1
|
Xiang H, Lan Y, Hu L, Qin R, Li H, Weng T, Zou Y, Liu Y, Hu X, Ge W, Zhang H, Pan HL, Yang NN, Liu W, Cai G, Li M. AMPK activation mitigates inflammatory pain by modulating STAT3 phosphorylation in inflamed tissue macrophages of adult male mice. Mol Pain 2025; 21:17448069251321339. [PMID: 39921559 PMCID: PMC11843706 DOI: 10.1177/17448069251321339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/08/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025] Open
Abstract
Inflammatory pain presents a significant clinical challenge. AMP-activated protein kinase (AMPK) is recognized for its capacity to alleviate inflammation by inhibiting transcription factors such as nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription (STAT). Our prior research demonstrated that AMPK reduces inflammatory pain by inhibiting NF-κB activation and interleukin-1 beta (IL-1β) expression. However, the role of AMPK in regulating reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS) by modulating STAT3 phosphorylation in inflammatory pain remains inadequately understood. This study aims to investigate the role of AMPK in modulating STAT3 phosphorylation in the macrophages of inflamed tissues to mitigate inflammatory pain. A Complete Freund's Adjuvant (CFA)-induced inflammatory pain model was established by subcutaneous injection into the plantar surface of the left hindpaw of adult male mice. Behavioral tests of mechanical allodynia and thermal latency were used to determine nociceptive behavior. Immunoblotting quantified p-AMPK and iNOS expression levels. Nuclear translocation of p-STAT3(Ser727) and STAT3 in macrophages was assessed by western blot and immunofluorescence. ROS accumulation and mitochondrial damage in NR8383 macrophages were detected by flow cytometry. Lentivirus infection cells experiment was performed to transfect vectors encoding the STAT3 S727D mutants. Treatment with the AMPK activator AICAR alleviated CFA-induced inflammatory pain, enhanced AMPK phosphorylation, and reduced iNOS expression in inflamed skin tissues. AICAR effectively prevented STAT3 nuclear translocation while promoting the phosphorylation of STAT3 (Ser727) in the cytoplasm. In vitro studies with CFA-stimulated NR8383 macrophages revealed that AICAR increased STAT3(Ser727) phosphorylation, curtailed iNOS expression, and attenuated ROS accumulation and mitochondrial damage. Furthermore, the S727D mutation, which enhances STAT3 phosphorylation, replicated the protective effects of AICAR against CFA-induced oxidative stress and mitochondrial dysfunction. Our study shows that the AMPK acitvation downregulates iNOS expression by inhibiting the STAT3 nuclear translocation and promotes cytoplasmic STAT3(Ser727) phosphorylation, which reduces ROS expression and mitochondrial dysfunction, thereby alleviating inflammatory pain. These findings underscore the therapeutic potential of targeting AMPK and STAT3 pathways in inflammatory pain management.
Collapse
Affiliation(s)
- Hongchun Xiang
- Department of Acupuncture-Moxibustion, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Yuye Lan
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Hu
- Department of Pharmacology, School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Renjie Qin
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Hongping Li
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture- Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Tao Weng
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zou
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Yongmin Liu
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefei Hu
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqiang Ge
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhang
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Na-na Yang
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture- Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Wentao Liu
- Department of Pharmacology, School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Guowei Cai
- Department of Acupuncture-Moxibustion, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Man Li
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Reginato M, Luna V, Papenbrock J. Current knowledge about Na 2SO 4 effects on plants: what is different in comparison to NaCl? JOURNAL OF PLANT RESEARCH 2021; 134:1159-1179. [PMID: 34365525 DOI: 10.1007/s10265-021-01335-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
In some areas of the world, high levels of sodium sulfate (Na2SO4) are found in the soil together with sodium chloride (NaCl). However, most studies on salinity are performed utilizing only NaCl as a salinizing agent. Generally, plant species have different tolerance/susceptibility responses when grown in the presence of these salts. Some studies showed that Na2SO4 seems to be more inhibitory than NaCl for the growth of species such as barley, wheat, sugar cane, beet, tomato, wild potato, and others. However, studies focusing on how Na2SO4 can affect the biochemical and physiological processes of plants are very scarce. This review provides an overview on the effects of Na2SO4 on different crops and plants species with a special emphasis on the tolerance/non-tolerance mechanisms of the halophyte Prosopis strombulifera under elevated NaCl and Na2SO4. A better understanding of the tolerance mechanisms in this particular species will help to identify cultivars of crop species that are more tolerant to Na2SO4. This knowledge could be used to extent cultivation of certain crop plants on Na2SO4 containing soils.
