1
|
Zhang Z, Bi Y, Zhou F, Zhang D, Xu S, Zhang X, Fan Z, Yao Z, He Y. Huajuxiaoji Formula Alleviates Phenyl Sulfate-Induced Diabetic Kidney Disease by Inhibiting NLRP3 Inflammasome Activation and Pyroptosis. J Diabetes Res 2024; 2024:8772009. [PMID: 39040854 PMCID: PMC11262882 DOI: 10.1155/2024/8772009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/22/2023] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Background: One of the most common microvascular complications of diabetes is diabetic kidney disease (DKD). The Huajuxiaoji formula (HJXJ) has shown clinical efficacy for DKD; however, its regulatory mechanisms against DKD remain elusive. We investigated NLRP3 inflammasome and the mechanisms of HJXJ by which HJXJ alleviates DKD. Methods: Phenyl sulfate (PS) was used to establish DKD models. HJXJ was administered to mice through intragastric or made into a pharmaceutical serum for the cell cultures. Biological indicator levels in mouse blood and urine were analyzed, and kidney tissues were used for HE, Masson, and PAS staining. ELISA and western blotting were used to detect inflammatory cytokines and protein levels, respectively. Reactive oxygen species (ROS) production and pyroptosis were evaluated using flow cytometry. Lentiviral vector-mediated overexpression of NLRP3 was performed to determine whether NLRP3 participates in the antipyroptotic effect of HJXJ. Results: HJXJ significantly reduced the severity of the injury and, in a dose-dependent manner, decreased the levels of biological markers including creatinine, blood urea nitrogen, urine protein, and endotoxin, as well as inflammatory cytokines such as interleukin (IL)-1β, IL-18, tumor necrosis factor-α, and IL-6 in DKD mice. Treatment with HJXJ reversed the downregulation of podocin, nephrin, ZO-1, and occludin and upregulated ROS, NLRP3, Caspase-1 P20, and GSDMD-N induced by PS. Moreover, the upregulation of NLRP3 expression increased the number of cells positive for pyroptosis. HJXJ suppressed pyroptosis and inflammasome activation by inhibiting NLRP3 expression. Conclusions: Generally, HJXJ has the potential to reduce DKD injury and exerts anti-DKD effects by inhibiting the NLRP3-mediated NLRP3 inflammasome activation and pyroptosis in vitro and in vivo.
Collapse
Affiliation(s)
- Zeng Zhang
- Department of EndocrinologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yueping Bi
- Department of Chinese MedicineYinhang Community Health Service Center of Yangpu District, Shanghai 200438, China
| | - Fengzhu Zhou
- Department of EndocrinologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Duanchun Zhang
- Department of EndocrinologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Siyu Xu
- Department of EndocrinologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xinyi Zhang
- Department of EndocrinologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zhaohua Fan
- Department of EndocrinologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zheng Yao
- Department of EndocrinologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yanming He
- Department of EndocrinologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
2
|
Khan MA, Kassianos AJ, Hoy WE, Alam AK, Healy HG, Gobe GC. Promoting Plant-Based Therapies for Chronic Kidney Disease. J Evid Based Integr Med 2022; 27:2515690X221079688. [PMID: 35243916 PMCID: PMC8902019 DOI: 10.1177/2515690x221079688] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chronic kidney disease (CKD) is debilitating, increasing in incidence worldwide, and a financial and social burden on health systems. Kidney failure, the final stage of CKD, is life-threatening if untreated with kidney replacement therapies. Current therapies using commercially-available drugs, such as angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers and calcium channel blockers, generally only delay the progression of CKD. This review article focuses on effective alternative therapies to improve the prevention and treatment of CKD, using plants or plant extracts. Three mechanistic processes that are well-documented in CKD pathogenesis are inflammation, fibrosis, and oxidative stress. Many plants and their extracts are already known to ameliorate kidney dysfunction through antioxidant action, with subsequent benefits on inflammation and fibrosis. In vitro and in vivo experiments using plant-based therapies for pre-clinical research demonstrate some robust therapeutic benefits. In the CKD clinic, combination treatments of plant extracts with conventional therapies that are seen as relatively successful currently may confer additive or synergistic renoprotective effects. Therefore, the aim of recent research is to identify, rigorously test pre-clinically and clinically, and avoid any toxic outcomes to obtain optimal therapeutic benefit from medicinal plants. This review may prove to be a filtering tool to researchers into complementary and alternative medicines to find out the current trends of using plant-based therapies for the treatment of kidney diseases, including CKD.
