1
|
Santos MG, Nunes da Silva M, Vasconcelos MW, Carvalho SMP. Scientific and technological advances in the development of sustainable disease management tools: a case study on kiwifruit bacterial canker. FRONTIERS IN PLANT SCIENCE 2024; 14:1306420. [PMID: 38273947 PMCID: PMC10808555 DOI: 10.3389/fpls.2023.1306420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024]
Abstract
Plant disease outbreaks are increasing in a world facing climate change and globalized markets, representing a serious threat to food security. Kiwifruit Bacterial Canker (KBC), caused by the bacterium Pseudomonas syringae pv. actinidiae (Psa), was selected as a case study for being an example of a pandemic disease that severely impacted crop production, leading to huge economic losses, and for the effort that has been made to control this disease. This review provides an in-depth and critical analysis on the scientific progress made for developing alternative tools for sustainable KBC management. Their status in terms of technological maturity is discussed and a set of opportunities and threats are also presented. The gradual replacement of susceptible kiwifruit cultivars, with more tolerant ones, significantly reduced KBC incidence and was a major milestone for Psa containment - which highlights the importance of plant breeding. Nonetheless, this is a very laborious process. Moreover, the potential threat of Psa evolving to more virulent biovars, or resistant lineages to existing control methods, strengthens the need of keep on exploring effective and more environmentally friendly tools for KBC management. Currently, plant elicitors and beneficial fungi and bacteria are already being used in the field with some degree of success. Precision agriculture technologies, for improving early disease detection and preventing pathogen dispersal, are also being developed and optimized. These include hyperspectral technologies and forecast models for Psa risk assessment, with the latter being slightly more advanced in terms of technological maturity. Additionally, plant protection products based on innovative formulations with molecules with antibacterial activity against Psa (e.g., essential oils, phages and antimicrobial peptides) have been validated primarily in laboratory trials and with few compounds already reaching field application. The lessons learned with this pandemic disease, and the acquired scientific and technological knowledge, can be of importance for sustainably managing other plant diseases and handling future pandemic outbreaks.
Collapse
Affiliation(s)
- Miguel G. Santos
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of the University of Porto, Vairão, Portugal
| | - Marta Nunes da Silva
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of the University of Porto, Vairão, Portugal
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Susana M. P. Carvalho
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of the University of Porto, Vairão, Portugal
| |
Collapse
|
2
|
Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther 2022; 7:199. [PMID: 35752612 PMCID: PMC9233671 DOI: 10.1038/s41392-022-01056-1] [Citation(s) in RCA: 486] [Impact Index Per Article: 162.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative opportunistic pathogen that infects patients with cystic fibrosis, burn wounds, immunodeficiency, chronic obstructive pulmonary disorder (COPD), cancer, and severe infection requiring ventilation, such as COVID-19. P. aeruginosa is also a widely-used model bacterium for all biological areas. In addition to continued, intense efforts in understanding bacterial pathogenesis of P. aeruginosa including virulence factors (LPS, quorum sensing, two-component systems, 6 type secretion systems, outer membrane vesicles (OMVs), CRISPR-Cas and their regulation), rapid progress has been made in further studying host-pathogen interaction, particularly host immune networks involving autophagy, inflammasome, non-coding RNAs, cGAS, etc. Furthermore, numerous technologic advances, such as bioinformatics, metabolomics, scRNA-seq, nanoparticles, drug screening, and phage therapy, have been used to improve our understanding of P. aeruginosa pathogenesis and host defense. Nevertheless, much remains to be uncovered about interactions between P. aeruginosa and host immune responses, including mechanisms of drug resistance by known or unannotated bacterial virulence factors as well as mammalian cell signaling pathways. The widespread use of antibiotics and the slow development of effective antimicrobials present daunting challenges and necessitate new theoretical and practical platforms to screen and develop mechanism-tested novel drugs to treat intractable infections, especially those caused by multi-drug resistance strains. Benefited from has advancing in research tools and technology, dissecting this pathogen's feature has entered into molecular and mechanistic details as well as dynamic and holistic views. Herein, we comprehensively review the progress and discuss the current status of P. aeruginosa biophysical traits, behaviors, virulence factors, invasive regulators, and host defense patterns against its infection, which point out new directions for future investigation and add to the design of novel and/or alternative therapeutics to combat this clinically significant pathogen.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanmin Zhou