Collapse
Affiliation(s)
- Mariana Reginato
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804BYA, Río Cuarto, Argentina.
- Instituto de Investigaciones Agrobiotecnológicas (INIAB-UNRC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36. Km. 601, X5804BYA, Rio Cuarto, Argentina.
| | - Virginia Luna
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804BYA, Río Cuarto, Argentina
- Instituto de Investigaciones Agrobiotecnológicas (INIAB-UNRC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36. Km. 601, X5804BYA, Rio Cuarto, Argentina
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, Herrenhäuserstr. 2, 30419, Hannover, Germany
| |
Collapse
|
3
|
Reginato M, Cenzano AM, Arslan I, Furlán A, Varela C, Cavallin V, Papenbrock J, Luna V. Na 2SO 4 and NaCl salts differentially modulate the antioxidant systems in the highly stress tolerant halophyte Prosopis strombulifera. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:748-762. [PMID: 34509937 DOI: 10.1016/j.plaphy.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Prosopis strombulifera (Lam.) Benth. is a halophytic shrub abundant in high-salinity areas in central Argentina, with high tolerance against NaCl but strong growth inhibition by Na2SO4. In the present study, the modulation of the antioxidant systems (enzymatic and non-enzymatic components) was analyzed under different salt treatments (NaCl, Na2SO4 and the iso-osmotic mixture) in hydroponic cultivation. Na2SO4-treated plants showed strong indications of oxidative stress (H2O2 and O2-• increase). Modifications in antioxidant enzymes activities were observed mainly under Na2SO4 treatment, where CAT seems to play an important role in early detoxification of H2O2 in roots, whereas SOD and APX have a predominant role in leaves. As part of the non-enzymatic system, 21 compounds were identified in leaves, being polyphenols the most abundant. Control plants contained the major variety of detected phytochemicals (14). Na2SO4-treated plants contained 10 compounds and NaCl-treated plants nine compounds, but with a different profile. NaCl-treated plants showed the highest antioxidant capacity. Our findings confirm that different types of salt treatments provoke a differential modulation of the antioxidant systems. Polyphenols and other ROS-detoxifying compounds, in a joint action with the enzymatic antioxidant system, are proposed to have a fundamental role in the cellular protection of P. strombulifera plants under severe oxidative stress. Our findings also highlight the potential of this halophyte as a valuable source of bioactive compounds with high antioxidant activity and health benefits.
Collapse
Affiliation(s)
- Mariana Reginato
- Laboratorio de Fisiología Vegetal Interacción Planta-Ambiente, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina; Instituto de Investigaciones Agrobiotecnológicas (INIAB-UNRC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Córdoba, Argentina.
| | - Ana M Cenzano
- Laboratorio de Ecofisiología y Bioquímica Vegetal. Instituto Patagónico para el Estudio de los Ecosistemas Continentales- Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC- CONICET). Puerto Madryn, Chubut, Argentina
| | - Idris Arslan
- Biomedical Eng. Incivez, Bulent Ecevit University, Zonguldak, Turkey
| | - Ana Furlán
- Instituto de Investigaciones Agrobiotecnológicas (INIAB-UNRC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Córdoba, Argentina; Biología, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Celeste Varela
- Laboratorio de Fisiología Vegetal Interacción Planta-Ambiente, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Vanina Cavallin
- Laboratorio de Bioquímica Vegetal. Instituto de Biología Agrícola de Mendoza. Consejo Nacional de Investigaciones Científicas y Técnicas (IBAM-CONICET). Chacras de Coria, Mendoza, Argentina
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, Herrenhäuserstr. 2, D-30419, Hannover, Germany
| | - Virginia Luna
- Laboratorio de Fisiología Vegetal Interacción Planta-Ambiente, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina; Instituto de Investigaciones Agrobiotecnológicas (INIAB-UNRC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Córdoba, Argentina
| |
Collapse
|
4
|