Collapse
Affiliation(s)
- Muhammad Ali Khan
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,School of Biomedical Sciences, Faculty of Medicine, Univ of Queensland, Australia.,Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.,Kidney Disease Research Collaborative, Princess Alexandra Hospital and Univ of Queensland, Translational Research Institute, Brisbane, Australia.,Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Bangladesh
| | - Andrew J Kassianos
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.,Centre for Chronic Disease, Faculty of Medicine, Univ of Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia.,IHBI, Queensland Univ of Technology, Brisbane, Australia
| | - Wendy E Hoy
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,Centre for Chronic Disease, Faculty of Medicine, Univ of Queensland, Brisbane, Australia
| | | | - Helen G Healy
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.,Centre for Chronic Disease, Faculty of Medicine, Univ of Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Glenda C Gobe
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,School of Biomedical Sciences, Faculty of Medicine, Univ of Queensland, Australia.,Kidney Disease Research Collaborative, Princess Alexandra Hospital and Univ of Queensland, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
3
|
Xie M, Wu Z, Ying S, Liu L, Zhao C, Yao C, Zhang Z, Luo C, Wang W, Zhao D, Zhang J, Qiu W, Wang Y. Sublytic C5b-9 induces glomerular mesangial cell proliferation via ERK1/2-dependent SOX9 phosphorylation and acetylation by enhancing Cyclin D1 in rat Thy-1 nephritis. Exp Mol Med 2021; 53:572-590. [PMID: 33811247 PMCID: PMC8102557 DOI: 10.1038/s12276-021-00589-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 02/01/2023] Open
Abstract
Glomerular mesangial cell (GMC) proliferation is a histopathological alteration in human mesangioproliferative glomerulonephritis (MsPGN) or in animal models of MsPGN, e.g., the rat Thy-1 nephritis (Thy-1N) model. Although sublytic C5b-9 assembly on the GMC membrane can trigger cell proliferation, the mechanisms are still undefined. We found that sublytic C5b-9-induced rat GMC proliferation was driven by extracellular signal-regulated kinase 1/2 (ERK1/2), sry-related HMG-box 9 (SOX9), and Cyclin D1. Here, ERK1/2 phosphorylation was a result of the calcium influx-PKC-α-Raf-MEK1/2 axis activated by sublytic C5b-9, and Cyclin D1 gene transcription was enhanced by ERK1/2-dependent SOX9 binding to the Cyclin D1 promoter (-582 to -238 nt). In addition, ERK1/2 not only interacted with SOX9 in the cell nucleus to mediate its phosphorylation at serine residues 64 (a new site identified by mass spectrometry) and 181 (a known site), but also indirectly induced SOX9 acetylation by elevating the expression of general control non-repressed protein 5 (GCN5), which together resulted in Cyclin D1 synthesis and GMC proliferation. Moreover, our in vivo experiments confirmed that silencing these genes ameliorated the lesions of Thy-1N rats and reduced SOX9 phosphorylation, acetylation and Cyclin D1 expression. Furthermore, the renal tissue sections of MsPGN patients also showed higher phosphorylation or expression of ERK1/2, SOX9, and Cyclin D1. In summary, these findings suggest that sublytic C5b-9-induced GMC proliferation in rat Thy-1N requires SOX9 phosphorylation and acetylation via enhanced Cyclin D1 gene transcription, which may provide a new insight into human MsPGN pathogenesis.
