1
|
Li L, Li Q, Xiao A, Li C, Li Y. Regulation of soil properties by amendments and their impact on Cd fractions and bacterial community structure: Exploring the mechanism of inhibition on Cd phytoavailability. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118033. [PMID: 40107216 DOI: 10.1016/j.ecoenv.2025.118033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/19/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
The application of soil amendments is crucial for mitigating cadmium (Cd) phytoavailability in Cd-contaminated paddy fields, thereby promoting safer rice production. However, the mechanisms through which these amendments influence phytoavailable Cd by modifying soil properties have not yet been fully elucidated. A pot experiment was conducted to evaluate the effects of three soil amendments-sepiolite (SE), wollastonite (WO), and a composite (YY)-on the Cd concentrations in brown rice, soil Cd fractions, soil properties, and bacterial community structure. Additionally, the relationships among brown rice Cd concentration, soil properties, Cd speciation, and bacterial diversity were explored. The findings demonstrated that the YY, SE, and WO amendments significantly increased the soil pH, cation exchange capacity (CEC), and concentrations of exchangeable calcium (ExCa), magnesium (ExMg), and available silicon (ASi), facilitating the transformation of water-soluble and acid-extractable forms of Cd into reducible fractions and facilitating the formation of low-solubility Cd compounds, thereby significantly lowering the levels of CaCl2-extractable Cd and DTPA-extractable Cd. The YY amendment also increased available potassium (AK) and available phosphorus (AP) while simplifying the bacterial community structure, notably increasing the abundance of Firmicutes and Bacteroidota. In contrast, SE amendment increased the abundance of Acidobacteriota. Both the YY and SE amendments reduced Cd phytoavailability by modifying Cd speciation and optimizing soil bacterial communities, whereas WO primarily lowered Cd phytoavailability by altering Cd speciation alone. These results underscore the regulatory role of soil amendments in modifying soil properties, influencing Cd speciation, and reshaping bacterial communities, ultimately reducing Cd accumulation in brown rice. This study enhances our understanding of the mechanisms by which amendments alter soil properties to reduce Cd phytoavailability, offering insights for developing in situ passivation technologies for Cd-contaminated soils.
Collapse
Affiliation(s)
- Linfeng Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China; Guangdong Engineering Research Center for Monitoring and Prevention of Agricultural Non-point Source Pollution, Guangzhou 510640, China
| | - Qi Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China; Guangdong Engineering Research Center for Monitoring and Prevention of Agricultural Non-point Source Pollution, Guangzhou 510640, China
| | - Anwen Xiao
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China; Guangdong Engineering Research Center for Monitoring and Prevention of Agricultural Non-point Source Pollution, Guangzhou 510640, China
| | - Chonghua Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China; Guangdong Engineering Research Center for Monitoring and Prevention of Agricultural Non-point Source Pollution, Guangzhou 510640, China
| | - YiChun Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China; Guangdong Engineering Research Center for Monitoring and Prevention of Agricultural Non-point Source Pollution, Guangzhou 510640, China.
| |
Collapse
|
2
|
Yang X, Zheng J, Yang D. Variation of soil organic carbon stability in restored mountain marsh wetlands. Sci Rep 2024; 14:23702. [PMID: 39390112 PMCID: PMC11467425 DOI: 10.1038/s41598-024-75473-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
The replacement of farmland by native hygro-plants is increasingly common globally within the context of wetland ecosystem restoration. Understanding the long-term effects of this replacement on the abundance and persistence of soil organic carbon (SOC) in mountain marshes is important for soil carbon management. Here, the restored plateau mountain marshes of Duliu River Wetland Provincial Nature Reserve, China was selected. The properties, soil moisture content (SMC), pH, texture, free-form iron oxides ([Formula: see text]), amorphous iron oxides ([Formula: see text]), mineral-associated organic carbon (MAOC), and iron-bound organic carbon (Fe-OC) were analyzed in topsoil samples (0 ~ 20 cm) during the restoration of rice paddies to Sphagnum palustre L. wetlands for 0, 2, 10, and 20 years. Natural Sphagnum wetlands were also used as the control. We found that marsh restoration increased SMC, [Formula: see text], [Formula: see text], [Formula: see text]/[Formula: see text], SOC, MAOC, Fe-OC, Fe-OC/SOC, but decreased the MAOC/SOC ratio. MAOC/SOC ratio of marshes were expectedly lower than the proportion of labile SOC in total SOC during the restoration period. SMC, SOC, and MAOC were higher in the natural Sphagnum wetlands than in other habitats. Both SOC and Fe-OC/SOC were positively correlated with SMC, [Formula: see text], [Formula: see text], [Formula: see text]/[Formula: see text], and Fe-OC, but negatively correlated with soil pH. MAOC/SOC was negatively correlated with SMC, [Formula: see text] and [Formula: see text]/[Formula: see text]. These results emphasized the significance of reconverting rice paddies to marsh wetlands for increasing the sequestration of labile SOC and Fe-OC. Further studies are required to identify and quantify the organo-mineral stabilization mechanisms of SOC at the different SOC fractionations throughout the restoration period.
