimentation efficiency of microalgae cultured in saline wastewater.
Collapse
Affiliation(s)
- Jin-Long Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Zi-Yan Yang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, 6150, Australia
| | - Chen Li
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Qing-Guo Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Dong-Zhi Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Feng Gao
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China.
| |
Collapse
|