Collapse
Affiliation(s)
- Mengxiao Xie
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China ,grid.412676.00000 0004 1799 0784Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029 China
| | - Zhijiao Wu
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China
| | - Shuai Ying
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China
| | - Longfei Liu
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China ,grid.89957.3a0000 0000 9255 8984Department of Central Laboratory, The Affiliated Huaian No. 1 People’s Hospital, Nanjing Medical University, One West Huanghe Road, Huai’an, Jiangsu 223300 China
| | - Chenhui Zhao
- grid.412676.00000 0004 1799 0784Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029 China
| | - Chunlei Yao
- grid.412676.00000 0004 1799 0784Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029 China
| | - Zhiwei Zhang
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China
| | - Can Luo
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China
| | - Wenbo Wang
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China
| | - Dan Zhao
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China
| | - Jing Zhang
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China
| | - Wen Qiu
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China ,grid.89957.3a0000 0000 9255 8984Key Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Yingwei Wang
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China ,grid.89957.3a0000 0000 9255 8984Key Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| |
Collapse
|
4
|
Ren D, Zuo C, Xu G. Clinical efficacy and safety of Tripterygium wilfordii Hook in the treatment of diabetic kidney disease stage IV: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 2019; 98:e14604. [PMID: 30882626 PMCID: PMC6426630 DOI: 10.1097/md.0000000000014604] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The present study aims to evaluate the clinical efficacy and safety of Tripterygium wilfordii Hook (TwH) combined with angiotensin receptor blockers/ACE inhibitors (ARB/ACEI) in the treatment of diabetic kidney disease (DKD) stage IV. METHODS We searched China National Knowledge Internet (CNKI), the Chinese Biomedical Database, Embase and PubMed for articles about TwH combined with ARB/ACEI in treating DKD stage IV and set the study inclusion and elimination standards. RESULTS A total of 22 randomized controlled trials (RCTs) with 1414 participants were collected for detailed evaluation. The meta-analysis results suggested that compared with the controls, the combined group showed significant effects in reducing 24-h urinary protein [mean difference (MD) = -0.87, 95% confidence interval (CI) = (-1.03, -0.71)], raising serum albumin [MD = 4.14, 95% CI (3.43, 4.85)] and the total efficiency [odds ratio (OR) = 4.84, 95% CI (3.33, 7.03)], with no statistical difference in serum creatinine between both groups [MD = -3.02, 95% CI (-6.40, 0.37), P > .05]. However, the risk of adverse reactions increased by 8% [Risk Difference (RD) = 0.08, 95% CI (0.05, 0.11)] in the combination. CONCLUSIONS TwH combined with ARB/ACEI in the treatment of DKD stage IV is superior to the monotherapy of ARB/ACEI.
Collapse
Affiliation(s)
- Daijin Ren
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University
| | - Chao Zuo
- Grade 2016, the First Clinical Medical College of Nanchang University, China
| | - Gaosi Xu
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University
| |
Collapse
|
5
|
Yang Y, Wang ZP, Gao SH, Ren HQ, Zhong RQ, Chen WS. The effects of Salvia przewalskii total phenolic acid extract on immune complex glomerulonephritis. PHARMACEUTICAL BIOLOGY 2017; 55:2153-2160. [PMID: 29025319 PMCID: PMC6130473 DOI: 10.1080/13880209.2017.1383486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/23/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT Salvia przewalskii Maxim. (Lamiaceae) is a Chinese herbal medicine that has long been used for the treatment of cardiovascular disease. OBJECTIVE The study investigated the therapeutic efficacy of S. przewalskii total phenolic acid extract (SPE) on immune complex glomerulonephritis (ICG) in rats. MATERIALS AND METHODS Sixty-two Wistar rats were randomized into six groups. ICG was induced in all groups except normal control group. SPE was administered intragastrically at 24 h intervals for 40 consecutive days. Urine protein (UP), total serum protein (TSP), serum albumin (SA), serum cholesterol (SC) and serum urea nitrogen (SUN) were measured one day before, on day 20 and 40 after SPE administration. On day 40 after SPE administration, the kidneys were removed and prepared into pathologic sections. In addition, kidney wet mass was measured for calculating the kidney wet mass coefficient (KWMC). RESULTS UP excretion was reduced significantly on day 20 after SPE administration in all three SPE groups as compared with that in medium group, and this effect was observable continuously until 40 days after SPE administration. Compared with medium group, TSP and SA were increased in all three SPE groups after 40 days treatment, while SC and SUN were decreased. KWMC was decreased significantly in 100 mg/kg SPE group after 40 days treatment compared with that in medium group. Histopathologic analyses showed that renal inflammatory infiltration and kidney intumesce were alleviated in all three SPE groups. CONCLUSIONS SPE may be a potential therapeutic drug for glomerulonephritis.