Collapse
Affiliation(s)
- Xin Yang
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, 550025, China
| | - Jiao Zheng
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, 550025, China
| | - Dan Yang
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Li Z, Wei J, Zhou X, Tian Q, He W, Cao X. Dynamic restoration mechanism of plant community in the burned area of northeastern margin of Qinghai-Tibet Plateau. FRONTIERS IN PLANT SCIENCE 2024; 15:1368814. [PMID: 39119492 PMCID: PMC11306190 DOI: 10.3389/fpls.2024.1368814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Forest fires play a pivotal role in influencing ecosystem evolution, exerting a profound impact on plant diversity and community stability. Understanding post-fire recovery strategies holds significant scientific importance for the ecological succession and restoration of forest ecosystems. This study utilized Partial Least Squares Path Modeling (PLS-PM) to investigate dynamic relationships among plant species diversity, phylogenetic diversity, soil properties, and community stability during various recovery stages (5-year, 15-year, and 23-year) following wildfires on the northeastern margin of the Qinghai-Tibet Plateau. The findings revealed: (1) Over time, species richness significantly decreased (p< 0.05 or p< 0.01), while species diversity and dominance increased, resulting in uniform species distribution. Community stability progressively improved, with increased species compositional similarity. (2) Throughout succession, phylogenetic diversity (PD) significantly decreased (p< 0.01), accompanied by rising Mean Pairwise Distance (MPD) and Mean Nearest Taxon Distance (MNTD). Net Relatedness Index (NRI) shifted from positive to negative, indicating an increasing aggregation and dominance of plants with similar evolutionary traits in burned areas. Early succession witnessed simultaneous environmental filtering and competitive exclusion, shifting predominantly to competitive exclusion in later stages. (3) PLS-PM revealed that in the early recovery stage, soil properties mainly affected community stability, while species diversity metamorphosed into the primary factor in the mid-to-late stages. In summary, this study showed that plant diversity and phylogenetic variation were successful in revealing changes in community structure during the succession process. Soil characteristics functioned as selective barriers for plant communities during succession, and community stability underwent a multi-faceted and dynamic process. The soil-plant dynamic feedback continuously enhanced soil conditions and community vegetation structure thereby augmenting stability. Post-fire vegetation gradually transitioned towards the original native state, demonstrating inherent ecological self-recovery capabilities in the absence of secondary disturbances.
Collapse
Affiliation(s)
- Zizhen Li
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Jia Wei
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xiaolei Zhou
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Qing Tian
- Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Wanpeng He
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Xueping Cao
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Li Z, Wei J, He W, Cao X, Zhou X, Tian Q. Effect of plant-soil system on the restoration of community stability after wildfire in the northeast margin of Qinghai-Tibet plateau. Sci Rep 2024; 14:10706. [PMID: 38729979 PMCID: PMC11087542 DOI: 10.1038/s41598-024-61621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024] Open
Abstract
Wildfires, as an environmental filter, are pivotal ecological disturbances that reshape plant communities and soil dynamics, playing a crucial role in regulating biogeographic patterns and ecosystem services. In this study, we aim to explore the effects of wildfires on forest ecosystems, specifically focusing on the plant-soil feedback mechanisms within the northeastern margin of the Qinghai-Tibet Plateau (QTP). Utilizing Partial Least Squares Path Modeling (PLS-PM), we investigated the interrelationships among soil physicochemical properties, enzyme activities, species diversity, and community stability at varying post-fire recovery stages (5, 15, and 23 years). Results indicated that in the early recovery stages, rapid changes in soil properties such as decreased pH (p < 0.001) and increased nutrient availability facilitate the emergence of early successional species with high resource utilization traits. As the ecosystem evolved toward a climax community, the soil and vegetation exhibit increased stability. Furthermore, soil enzyme activities displayed dynamic patterns that corresponded with changes in soil nutrient content, directly influencing the regeneration and diversity of plant communities. Importantly, our study documented a transition in the influence of soil properties on community stability from direct positive effects in initial recovery phases to negative impacts in later stages, while indirect benefits accrue through increased species diversity and enzyme activity. Vegetation composition and structure changed dynamically with recovery time during community succession. Plant nutrient absorption and accumulation affected nutrient dynamics in the soil, influencing plant regeneration, distribution, and diversity. Our results underscore the complex interactions between soil and vegetation that drive the recovery dynamics post-wildfire, highlighting the resilience of forest ecosystems to fire disturbances. This study contributes to the understanding of post-fire recovery processes and offers valuable insights for the management and restoration of fire-affected forest ecosystems.