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, 430071, P.R. China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haihua Liang
- College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Min Wu
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| |
Collapse
|
3
|
Roberto de Oliveira P, Kalinke C, Alves Bonacin J, Malaspina O, Cornélio Ferreira Nocelli R, Campos Janegitz B. Propolis green biofilm for the immobilization of carbon nanotubes and metallic ions: Development of redox catalysts. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
SORUCU A, CEYLAN Ö. Determination of antimicrobial and anti-quorum sensing activities of water and ethanol extracts propolis. ANKARA ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2020. [DOI: 10.33988/auvfd.793632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Abstract
Bacteria can migrate in groups of flagella-driven cells over semisolid surfaces. This coordinated form of motility is called swarming behavior. Swarming is associated with enhanced virulence and antibiotic resistance of various human pathogens and may be considered as favorable adaptation to the diverse challenges that microbes face in rapidly changing environments. Consequently, the differentiation of motile swarmer cells is tightly regulated and involves multi-layered signaling networks. Controlling swarming behavior is of major interest for the development of novel anti-infective strategies. In addition, compounds that block swarming represent important tools for more detailed insights into the molecular mechanisms of the coordination of bacterial population behavior. Over the past decades, there has been major progress in the discovery of small-molecule modulators and mechanisms that allow selective inhibition of swarming behavior. Herein, an overview of the achievements in the field and future directions and challenges will be presented.
Collapse
Affiliation(s)
- Sina Rütschlin
- Department of ChemistryKonstanz Research, School Chemical Biology, ZukunftskollegUniversity of Konstanz78457KonstanzGermany
| | - Thomas Böttcher
- Department of ChemistryKonstanz Research, School Chemical Biology, ZukunftskollegUniversity of Konstanz78457KonstanzGermany
| |
Collapse
|
6
|
de Mélo Silva IS, do Amorim Costa Gaspar LM, Rocha AMO, da Costa LP, Tada DB, Franceschi E, Padilha FF. Encapsulation of Red Propolis in Polymer Nanoparticles for the Destruction of Pathogenic Biofilms. AAPS PharmSciTech 2020; 21:49. [PMID: 31900606 DOI: 10.1208/s12249-019-1576-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022] Open
Abstract
Microbial biofilms, structured communities of microorganisms, have been often associated to the infection and bacterial multiresistance problem. Conventional treatment of infection involves the use of antibiotics, being an alternative approach is the use of red propolis, a natural product, to prepare polymer nanoparticles. The aim of the present study was to encapsulate red propolis extract in poly(lactic-co-glycolic acid) (PLGA) nanoparticles for destruction in vitro of pathogenic biofilms. Poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) containing red propolis hydroethanolic extract (2 mg/mL) were produced by emulsification solvent diffusion method. The extract and developed nanoparticles were analyzed for antimicrobial activity and inhibition of bacterial biofilm formation in vitro against Staphylococcus aureus and Pseudomonas aeruginosa. Transmission electron microscopy images confirmed spherical nanoparticles in the range size from 42.4 nm (PLGA NPs) to 69.2 nm (HERP PLGA NPs), with encapsulation efficiencies of 96.99%. The free extract and encapsulated in polymer nanoparticle presented antimicrobial potential, with a minimum inhibitory concentration from 15.6 to 125 μg mL-1 and from 100 to 1560 μg mL-1 to inhibit biofilm formation for the Staphylococcus aureus and Pseudomonas aeruginosa, respectively.
Collapse
|
7
|
Quorum sensing in food spoilage and natural-based strategies for its inhibition. Food Res Int 2019; 127:108754. [PMID: 31882100 DOI: 10.1016/j.foodres.2019.108754] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/27/2019] [Accepted: 10/13/2019] [Indexed: 10/25/2022]
Abstract
Food can harbor a variety of microorganisms including spoilage and pathogenic bacteria. Many bacterial processes, including production of degrading enzymes, virulence factors, and biofilm formation are known to depend on cell density through a process called quorum sensing (QS), in which cells communicate by synthesizing, detecting and reacting to small diffusible signaling molecules - autoinducers (AI). The disruption of QS could decisively contribute to control the expression of many harmful bacterial phenotypes. Several quorum sensing inhibitors (QSI) have been extensively studied, being many of them of natural origin. This review provides an analysis on the role of QS in food spoilage and biofilm formation within the food industry. QSI from natural sources are also reviewed towards their putative future applications to prolong shelf life of food products and decrease foodborne pathogenicity.
