1
|
Milliken W, Walker BE, Howes MJR, Forest F, Nic Lughadha E. Plants used traditionally as antimalarials in Latin America: Mining the tree of life for potential new medicines. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114221. [PMID: 34029639 DOI: 10.1016/j.jep.2021.114221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Malaria remains a serious and challenging disease. Traditional antimalarial medicines are largely based on plants, and ethnopharmacological research has inspired the development of antimalarial pharmaceuticals such as artemisinin. Antimalarial drug resistance is an increasing problem in Plasmodium species, and new therapeutic strategies to combat malaria are needed. Although the number of malaria cases has been decreasing in Latin America, malaria remains a significant threat in many regions. Local people in Latin America have been using numerous plant species to treat malaria, some of which have been scientifically studied, but many others have not. AIM OF THE STUDY Our principal objective is to harness ethnobotanical data on species used traditionally to treat malaria, combined with phylogenetic approaches, to understand how ethnobotany could help identify plant genera as potential sources of new medicines. MATERIALS AND METHODS Plants used to treat malaria in Latin America were compiled from published and grey literature, unpublished data, and herbarium specimens. Initial assessment of potentially important species/genera/families included compiling the number of species used within the genus, the number of use reports per genus and species, and the geographic distribution of their use. The analysis of taxonomic distribution of species reported as antimalarial in Latin America (excluding the Southern Cone) was conducted, to determine which genera and families with reputed antimalarial properties are over-represented, and phylogenetic analyses were performed to identify if there was evidence for antimalarial species being dispersed/clustered throughout the tree or at its tips. This approach enabled 'hot-nodes' in certain families to be identified, to predict new genera with potential antimalarial properties. RESULTS Over 1000 plant species have been used to treat malaria in Latin America, of which over 600 species were cited only once. The genera with the highest number of antimalarial species were Aspidosperma, Solanum, Piper, Croton and Aristolochia. In terms of geographic distribution, the most widely used genera were Aspidosperma, Momordica, Cinchona, Senna and Stachytarpheta. Significant phylogenetic signal was detected in the distribution of native species used for malaria, analysed in a genus-level phylogenetic framework. The eudicot and magnoliidae lineages were over-represented, while monocots were not. CONCLUSION Analysis of ethnobotanical use reports in a phylogenetic framework reveals the existence of hot nodes for malaria across the Latin American flora. We demonstrate how species and genera currently lacking such reports could be pinpointed as of potential interest based on their evolutionary history. Extending this approach to other regions of the world and other diseases could accelerate the discovery of novel medicines and enhance healthcare in areas where new therapeutic strategies are needed.
Collapse
Affiliation(s)
| | | | - Melanie-Jayne R Howes
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK; Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, SE1 9NH, UK.
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK.
| | | |
Collapse
|
2
|
In Vivo Efficacy and Metabolism of the Antimalarial Cycleanine and Improved In Vitro Antiplasmodial Activity of Semisynthetic Analogues. Antimicrob Agents Chemother 2021; 65:AAC.01995-20. [PMID: 33257443 PMCID: PMC7848973 DOI: 10.1128/aac.01995-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/13/2020] [Indexed: 12/23/2022] Open
Abstract
Bisbenzylisoquinoline (BBIQ) alkaloids are a diverse group of natural products that demonstrate a range of biological activities. In this study, the in vitro antiplasmodial activity of three BBIQ alkaloids (cycleanine [compound 1], isochondodendrine [compound 2], and 2′-norcocsuline [compound 3]) isolated from the Triclisia subcordata Oliv. medicinal plant traditionally used for the treatment of malaria in Nigeria are studied alongside two semisynthetic analogues (compounds 4 and 5) of cycleanine. Bisbenzylisoquinoline (BBIQ) alkaloids are a diverse group of natural products that demonstrate a range of biological activities. In this study, the in vitro antiplasmodial activity of three BBIQ alkaloids (cycleanine [compound 1], isochondodendrine [compound 2], and 2′-norcocsuline [compound 3]) isolated from the Triclisia subcordata Oliv. medicinal plant traditionally used for the treatment of malaria in Nigeria are studied alongside two semisynthetic analogues (compounds 4 and 5) of cycleanine. The antiproliferative effects against a chloroquine-resistant Plasmodium falciparum strain were determined using a SYBR green 1 fluorescence assay. The in vivo antimalarial activity of cycleanine is then investigated in suppressive, prophylactic, and curative murine malaria models after infection with a chloroquine-sensitive Plasmodium berghei strain. BBIQ alkaloids (compounds 1 to 5) exerted in vitro antiplasmodial activities with 50% inhibitory concentration (IC50) at low micromolar concentrations and the two semisynthetic cycleanine analogues showed an improved potency and selectivity compared to those of cycleanine. At oral doses of 25 and 50 mg/kg body weight of infected mice, cycleanine suppressed the levels of parasitemia and increased mean survival times significantly compared to those of the control groups. The metabolites and metabolic pathways of cycleanine were also studied using high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry. Twelve novel metabolites were detected in rats after intragastric administration of cycleanine. The metabolic pathways of cycleanine were demonstrated to involve hydroxylation, dehydrogenation, and demethylation. Overall, these in vitro and in vivo results provide a basis for the future evaluation of cycleanine and its analogues as leads for further development.