Collapse
Affiliation(s)
- Zizhen Li
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Jia Wei
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Wanpeng He
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Xueping Cao
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Xiaolei Zhou
- College of Forestry, Gansu Agricultural University, Lanzhou, China.
| | - Qing Tian
- Gansu Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
5
|
Li Q, Chang J, Li L, Lin X, Li Y. Soil amendments alter cadmium distribution and bacterial community structure in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171399. [PMID: 38458464 DOI: 10.1016/j.scitotenv.2024.171399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
Soil amendments play a pivotal role in ensuring the safety of food production by inhibiting the transfer of heavy metal ions from soils to crops. Nevertheless, their impact on soil characteristics and the microbial community and their role in reducing cadmium (Cd) accumulation in rice remain unclear. In this study, pot experiments were conducted to investigate the effects of three soil amendments (mineral, organic, and microbial) on the distribution of Cd speciation, organic components, iron oxides, and microbial community structure. The application of soil amendments resulted in significant reductions in the soil available Cd content (16 %-51 %) and brown rice Cd content (16 %-78 %), facilitating the transformation of Cd from unstable forms (decreasing 10 %-20 %) to stable forms (increasing 77 %-150 %) in the soil. The mineral and organic amendments increased the soil cation exchange capacity (CEC) and plant-derived organic carbon (OC), respectively, leading to reduced Cd accumulation in brown rice, while the microbial amendment enhanced OC complexity and the abundances of Firmicutes and Bacteroidota, contributing to the decreased rice Cd uptake. The synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectroscopy indicated that soil amendments regulated soil Cd species by promoting iron oxides and OC coupling. Moreover, both organic and microbial amendments significantly reduced the diversity and richness of the bacterial communities and altered their compositions and structures, by increasing the relative abundances of Bacteroidota and Firmicutes and decreasing those of Acidobacteria, Actinobacteria, and Myxococcota. Soil microbiome analysis revealed that the increase of Firmicutes and Bacteroidota associated with Cd adsorption and sequestration contributed to the suppression of soil Cd reactivity. These findings offer valuable insights into the potential mechanisms by which soil amendments regulate the speciation and bioavailability of Cd, and improve the bacterial communities, thereby providing guidance for agricultural management practices.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jingjing Chang
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Linfeng Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiaoyang Lin
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yichun Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
6
|
Lorentz JF, Calijuri ML, Rad C, Cecon PR, Assemany PP, Martinez JM, Kholssi R. Microalgae biomass as a conditioner and regulator of soil quality and fertility. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:198. [PMID: 38265731 DOI: 10.1007/s10661-024-12355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Characteristics of an acid soil cultivated with Urochloa brizantha cv. Marandu were evaluated in relation to two types of fertilization: a conventional one, chemical based on nitrogen and potassium, and a biofertilizer, based on microalgae biomass. The results were compared among three treatments, control, conventional, and biological fertilization, with seven replications each. The study evaluated microalgae community, total carbon and nitrogen contents, mineral nitrogen, and enzymatic activity. Chlorella vulgaris showed the highest organism density, which can be explained by its rapid growth and high resistance. The highest species diversity was detected in the control 1,380,938 org cm-3 and biological 1,841,250 org cm-3 treatments, with the latter showing a higher density of cyanobacteria, especially Pseudanabaena limnetica with 394,554 org cm-3. The soil treated with chemical fertilization showed higher nitrate (9.14 mg NKg-1 NO3--N) and potassium (52.32 mg dm-3) contents. The highest levels of sulfur (21.73 mg dm-3) and iron (96.46 mgdm-3) were detected in the biological treatment. The chemical treatment showed higher activity of the enzymes acid phosphatase, acetylglucosaminidase, and sulfatase, while α-glucosidase and leucine aminopeptidase stood out in the biological treatment. Soil properties were not significantly affected by the treatments. The use of microalgae biomass derived from wastewater treatment from milking parlors was evaluated and presented as a promising biofertilizer for agriculture, following the line of recovering nutrient-rich wastes. In this sense, although many challenges need to be overcome, the results suggest that microalgal-based fertilizers could lead to low-impact agriculture.
Collapse
Affiliation(s)
| | - Maria Lúcia Calijuri
- Department of Civil Engineering, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Carlos Rad
- Composting Research Group, Faculty of Sciences, University of Burgos, Burgos, Spain
| | | | - Paula Peixoto Assemany
- Department of Environmental Engineering, Federal University of Lavras, Lavras, MG, Brazil
| | - Jorge Miñon Martinez
- Composting Research Group, Faculty of Sciences, University of Burgos, Burgos, Spain
| | - Rajaa Kholssi
- Composting Research Group, Faculty of Sciences, University of Burgos, Burgos, Spain
| |
Collapse
|