Collapse
Affiliation(s)
- Yang Yang
- Department of Laboratory Diagnostics, Changzheng Hospital, Second Military Medical University of CPLA, Shanghai, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University of CPLA, Shanghai, China
- Affiliated Huaihai Hospital of Xuzhou Medical University (The 97th Hospital of CPLA), Xuzhou, China
| | - Zhi-Peng Wang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University of CPLA, Shanghai, China
| | - Shou-Hong Gao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University of CPLA, Shanghai, China
| | - Hong-Qi Ren
- Affiliated Huaihai Hospital of Xuzhou Medical University (The 97th Hospital of CPLA), Xuzhou, China
| | - Ren-Qian Zhong
- Department of Laboratory Diagnostics, Changzheng Hospital, Second Military Medical University of CPLA, Shanghai, China
| | - Wan-Sheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University of CPLA, Shanghai, China
| |
Collapse
|
6
|
Wang D, Zhao XH, Cui Y, Zhang TT, Wang F, Hu YH. Efficacy and safety of Tripterygium wilfordii Hook F for CKD in Mainland China: A systematic review and meta-analysis. Phytother Res 2017; 32:436-451. [PMID: 29193402 DOI: 10.1002/ptr.5987] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/26/2017] [Accepted: 10/20/2017] [Indexed: 12/25/2022]
Abstract
Tripterygium wilfordii Hook F (TwHF) is a promising Chinese traditional medicine used to significantly reduce proteinuria and improve renal function. However, its efficacy and safety in treatment of chronic kidney disease need to be further explored in order to promote its application in clinics. This review compared the efficacy and safety of TwHF with the placebo, conventional Western medicine and other immunosuppressive medicine in a range of kidney disorders. One hundred three randomized controlled trials were included. TwHF therapy decreased 24-hr proteinuria by 0.59 g/day (95% confidence interval [CI; -0.68, -0.50]), serum creatinine level by 1.93 μmol/L (95% CI [-3.69, -0.17]), and blood urea nitrogen level by 0.24 mmol/L (95% CI [-0.41, -0.07]); increased the total effective rate by 27% (95% CI [1.24, 1.30]); and decreased the incidence of adverse reactions by 19% (95% CI [0.68, 0.96]) overall. Meta regression results showed that the duration of therapy and mean age of participants were the major sources of high heterogeneity. Sensitivity analysis demonstrated that our statistic results were relatively stable and credible. The present findings suggested that TwHF possibly has nephroprotective effects by decreasing proteinuria, serum creatinine level, and blood urea nitrogen level and no more adverse reactions compared with control group in most kidney disorders. However, these findings still need to be further confirmed by high-quality trials.