Collapse
|
3
|
Muganza DM, Fruth B, Nzunzu JL, Tuenter E, Foubert K, Cos P, Maes L, Kanyanga RC, Exarchou V, Apers S, Pieters L. In vitro antiprotozoal activity and cytotoxicity of extracts and isolated constituents from Greenwayodendron suaveolens. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:510-516. [PMID: 27693770 DOI: 10.1016/j.jep.2016.09.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Nkundo people (Nkundo area of Bolongo, Mai-Ndombe district, Bandundu Province, DR Congo) use various plant parts of the tree Greenwayodendron suaveolens (Engl. & Diels) Verdc. (syn. Polyalthia suaveolens Engl. & Diels) (Annonaceae) against malaria, but its antiprotozoal constituents are not known. MATERIALS AND METHODS The crude 80% ethanol extract from the fruits, leaves, root bark and stem bark and 16 fractions were assessed in vitro for their antiprotozoal activity against Trypanosoma brucei brucei, T. cruzi, Leishmania infantum and the chloroquine and pyrimethamine-resistant K1 strain of Plasmodium falciparum (Pf-K1). Their cytotoxic effects were evaluated against MRC-5 cells. Active constituents were isolated by chromatographic means, identified using spectroscopic methods, and evaluated in the same assays. RESULTS The root bark extract showed the highest activity against P. falciparum K1 (IC50 0.26µg/mL) along with the stem bark alkaloid fraction (IC50 0.27µg/mL). The root bark alkaloid fraction had a pronounced activity against all selected protozoa with IC50 values <1µg/mL. The 90% methanol fractions of the different plant parts showed a pronounced activity against P. falciparum K1, with IC50 values ranging between 0.36µg/mL and 0.69µg/mL. Four constituents were isolated: the triterpenes polycarpol, and dihydropolycarpol, the latter one being reported for the first time from nature, and the alkaloids polyalthenol and N-acetyl-polyveoline. They were active to a various degree against one or more protozoa, mostly accompanied by cytotoxicity. The highest selectivity was observed for N-acetyl-polyveoline against P. falciparum K1 (IC50 2.8µM, selectivity index 10.9). CONCLUSIONS These results may explain at least in part the traditional use of this plant species against parasitic diseases such as malaria in DR Congo.
Collapse
Affiliation(s)
- D Musuyu Muganza
- Faculty of Pharmaceutical Sciences, University of Kinshasa, P.O. Box 212, Kinshasa XI, Democratic Republic of Congo.
| | - B Fruth
- Ludwig Maximilian University of Munich, Faculty of Biology/ Department Biology II, Großhaderner Straße 2, D-82152 Planegg-Martinsried, Germany; Centre for Research and Conservation / KMDA, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
| | - J Lami Nzunzu
- Faculty of Pharmaceutical Sciences, University of Kinshasa, P.O. Box 212, Kinshasa XI, Democratic Republic of Congo
| | - E Tuenter
- Natural Products & Food Resarch and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - K Foubert
- Natural Products & Food Resarch and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - P Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - L Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - R Cimanga Kanyanga
- Faculty of Pharmaceutical Sciences, University of Kinshasa, P.O. Box 212, Kinshasa XI, Democratic Republic of Congo; Natural Products & Food Resarch and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - V Exarchou
- Natural Products & Food Resarch and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - S Apers
- Natural Products & Food Resarch and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - L Pieters
- Natural Products & Food Resarch and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| |
Collapse
|
4
|
Uche FI, Drijfhout FP, McCullagh J, Richardson A, Li WW. Cytotoxicity Effects and Apoptosis Induction by Bisbenzylisoquinoline Alkaloids from Triclisia subcordata. Phytother Res 2016; 30:1533-9. [PMID: 27270992 DOI: 10.1002/ptr.5660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/18/2016] [Accepted: 05/11/2016] [Indexed: 02/11/2024]
Abstract
Triclisia subcordata Oliv (Menispermeaceae) is a medicinal plant traditionally used for the treatment of various diseases in West Africa. The ethanol extract of T. subcordata and its fractions were screened for in vitro anti-ovarian cancer activities using the Sulforhodamine B assay. The crude alkaloids showed the strongest activity in cell growth assays on Ovcar-8 and A2780 cell lines (IC50 < 2.4 µg/mL). A bisbenzylisoquinoline alkaloid-cycleanine was isolated using HPLC and identified by mass spectrometry and nuclear magnetic resonance analyses. The IC50 values of cycleanine and tetrandrine (an alkaloid previously reported from this plant) ranged from 7 to 14 μM on Ovcar-8, A2780, Ovcar-4, and Igrov-1 ovarian cancer cell lines. The IC50 of cycleanine on human normal ovarian surface epithelial cells was 35 ± 1 μM, hinting at modest selectivity toward cancer cells. Both cycleanine and tetrandrine caused apoptosis as shown by activation of caspases 3/7 and cleavage of poly(ADP-ribose) polymerase to form poly(ADP-ribose) polymerase-1 by using western blot analysis. Flow cytometry analyses showed that the percentages of apoptotic cells and cells in subG1 phase increased after exposure of cycleanine and tetrandrine to Ovcar-8 cells for 48 h compared with control. Cycleanine, like its isomer tetrandrine isolated from T. subcordata, could be a potential new anti-ovarian cancer agent acting through the apoptosis pathway. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Fidelia I Uche
- Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
- Faculty of Pharmaceutical Sciences, University of Port Harcourt, Rivers State, Nigeria
| | - Falko P Drijfhout
- Chemical Sciences Research Centre, Keele University, Staffordshire, UK
| | - James McCullagh
- Chemical Research Laboratory, University of Oxford, Oxford, UK
| | - Alan Richardson
- Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
| | - Wen-Wu Li
- Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
| |
Collapse
|
5
|
Memvanga PB, Tona GL, Mesia GK, Lusakibanza MM, Cimanga RK. Antimalarial activity of medicinal plants from the Democratic Republic of Congo: A review. JOURNAL OF ETHNOPHARMACOLOGY 2015; 169:76-98. [PMID: 25862959 DOI: 10.1016/j.jep.2015.03.075] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Malaria is the most prevalent parasitic disease and the foremost cause of morbidity and mortality in the Democratic Republic of Congo. For the management of this disease, a large Congolese population recourses to traditional medicinal plants. To date the efficacy and safety of many of these plants have been validated scientifically in rodent malaria models. In order to generate scientific evidence of traditional remedies used in the Democratic Republic of Congo for the management of malaria, and show the potential of Congolese plants as a major source of antimalarial drugs, this review highlights the antiplasmodial and toxicological properties of the Congolese antimalarial plants investigated during the period of 1999-2014. In doing so, a useful resource for further complementary investigations is presented. Furthermore, this review may pave the way for the research and development of several available and affordable antimalarial phytomedicines. MATERIALS AND METHODS In order to get information on the different studies, a Google Scholar and PubMed literature search was performed using keywords (malaria, Congolese, medicinal plants, antiplasmodial/antimalarial activity, and toxicity). Data from non-indexed journals, Master and Doctoral dissertations were also collected. RESULTS Approximately 120 extracts and fractions obtained from Congolese medicinal plants showed pronounced or good antiplasmodial activity. A number of compounds with interesting antiplasmodial properties were also isolated and identified. Some of these compounds constituted new scaffolds for the synthesis of promising antimalarial drugs. Interestingly, most of these extracts and compounds possessed high selective activity against Plasmodium parasites compared to mammalian cells. The efficacy and safety of several plant-derived products was confirmed in mice, and a good correlation was observed between in vitro and in vivo antimalarial activity. The formulation of several plant-derived products also led to some clinical trials and license of three plant-derived drugs (Manalaria(®), Nsansiphos(®), and Quinine Pharmakina(®)). CONCLUSION The obtained results partly justify and support the use of various medicinal plants to treat malaria in folk medicine in the Democratic Republic of Congo. Antimalarial plants used in Congolese traditional medicine represent an important source for the discovery and development of new antimalarial agents. However, in order to ensure the integration of a larger number of plant-derived products in the Congolese healthcare system, some parameters and trends should be considered in further researches, in agreement with the objectives of the "Traditional Medicine Strategy" proposed by the World Health Organization in 2013. These include evaluation of geographical and seasonal variation, investigation of reproductive biology, assessment of prophylactic antimalarial activity, evaluation of natural products as adjuvant antioxidant therapy for malaria, development of plant-based combination therapies and monitoring of herbal medicines in pharmacovigilance systems.
Collapse
Affiliation(s)
- Patrick B Memvanga
- University of Kinshasa, Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutics and Phytopharmaceutical Drugs Development, B.P. 212 Kinshasa XI, Democratic Republic of Congo.
| | - Gaston L Tona
- University of Kinshasa, Faculty of Pharmaceutical Sciences, Laboratory of Pharmacology and Therapeutics, B.P. 212 Kinshasa XI, Democratic Republic of Congo
| | - Gauthier K Mesia
- University of Kinshasa, Faculty of Pharmaceutical Sciences, Laboratory of Pharmacology and Therapeutics, B.P. 212 Kinshasa XI, Democratic Republic of Congo
| | - Mariano M Lusakibanza
- University of Kinshasa, Faculty of Pharmaceutical Sciences, Laboratory of Pharmacology and Therapeutics, B.P. 212 Kinshasa XI, Democratic Republic of Congo
| | - Richard K Cimanga
- University of Kinshasa, Faculty of Pharmaceutical Sciences, Laboratory of Pharmacognosy, B.P. 212 Kinshasa XI, Democratic Republic of Congo; University of Antwerp, Department of Pharmaceutical Sciences, Laboratory of Pharmacognosy and Pharmaceutical Analysis, Universiteitsplein 1, B-2610 Antwerp, Belgium
| |
Collapse
|