1
|
Lezin E, Durand M, Birer Williams C, Lopez Vazquez AL, Perrot T, Gautron N, Pétrignet J, Cuello C, Jansen HJ, Magot F, Szwarc S, Le Pogam P, Beniddir MA, Koudounas K, Oudin A, St‐Pierre B, Giglioli‐Guivarc'h N, Sun C, Papon N, Jensen MK, Dirks RP, O'Connor SE, Besseau S, Courdavault V. Genome-based discovery of pachysiphine synthases in Tabernaemontana elegans. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1880-1900. [PMID: 39427334 PMCID: PMC11629747 DOI: 10.1111/tpj.17085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024]
Abstract
Plant-specialized metabolism represents an inexhaustible source of active molecules, some of which have been used in human health for decades. Among these, monoterpene indole alkaloids (MIAs) include a wide range of valuable compounds with anticancer, antihypertensive, or neuroactive properties. This is particularly the case for the pachysiphine derivatives which show interesting antitumor and anti-Alzheimer activities but accumulate at very low levels in several Tabernaemontana species. Unfortunately, genome data in Tabernaemontanaceae are lacking and knowledge on the biogenesis of pachysiphine-related MIAs in planta remains scarce, limiting the prospects for the biotechnological supply of many pachysiphine-derived biopharmaceuticals. Here, we report a raw version of the toad tree (Tabernaemontana elegans) genome sequence. These new genomic resources led to the identification and characterization of a couple of genes encoding cytochrome P450 with pachysiphine synthase activity. Our phylogenomic and docking analyses highlight the different evolutionary processes that have been recruited to epoxidize the pachysiphine precursor tabersonine at a specific position and in a dedicated orientation, thus enriching our understanding of the diversification and speciation of the MIA metabolism in plants. These gene discoveries also allowed us to engineer the synthesis of MIAs in yeast through the combinatorial association of metabolic enzymes resulting in the tailor-made synthesis of non-natural MIAs. Overall, this work represents a step forward for the future supply of pachysiphine-derived drugs by microbial cell factories.
Collapse
Affiliation(s)
- Enzo Lezin
- Biomolécules et Biotechnologies Végétales, EA2106Université de ToursTours37200France
| | - Mickael Durand
- Biomolécules et Biotechnologies Végétales, EA2106Université de ToursTours37200France
| | | | | | - Thomas Perrot
- Biomolécules et Biotechnologies Végétales, EA2106Université de ToursTours37200France
| | - Nicolas Gautron
- Biomolécules et Biotechnologies Végétales, EA2106Université de ToursTours37200France
| | - Julien Pétrignet
- Laboratoire Synthèse et Isolement de Molécules BioActives (SIMBA, EA 7502)Université de ToursTours37200France
| | - Clément Cuello
- Biomolécules et Biotechnologies Végétales, EA2106Université de ToursTours37200France
| | - Hans J. Jansen
- Future Genomics TechnologiesLeiden2333 BEThe Netherlands
| | - Florent Magot
- Biomolécules et Biotechnologies Végétales, EA2106Université de ToursTours37200France
| | - Sarah Szwarc
- Équipe Chimie des Substances Naturelles, BioCISUniversité Paris‐Saclay, CNRSOrsay91400France
| | - Pierre Le Pogam
- Équipe Chimie des Substances Naturelles, BioCISUniversité Paris‐Saclay, CNRSOrsay91400France
| | - Mehdi A. Beniddir
- Équipe Chimie des Substances Naturelles, BioCISUniversité Paris‐Saclay, CNRSOrsay91400France
| | - Konstantinos Koudounas
- Laboratory of Agricultural Chemistry, School of AgricultureAristotle University of ThessalonikiThessaloniki54124Greece
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA2106Université de ToursTours37200France
| | - Benoit St‐Pierre
- Biomolécules et Biotechnologies Végétales, EA2106Université de ToursTours37200France
| | | | - Chao Sun
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICATAngersF‐49000France
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs LyngbyDenmark
| | - Ron P. Dirks
- Future Genomics TechnologiesLeiden2333 BEThe Netherlands
| | - Sarah E. O'Connor
- Department of Natural Product BiosynthesisMax Planck Institute for Chemical EcologyJena07745Germany
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106Université de ToursTours37200France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106Université de ToursTours37200France
| |
Collapse
|
2
|
Xu M, Peng R, Min Q, Hui S, Chen X, Yang G, Qin S. Bisindole natural products: A vital source for the development of new anticancer drugs. Eur J Med Chem 2022; 243:114748. [PMID: 36170798 DOI: 10.1016/j.ejmech.2022.114748] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022]
Abstract
Currently, the number of new cancer cases and deaths worldwide is increasing year on year. In addition to the requirement for cancer prevention, the top priority is still to seek the effective cure of cancer. In over a half century of constant exploration, increasing attention has been paid to the excellent anticancer activity of natural products, with more and more natural products isolated, identified and detected. For this study, the focus lies the natural products of bisindole, where two indole molecules are indirectly linked or directly polymerized, developing the diversity of structure and mechanism, accompanied with the better anticancer activity than monomers. There has been a long history of applying indirubin and vincristine in cancer treatment, verifying the anticancer effect of bisindoles. Vincribine, midostaurin and other anticancer drugs have also been developed and commercialized. In this paper, a review regarding the potential therapeutic effect of bisindole alkaloids extracted from various natural products was carried out, in which the progress made in research of 242 bisindole alkaloids for cancer treatment was introduced. These compounds may be applicable as medicinal products for clinical research in the future.