Collapse
Affiliation(s)
- Duo Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiao-Han Zhao
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yi Cui
- Information Technology Department, Hebei Youth Administrative Cadres College, Shijiazhuang, China
| | - Tian-Tian Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Fang Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yong-Hong Hu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
7
|
Wang Z, Yu C, Zhou LN, Chen X. Effects of Tripterygium wilfordii Induction Therapy to IgA Nephropathy Patients with Heavy Proteinuria. Biol Pharm Bull 2017; 40:1833-1838. [PMID: 28867717 DOI: 10.1248/bpb.b17-00134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although some new drugs have been developed, Tripterygium wilfordii HOOK F. (TWHF) has the merits of relatively lower price and fewer side effects. Unfortunately, the efficacy and safety of the TWHF (especially dosage 120 mg/d) in the immunoglobulin A (IgA) nephropathy (IgAN) are still lacking. A cohort study including 49 IgAN patients with heavy proteinuria who received induction therapy was undertaken. Patients were divided into three groups: Prednisone (PRE), conventional-dose TWHF (CTW) and double-dose TWHF (DTW). The clinical features, laboratory data, histological manifestations and outcomes of the groups were compared. We found that urinary protein excretion and rates of elevated n-acetyl-β-D-glucosaminidase (NAG) and retinol binding protein (RBP) were prominent in all groups. Neither histopathological changes nor the rates of renal insufficiency were significantly different among groups. Patients in the PRE (69.2%) and DTW groups (87.5%) achieved complete remission; none of the CTW group did. Furthermore, the total remission rate of the DTW group was substantially higher than that of the CTW group. The degree of hypoproteinemia, improved considerably in the PRE and DTW groups. Treatment was well tolerated in all patients, and no serious adverse events were observed. Our findings suggested that induction therapy with double dose TWHF significantly improved response rates in IgAN patients with heavy proteinuria, and did not considerably increase side effects.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Nephrology & Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Chao Yu
- Department of Nephrology & Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Li-Na Zhou
- Department of Nephrology, Yancheng Third People's Hospital
| | - Xin Chen
- Department of Nephrology, Yancheng Third People's Hospital
| |
Collapse
|
8
|
Wu W, Yang JJ, Yang HM, Huang MM, Fang QJ, Shi G, Mao ZM, Han WB, Shen SM, Wan YG. Multi-glycoside of Tripterygium wilfordii Hook. f. attenuates glomerulosclerosis in a rat model of diabetic nephropathy by exerting anti-microinflammatory effects without affecting hyperglycemia. Int J Mol Med 2017; 40:721-730. [PMID: 28731135 PMCID: PMC5548017 DOI: 10.3892/ijmm.2017.3068] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 07/10/2017] [Indexed: 12/26/2022] Open
Abstract
Multi-glycoside of Tripterygium wilfordii Hook. f. (GTW) has been proven to be clinically effective in relieving microinflammation in patients with early diabetic nephropathy (DN). However, the therapeutic mechanisms involved in vivo remain unclear. In the process of early DN, microinflammation and activation of p38 mitogen-activated protein kinase (MAPK) and canonical nuclear factor (NF)-κB signaling pathways are the important mechanisms by which hyperglycemia contributes to glomerulosclerosis (GS). Therefore, this study aimed to examine the ameliorative effects of GTW on GS, and then to clarify its anti-microinflammatory mechanisms by inhibiting p38 MAPK and NF-κB signaling activities in the kidney. All rats were divided into 4 groups: the sham group, the sham + GTW group, the vehicle group and the GTW group. The suitable dose of GTW and vehicle were daily administered for 8 weeks after the induction of DN by unilateral nephrectomy combined with intraperitoneal injections of streptozotocin (STZ). The general status of the rats, biochemical parameters, renal histological changes and macrophages in glomeruli, as well as expression of the key proteins in the p38 MAPK and canonical NF-κB signaling pathways and inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and transforming growth factor (TGF)-β1 in the kidney were examined, respectively. The results revealed that, GTW improved the general cond ition and biochemical parameters of the rats, but did not lower blood glucose; GTW attenuated GS and suppressed glomerular microinflammation including the infiltration of ED1+ cells in glomeruli and the protein overexpression of TNF-α, IL-1β and TGF-β1 in the kidney; GTW inhibited the protein overexpression of key signaling molecules of p38 MAPK and canonical NF-κB pathways in the kidney including phosphorylated p38 MAPK, phosphorylated inhibitor protein IκB and NF-κB (p65). On the whole, we expounded that GTW, as a natural regulator in vivo, alleviates GS without affecting hyperglycemia, by exerting anti-microinflammatory effects, including reducing macrophage infiltration in glomeruli, suppressing TNF-α, IL-1β and TGF-β1 overexpression in the kidney and inhibiting p38 MAPK and NF-κB signaling activities.
Collapse
Affiliation(s)
- Wei Wu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China
| | - Jing-Jing Yang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China
| | - Hai-Ming Yang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Meng-Meng Huang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China
| | - Qi-Jun Fang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Ge Shi
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China
| | - Zhi-Min Mao
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China
| | - Wen-Bei Han
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China
| | - Shan-Mei Shen
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yi-Gang Wan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|