Collapse
|
8
|
Vadakkan K, Choudhury AA, Gunasekaran R, Hemapriya J, Vijayanand S. Quorum sensing intervened bacterial signaling: Pursuit of its cognizance and repression. J Genet Eng Biotechnol 2018; 16:239-252. [PMID: 30733731 PMCID: PMC6353778 DOI: 10.1016/j.jgeb.2018.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/09/2018] [Accepted: 07/03/2018] [Indexed: 01/24/2023]
Abstract
Bacteria communicate within a system by means of a density dependent mechanism known as quorum sensing which regulate the metabolic and behavioral activities of a bacterial community. This sort of interaction occurs through a dialect of chemical signals called as autoinducers synthesized by bacteria. Bacterial quorum sensing occurs through various complex pathways depending upon specious diversity. Therefore the cognizance of quorum sensing mechanism will enable the regulation and thereby constrain bacterial communication. Inhibition strategies of quorum sensing are collectively called as quorum quenching; through which bacteria are incapacitated of its interaction with each other. Many virulence mechanism such as sporulation, biofilm formation, toxin production can be blocked by quorum quenching. Usually quorum quenching mechanisms can be broadly classified into enzymatic methods and non-enzymatic methods. Substantial understanding of bacterial communication and its inhibition enhances the development of novel antibacterial therapeutic drugs. In this review we have discussed the types and mechanisms of quorum sensing and various methods to inhibit and regulate density dependent bacterial communication.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | - Abbas Alam Choudhury
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | - Ramya Gunasekaran
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | | | - Selvaraj Vijayanand
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| |
Collapse
|
9
|
Moroccan Propolis: A Natural Antioxidant, Antibacterial, and Antibiofilm against Staphylococcus aureus with No Induction of Resistance after Continuous Exposure. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9759240. [PMID: 30538767 PMCID: PMC6260532 DOI: 10.1155/2018/9759240] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 02/08/2023]
Abstract
This study was performed to evaluate the total phenols, flavonoids, and antioxidant activities of twenty-four propolis samples from different regions of Morocco. In addition, two samples were screened regarding the antibacterial effect against four Staphylococcus aureus strains. Gas chromatography coupled to mass spectra (GC-MS) analysis was done for propolis samples used in antibacterial tests. The minimum inhibitory and minimum bactericidal concentration (MIC, MBC) were determined. The potential to acquire the resistance after sequential exposure of bacterial strains and the impact of adaptation to propolis on virulence using the Galleria mellonella were evaluated. Additionally, the effects of propolis extract on the bacterial adherence ability and its ability to inhibit the quorum sensing activity were also examined. Among the twenty-four extracts studied, the samples from Sefrou, Outat el Haj, and the two samples marketed in Morocco were the best for scavenging DPPH, ABTS, NO, peroxyl, and superoxide radicals as well as in scavenging of hydrogen peroxide. A strong correlation was found between the amounts of phenols, flavonoids, and antioxidant activities. Propolis extract at the MIC value (0.36 mg/mL) significantly reduced (p < 0.001) the virulence potential of S. aureus ATCC 6538 and the MRSA strains without leading to the development of resistance in the sequence of continuous exposure. It was able to impair the bacterial biofilm formation. The results have revealed that sample 1 reduces violacein production in a concentration dependent manner, indicating inhibition of quorum sensing. This extract has as main group of secondary metabolites flavonoids (31.9%), diterpenes (21.5%), and phenolic acid esters (16.5%).