Schmeda-Hirschmann G, Theoduloz C, Jiménez-Aspee F, Echeverría J. Bioactive Constituents from South American Prosopis and their Use and Toxicity. Curr Pharm Des 2020; 26:542-555. [PMID: 31894744 DOI: 10.2174/1381612826666200102143755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The pods from several South American Prosopis species have been considered relevant food in arid and semi-arid South America since prehistoric times. Traditionally the meal from the pods was processed to prepare different foods and beverages. OBJECTIVE The objective was to discuss literature from the archaeological evidence of use to study the chemistry and (bio)activity of the extracts and secondary metabolites occurring in different Prosopis food products. METHODS The review was carried out by searching electronic databases, including ScienceDirect, SciFinder, Scopus, Scielo, Google Scholar, PubMed and hand-search on literature. The review mainly covers studies performed in the year 1995-2019 and the first-hand experience of the authors. References on the historical and prehistorical uses of the natural resource were also included. RESULTS In the last decades, most studies on the edible South American Prosopis focused on the constituents of pods meal, traditional preparations and by-products. Total 45 flavonoids, ellagic acid derivatives, catechin and simple phenolics were identified. Alkaloids occur mainly in the leaves, that are not used for human nutrition but as food for domestic animals. Piperidine alkaloids, tryptamine, tyramine and β-phenethylamine were isolated and identified from several species. The (bio)activity studies included mainly the antioxidant effect, antiinflammatory and enzyme inhibition associated with metabolic syndrome. The products showed no toxicity or mutagenic effect. CONCLUSION While data on the chemistry, some (bio)activities and toxicity are available for the pods meal and byproducts, little is known about the composition of the fermented Algarrobo beverages. Further studies are needed on the digestion of Algarrobo products both in humans and cattle.
Collapse
Affiliation(s)
| | - Cristina Theoduloz
- Laboratorio de Cultivo Celular, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Lircay, 3460000 Talca, Chile
| | - Felipe Jiménez-Aspee
- Departamento de Ciencias Basicas Biomedicas, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Lircay, 3460000 Talca, Chile
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, Santiago de Chile, Chile
| |
Collapse
|
5
|
Sharifi-Rad J, Kobarfard F, Ata A, Ayatollahi SA, Khosravi-Dehaghi N, Jugran AK, Tomas M, Capanoglu E, Matthews KR, Popović-Djordjević J, Kostić A, Kamiloglu S, Sharopov F, Choudhary MI, Martins N. Prosopis Plant Chemical Composition and Pharmacological Attributes: Targeting Clinical Studies from Preclinical Evidence. Biomolecules 2019; 9:E777. [PMID: 31775378 PMCID: PMC6995505 DOI: 10.3390/biom9120777] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 12/18/2022] Open
Abstract
Members of the Prosopis genus are native to America, Africa and Asia, and have long been used in traditional medicine. The Prosopis species most commonly used for medicinal purposes are P. africana, P. alba, P. cineraria, P. farcta, P. glandulosa, P. juliflora, P. nigra, P. ruscifolia and P. spicigera, which are highly effective in asthma, birth/postpartum pains, callouses, conjunctivitis, diabetes, diarrhea, expectorant, fever, flu, lactation, liver infection, malaria, otitis, pains, pediculosis, rheumatism, scabies, skin inflammations, spasm, stomach ache, bladder and pancreas stone removal. Flour, syrup, and beverages from Prosopis pods have also been potentially used for foods and food supplement formulation in many regions of the world. In addition, various in vitro and in vivo studies have revealed interesting antiplasmodial, antipyretic, anti-inflammatory, antimicrobial, anticancer, antidiabetic and wound healing effects. The phytochemical composition of Prosopis plants, namely their content of C-glycosyl flavones (such as schaftoside, isoschaftoside, vicenin II, vitexin and isovitexin) has been increasingly correlated with the observed biological effects. Thus, given the literature reports, Prosopis plants have positive impact on the human diet and general health. In this sense, the present review provides an in-depth overview of the literature data regarding Prosopis plants' chemical composition, pharmacological and food applications, covering from pre-clinical data to upcoming clinical studies.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran
| | - Athar Ata
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB R3B 2G3, Canada;
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran
| | - Nafiseh Khosravi-Dehaghi
- EvidenceBased Phytotherapy & Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj 19839-63113, Iran;
- Department of Pharmacognosy, School of Pharmacy, Alborz University of Medical Sciences, Karaj 19839-63113, Iran
| | - Arun Kumar Jugran
- G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Garhwal Regional Centre, Upper Baktiyana, Srinagar-246 174, Uttarakhand, India;
| | - Merve Tomas
- Faculty of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey;
| | - Esra Capanoglu
- Faculty of Chemical and Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey;
| | - Karl R. Matthews
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901-8520, USA;
| | - Jelena Popović-Djordjević
- Faculty of Agriculture, Chair of Chemistry and Biochemistry, University of Belgrade, 11080 Belgrade, Serbia; (J.P.-D.); (A.K.)