Collapse
Affiliation(s)
- Mengwei Xu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Rui Peng
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Qing Min
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Siwen Hui
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, PR China
| | - Xin Chen
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, PR China.
| | - Shuanglin Qin
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, PR China.
| |
Collapse
|
3
|
Dutta S, Chakraborty P, Basak S, Ghosh S, Ghosh N, Chatterjee S, Dewanjee S, Sil PC. Synthesis, characterization, and evaluation of in vitro cytotoxicity and in vivo antitumor activity of asiatic acid-loaded poly lactic-co-glycolic acid nanoparticles: A strategy of treating breast cancer. Life Sci 2022; 307:120876. [PMID: 35961595 DOI: 10.1016/j.lfs.2022.120876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 01/22/2023]
Abstract
Asiatic acid (AA), an aglycone of pentacyclic triterpene glycoside, obtained from the leaves of Centella asiatica exerts anticancer effects by inhibiting cellular proliferation and inducing apoptosis in a wide range of carcinogenic distresses. However, its chemotherapeutic efficacy is dampened by its low bioavailability. Polymeric nanoparticles (NPs) exhibit therapeutic efficacy and compliance by improving tissue penetration and lowering toxicity. Thus, to increase the therapeutic effectiveness of AA in the treatment of breast cancer, AA-loaded poly lactic-co-glycolic acid (PLGA) NPs (AA-PLGA NPs) have been formulated. The AA-PLGA NPs were characterized on the basis of their average particle size, zeta potential, electron microscopic imaging, drug loading, and entrapment efficiency. The NPs exhibited sustained drug release profile in vitro. Developed NPs exerted dose-dependent cytotoxicity to MCF-7 and MDA-MB-231 cells without damaging normal cells. The pro-oxidant and pro-apoptotic properties of AA-PLGA NPs were determined by the study of the cellular levels of SOD, CAT, GSH-GSSG, MDA, protein carbonylation, ROS, mitochondrial membrane potential, and FACS analyses on MCF-7 cells. Immunoblotting showed that AA-PLGA NPs elicited an intrinsic pathway of apoptosis in MCF-7 cells. In vivo studies on female BALB/c mice exhibited reduced volume of mammary pad tumor tissues and augmented expression of caspase-3 when administered with AA-PLGA NPs. No systemic adverse effect of AA-PLGA NPs was observed in our studies. Thus, AA-PLGA NPs can act as an efficient drug delivery system against breast cancer.
Collapse
Affiliation(s)
- Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Susmita Basak
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sharmistha Chatterjee
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
4
|
In Vitro Cytotoxicity and Spectral Analysis-Based Phytochemical Profiling of Methanol Extract of Barleria hochstetteri, and Molecular Mechanisms Underlying Its Apoptosis-Inducing Effect on Breast and Lung Cancer Cell Lines. SEPARATIONS 2022. [DOI: 10.3390/separations9100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The objectives of this research were to carry out GC–MS and LC–MS-based phytochemical profiling of Barleria hochstetteri, as well as flow cytometry-based mechanistic investigations of the cytotoxic effect of its extracts against breast and lung cancer cell lines. This preclinical in vitro study was carried out in Saudi Arabia and India, from 11 August to 15 January 2022. Barleria hochstetteri was sequentially extracted using the Soxhlet extraction technique. Utilizing LC–MS and GC–MS methods, the phytochemical profiling was performed. Additionally, the total phenolic compounds and flavonoids were quantified in the plant extract using spectrophotometric techniques. In this study, we first examined the cytotoxicity of the plant extract on non-malignant L929 cells and on the carcinogenic MCF-7 and A549 cell lines. Then, we studied the underlying molecular pathways by means of Anti-Bcl-2, caspase-3, and DNA fragmentation (TUNEL) assays, using flow cytometry. The results revealed phenolic compounds and flavonoids to be the two major components in the methanolic extract of B. hochstetteri, with concentrations of 3210 µg GAE/g dwt and 1863 µg QE/g dwt, respectively. Results from GC–MS and LC–MS analyses revealed the presence of bioactive phytochemicals with known cytotoxicity. From the MTT assay on cell viability, the IC50 of the methanol extract for the MCF-7 and A549 cell lines were 219.67 and 144.30 µg/mL, respectively. With IC50 values of 324.24 and 266.66 µg/mL, respectively, the aqueous and methanol extracts were less toxic when tested against the non-cancerous L929 cell line. The extract caused early and late apoptosis in the tested breast and lung cancer cells by activating caspase-3 and inhibiting Bcl-2 protein, and it also caused cell death via DNA damage, based on flow cytometric and molecular marker analyses. These findings indicate that the methanol extract of B. hochstetteri was cytotoxic on breast cancer and lung cancer cell lines. To uncover cancer-fighting chemicals, there is a need for further research on B. hochstetteri, as it is a promising source of anti-cancer chemotherapeutic drugs.