Collapse
|
10
|
Nature to the natural rescue: Silencing microbial chats. Chem Biol Interact 2017; 280:86-98. [PMID: 29247642 DOI: 10.1016/j.cbi.2017.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/22/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
Communication is the sole means by which effective networking and co-existence is accomplished amongst living beings. Microbes have their own chit-chats. Science has overheard these microbial gossips and have concluded that these aren't just informal communications, but carefully coordinated signals that plan their effective strategies. Tracking one such signal molecule, N-acyl homoserine lactone (AHL), led to a fundamental understanding to microbial quorum sensing (QS). Furtherance of research sought for ways to cut off communication between these virulent forms, so as to hinder their combinatorial attacks through quorum sensing inhibitors (QSIs). A clear understanding of the inhibitors of these microbial communication systems is vital to destroy their networking and co-working. The current review, consolidates the solutions for QSIs offered from natural sources against these micro components, that are capable of slaughtering even nature's most fit entity-man. The applications of effective out sourcing of this QSI technologies and the need for development are discussed. The importance of silencing this microbial chatter to various aspects of human life and their implications are discussed and elaborated.
Collapse
|
11
|
Synthesis, odour characteristics and antibacterial activities of the stereoisomeric forms of whisky lactone and its thiono analogues. FLAVOUR FRAG J 2016. [DOI: 10.1002/ffj.3341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Alolofi H, El-Sayed M, Taha S. Clinical and radiographical evaluation of propolis and thymus vulgaris extracts compared with formocresol pulpotomy in human primary molars. BDJ Open 2016; 2:16005. [PMID: 29607066 PMCID: PMC5842867 DOI: 10.1038/bdjopen.2016.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/30/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022] Open
Abstract
Objectives/aims: This study aimed to examine the success of vital pulpotomy using natural extracts on primary teeth. Materials and methods: The study was carried out on 60 primary molars in 20 children indicated for pulpotomy. Primary molars were treated with formocresol (20 teeth), propolis ethanolic extract (20 teeth) or thymus vulgaris ethanolic extract (20 teeth). Treated teeth were clinically and radiographically evaluated after 1, 6 and 12 months. Results: The clinical success of formocresol and propolis groups was 88.2%, whereas the thymus group showed 94.4% with no statistical significance difference. The radiographical success for formocresol and propolis was 73.3%, and thymus was 88.2% without any statistical significance difference detected. Conclusion: Promising clinical and radiographical success rates of propolis and thymus vulgaris obtained when compared with formocresol.
Collapse
Affiliation(s)
- Hesham Alolofi
- Orthodontic, Pediatric Dentistry & Prevention Department, Faculty of Oral and Dental Medicine, Sana'a University, Sana'a, Yemen
| | - Manal El-Sayed
- Pediatric Dentistry & Public Health Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo, Egypt
| | - Sherine Taha
- Pediatric Dentistry & Public Health Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
13
|
Delago A, Mandabi A, Meijler MM. Natural Quorum Sensing Inhibitors - Small Molecules, Big Messages. Isr J Chem 2015. [DOI: 10.1002/ijch.201500052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Gemiarto AT, Ninyio NN, Lee SW, Logis J, Fatima A, Chan EWC, Lim CSY. Isoprenyl caffeate, a major compound in manuka propolis, is a quorum-sensing inhibitor in Chromobacterium violaceum. Antonie Van Leeuwenhoek 2015; 108:491-504. [PMID: 26059863 DOI: 10.1007/s10482-015-0503-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/04/2015] [Indexed: 11/24/2022]
Abstract
The emergence of antibiotic-resistant bacterial pathogens, especially Gram-negative bacteria, has driven investigations into suppressing bacterial virulence via quorum sensing (QS) inhibition strategies instead of bactericidal and bacteriostatic approaches. Here, we investigated several bee products for potential compound(s) that exhibit significant QS inhibitory (QSI) properties at the phenotypic and molecular levels in Chromobacterium violaceum ATCC 12472 as a model organism. Manuka propolis produced the strongest violacein inhibition on C. violaceum lawn agar, while bee pollen had no detectable QSI activity and honey had bactericidal activity. Fractionated manuka propolis (pooled fraction 5 or PF5) exhibited the largest violacein inhibition zone (24.5 ± 2.5 mm) at 1 mg dry weight per disc. In C. violaceum liquid cultures, at least 450 µg/ml of manuka propolis PF5 completely inhibited violacein production. Gene expression studies of the vioABCDE operon, involved in violacein biosynthesis, showed significant (≥two-fold) down-regulation of vioA, vioD and vioE in response to manuka propolis PF5. A potential QSI compound identified in manuka propolis PF5 is a hydroxycinnamic acid-derivative, isoprenyl caffeate, with a [M-H] of 247. Complete violacein inhibition in C. violaceum liquid cultures was achieved with at least 50 µg/ml of commercial isoprenyl caffeate. In silico docking experiments suggest that isoprenyl caffeate may act as an inhibitor of the violacein biosynthetic pathway by acting as a competitor for the FAD-binding pockets of VioD and VioA. Further studies on these compounds are warranted toward the development of anti-pathogenic drugs as adjuvants to conventional antibiotic treatments, especially in antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Adrian Tandhyka Gemiarto