| | - Aleksandar Kostić
- Faculty of Agriculture, Chair of Chemistry and Biochemistry, University of Belgrade, 11080 Belgrade, Serbia; (J.P.-D.); (A.K.)
| | - Senem Kamiloglu
- Mevsim Gida Sanayi ve Soguk Depo Ticaret A.S. (MVSM Foods), Turankoy, Kestel, 16450 Bursa, Turkey;
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan;
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
6
|
Basting RT, Nishijima CM, Lopes JA, Santos RC, Lucena Périco L, Laufer S, Bauer S, Costa MF, Santos LC, Rocha LRM, Vilegas W, Santos ARS, Dos Santos C, Hiruma-Lima CA. Antinociceptive, anti-inflammatory and gastroprotective effects of a hydroalcoholic extract from the leaves of Eugenia punicifolia (Kunth) DC. in rodents. JOURNAL OF ETHNOPHARMACOLOGY 2014; 157:257-267. [PMID: 25311275 DOI: 10.1016/j.jep.2014.09.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/24/2014] [Accepted: 09/28/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE An ethnopharmacological survey indicated that leaves from Eugenia punicifolia (Kunth) DC. (Myrtaceae) are popularly used as a natural therapeutic agent to treat pain and inflammation. AIM OF THE STUDY The overall objective of the present study was to evaluate the antinociceptive, anti-inflammatory and gastroprotective activities of a hydroalcoholic extract of leaves from Eugenia punicifolia (HEEP) in rodents. MATERIAL AND METHODS The antinociceptive effects of HEEP were evaluated in mice after oral administration in chemical (formalin and glutamate) and thermal (hot-plate) tests. We evaluated the involvement of the glutamatergic, opioidergic and nitrergic pathways in the antinociception of HEEP and the effect of HEEP on the inhibition of p38α MAPK. The anti-inflammatory effect of HEEP was evaluated in mice and rats using xylene-induced ear edema and carrageenan-induced paw edema, respectively. Furthermore, the gastroprotective effect of HEEP was evaluated in rats with acute gastric lesions induced by ethanol or indomethacin. Finally, we performed a phytochemical analysis of HEEP. RESULTS The oral administration of HEEP (125, 250 and 500mg/kg, p.o.) significantly inhibited the neurogenic and inflammatory phases of formalin-induced licking, and HEEP (250mg/kg, p.o.) also significantly inhibited the nociception caused by glutamate. The antinociceptive effects of HEEP were significantly reversed by l-arginine (500mg/kg, i.p.) but not by naloxone (1mg/kg, i.p.) in the formalin test. HEEP did not affect animal motor performance in the rotarod model. In addition, HEEP also increased the paw withdraw latency in the hot-plate test. HEEP significantly inhibited ear edema induced by xylene (64%) and paw edema induced by carrageenan (50%) compared to the control group. Furthermore, HEEP (3-30mg/mL) also inhibited the phosphorylation of p38α MAPK by approximately 90%. In addition, HEEP (125, 250 and 500mg/kg, p.o.) protected the rats against ethanol (88.4-99.8%) and indomethacin (53-72.3%) and increased the mucus levels of the gastric mucosa without producing an antisecretory effect. The phytochemical profile of HEEP obtained using HPLC-PDA showed secondary metabolites already reported for the genus, mostly flavonoids, gallotannins and proanthocyanidins. CONCLUSIONS These data show for the first time that HEEP has significant antinociceptive and anti-inflammatory effects, which appear to be related to the inhibition of the glutamatergic system, the synthesis of nitric oxide and the inhibition of the phosphorylation of p38α MAPK. HEEP also has interesting gastroprotective effects related to the maintenance of protective factors, such as mucus production. These results support the use of Eugenia punicifolia in popular medicine and demonstrate that this plant has therapeutic potential for the development of phytomedicines with antinociceptive, anti-inflammatory and gastroprotective properties.
Collapse
Affiliation(s)
- Rosanna T Basting
- Univ. Estadual Paulista-UNESP, Departamento de Fisiologia, Instituto de Biociências, CEP 18618-970, Botucatu, SP, Brazil
| | - Catarine M Nishijima
- Univ. Estadual Paulista-UNESP, Departamento de Fisiologia, Instituto de Biociências, CEP 18618-970, Botucatu, SP, Brazil
| | - Juliana A Lopes
- Univ. Estadual Paulista-UNESP, Departamento de Fisiologia, Instituto de Biociências, CEP 18618-970, Botucatu, SP, Brazil
| | - Raquel C Santos
- Univ. Estadual Paulista-UNESP, Departamento de Fisiologia, Instituto de Biociências, CEP 18618-970, Botucatu, SP, Brazil
| | - Larissa Lucena Périco
- Univ. Estadual Paulista-UNESP, Departamento de Fisiologia, Instituto de Biociências, CEP 18618-970, Botucatu, SP, Brazil
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Silke Bauer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Miriam F Costa
- Univ. Estadual Paulista-UNESP, Departamento de Química Orgânica, Instituto de Química, CEP 14800-900, Araraquara, SP, Brazil
| | - Lourdes C Santos
- Univ. Estadual Paulista-UNESP, Departamento de Química Orgânica, Instituto de Química, CEP 14800-900, Araraquara, SP, Brazil
| | - Lúcia R M Rocha
- Univ. Estadual Paulista-UNESP, Departamento de Fisiologia, Instituto de Biociências, CEP 18618-970, Botucatu, SP, Brazil
| | - Wagner Vilegas
- Univ. Estadual Paulista-UNESP, Campus Experimental do Litoral Paulista, CEP 11330-900, São Vicente, SP, Brazil
| | - Adair R S Santos
- Universidade Federal de Santa Catarina, Departamento de Ciências Fisiológicas, CEP 88040-900, Florianópolis, SC, Brazil
| | - Catarina Dos Santos
- Univ. Estadual Paulista-UNESP, Departamento de Ciências Biológicas, Faculdade de Ciências e Letras, CEP 19806-900, Assis, SP, Brazil.
| | - Clélia A Hiruma-Lima
- Univ. Estadual Paulista-UNESP, Departamento de Fisiologia, Instituto de Biociências, CEP 18618-970, Botucatu, SP, Brazil.
| |
Collapse
|
7
|
Niu M, Naguib YW, Aldayel AM, Shi YC, Hursting SD, Hersh MA, Cui Z. Biodistribution and in vivo activities of tumor-associated macrophage-targeting nanoparticles incorporated with doxorubicin. Mol Pharm 2014; 11:4425-36. [PMID: 25314115 PMCID: PMC4255729 DOI: 10.1021/mp500565q] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Tumor-associated
macrophages (TAMs) are increasingly considered
a viable target for tumor imaging and therapy. Previously, we reported
that innovative surface-functionalization of nanoparticles may help
target them to TAMs. In this report, using poly(lactic-co-glycolic) acid (PLGA) nanoparticles incorporated with doxorubicin
(DOX) (DOX-NPs), we studied the effect of surface-modification of
the nanoparticles with mannose and/or acid-sensitive sheddable polyethylene
glycol (PEG) on the biodistribution of DOX and the uptake of DOX by
TAMs in tumor-bearing mice. We demonstrated that surface-modification
of the DOX-NPs with both mannose and acid-sensitive sheddable PEG
significantly increased the accumulation of DOX in tumors, enhanced
the uptake of the DOX by TAMs, but decreased the distribution of DOX
in mononuclear phagocyte system (MPS), such as liver. We also confirmed
that the acid-sensitive sheddable PEGylated, mannose-modified DOX-nanoparticles
(DOX-AS-M-NPs) targeted TAMs because depletion of TAMs in tumor-bearing
mice significantly decreased the accumulation of DOX in tumor tissues.
Furthermore, in a B16-F10 tumor-bearing mouse model, we showed that
the DOX-AS-M-NPs were significantly more effective than free DOX in
controlling tumor growth but had only minimum effect on the macrophage
population in mouse liver and spleen. The AS-M-NPs are promising in
targeting cytotoxic or macrophage-modulating agents into tumors to
improve tumor therapy.
Collapse
Affiliation(s)
- Mengmeng Niu
- College of Pharmacy, Pharmaceutics Division, The University of Texas at Austin , Austin, Texas 78712, United States
| | | | | | | | | | | | | |
Collapse
|