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, No 1, Jalan Menara Gading, UCSI Heights, 56000, Cheras, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | |
Collapse
|
15
|
Chemical composition and disruption of quorum sensing signaling in geographically diverse United States propolis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:472593. [PMID: 25960752 PMCID: PMC4413979 DOI: 10.1155/2015/472593] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/12/2015] [Accepted: 03/25/2015] [Indexed: 12/02/2022]
Abstract
Propolis or bee glue has been used for centuries for various purposes and is especially important in human health due to many of its biological and pharmacological properties. In this work we showed quorum sensing inhibitory (QSI) activity of ten geographically distinct propolis samples from the United States using the acyl-homoserine lactone- (AHL-) dependent Chromobacterium violaceum strain CV026. Based on GC-MS chemical profiling the propolis samples can be classified into several groups that are as follows: (1) rich in cinnamic acid derivatives, (2) rich in flavonoids, and (3) rich in triterpenes. An in-depth analysis of the propolis from North Carolina led to the isolation and identification of a triterpenic acid that was recently isolated from Hondurian propolis (Central America) and ethyl ether of p-coumaric alcohol not previously identified in bee propolis. QSI activity was also observed in the second group US propolis samples which contained the flavonoid pinocembrin in addition to other flavonoid compounds. The discovery of compounds that are involved in QSI activity has the potential to facilitate studies that may lead to the development of antivirulence therapies that can be complementary and/or alternative treatments against antibiotic resistant bacterial pathogens and/or emerging pathogens that have yet to be identified.
Collapse
|
16
|
Tang K, Zhang XH. Quorum quenching agents: resources for antivirulence therapy. Mar Drugs 2014; 12:3245-82. [PMID: 24886865 PMCID: PMC4071575 DOI: 10.3390/md12063245] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 12/15/2022] Open
Abstract
The continuing emergence of antibiotic-resistant pathogens is a concern to human health and highlights the urgent need for the development of alternative therapeutic strategies. Quorum sensing (QS) regulates virulence in many bacterial pathogens, and thus, is a promising target for antivirulence therapy which may inhibit virulence instead of cell growth and division. This means that there is little selective pressure for the evolution of resistance. Many natural quorum quenching (QQ) agents have been identified. Moreover, it has been shown that many microorganisms are capable of producing small molecular QS inhibitors and/or macromolecular QQ enzymes, which could be regarded as a strategy for bacteria to gain benefits in competitive environments. More than 30 species of marine QQ bacteria have been identified thus far, but only a few of them have been intensively studied. Recent studies indicate that an enormous number of QQ microorganisms are undiscovered in the highly diverse marine environments, and these marine microorganism-derived QQ agents may be valuable resources for antivirulence therapy.
Collapse
Affiliation(s)
- Kaihao Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
17
|
Defoirdt T, Brackman G, Coenye T. Quorum sensing inhibitors: how strong is the evidence? Trends Microbiol 2013; 21:619-24. [DOI: 10.1016/j.tim.2013.09.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/16/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
|
18
|
Netíková L, Bogusch P, Heneberg P. Czech Ethanol-Free Propolis Extract Displays Inhibitory Activity against a Broad Spectrum of Bacterial and Fungal Pathogens. J Food Sci 2013; 78:M1421-9. [DOI: 10.1111/1750-3841.12230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/24/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Ladislava Netíková
- Faculty of Science, Univ. of Hradec Králové; Rokitanského 62; CZ-500 03 Hradec Králové; Czech Republic
| | - Petr Bogusch
- Faculty of Science, Univ. of Hradec Králové; Rokitanského 62; CZ-500 03 Hradec Králové; Czech Republic
| | - Petr Heneberg
- Third Faculty of Medicine, Charles Univ. in Prague; Ruská 87; CZ-100 00 Prague; Czech Republic
| |
Collapse
|