Collapse
|
5
|
Manna P, Dewanjee S, Joardar S, Chakraborty P, Bhattacharya H, Bhanja S, Bhattacharyya C, Bhowmik M, Bhowmick S, Saha A, Das J, Sil PC. Carnosic acid attenuates doxorubicin-induced cardiotoxicity by decreasing oxidative stress and its concomitant pathological consequences. Food Chem Toxicol 2022; 166:113205. [PMID: 35675861 DOI: 10.1016/j.fct.2022.113205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
Abstract
This work aimed to reveal the protective mechanism of CA against Dox (doxorubicin)-induced cardiotoxicity. In isolated murine cardiomyocytes, CA showed a concentration-dependent cytoprotective effect against Dox. Dox treatment significantly (p < 0.01) increased the formation of reactive oxygen species (ROS), increased NO levels, activated NADPH oxidase, and inactivated the cellular redox defense mechanism in cardiac cells, resulting in augmented oxidative stress in cardiomyocytes and rat hearts. Dox-induced oxidative stress significantly (p < 0.01) upregulated several pathogenic signal transductions, which induced apoptosis, inflammation, and fibrosis in cardiomyocytes and murine hearts. In contrast, CA significantly (p < 0.05-0.01) reciprocated Dox-induced cardiac apoptosis, inflammation, and fibrosis by suppressing oxidative stress and interfering with pathological signaling events in both isolated murine cardiomyocytes and rat hearts. CA treatment significantly (p < 0.05-0.01) countered Dox-mediated pathological changes in blood parameters in rats. Histological examinations backed up the pharmacological findings. In silico chemometric investigations predicted potential interactions between CA and studied signal proteins, as well as the drug-like features of CA. Thus, it would be concluded that CA has the potential to be regarded as an effective agent to alleviate Dox-mediated cardiotoxicity in the future.
Collapse
Affiliation(s)
- Prasenjit Manna
- Center for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Swarnalata Joardar
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Shrestha Bhanja
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Chiranjib Bhattacharyya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Manas Bhowmik
- Advanced Pharmaceutics Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Joydeep Das
- Department of Chemistry, Physical Sciences, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
6
|
Major Bioactive Alkaloids and Biological Activities of Tabernaemontana Species (Apocynaceae). PLANTS 2021; 10:plants10020313. [PMID: 33562893 PMCID: PMC7915066 DOI: 10.3390/plants10020313] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 01/28/2023]
Abstract
Several species belonging to the genus Tabernaemontana have been well researched and utilized for their wide-ranging biological activities. A few of the most prominent species include Tabernaemontana divaricata, Tabernaemontana catharinensis, Tabernaemontana crassa, and Tabernaemontana elegans. These species and many others within the genus often display pharmacological importance, which is habitually related to their chemical constituents. The secondary metabolites within the genus have demonstrated huge medicinal potential for the treatment of infections, pain, injuries, and various diseases. Regardless of the indispensable reports and properties displayed by Tabernaemontana spp., there remains a wide variety of plants that are yet to be considered or examined. Thus, an additional inclusive study on species within this genus is essential. The current review aimed to extensively analyze, collate, and describe an updated report of the current literature related to the major alkaloidal components and biological activities of species within the genus Tabernaemontana.
Collapse
|
7
|
Singh M, Sharma P, Singh PK, Singh TG, Saini B. Medicinal Potential of Heterocyclic Compounds from Diverse Natural Sources for the Management of Cancer. Mini Rev Med Chem 2021; 20:942-957. [PMID: 32048967 DOI: 10.2174/1389557520666200212104742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/15/2019] [Accepted: 11/26/2019] [Indexed: 11/22/2022]
Abstract
Natural products form a significant portion of medicinal agents that are currently used for the management of cancer. All these natural products have unique structures along with diverse action mechanisms with the capacity to interact with different therapeutic targets of several complex disorders. Although plants contribute as a major source of natural products with anti-cancer potential, the marine environment and microbes have also bestowed some substantial chemotherapeutic agents. A few examples of anti-cancer agents of natural origin include vincristine, vinblastine, paclitaxel, camptothecin and topotecan obtained from plants, bryostatins, sarcodictyin and cytarabine from marine organisms and bleomycin and doxorubicin from micro-organisms (dactinomycin, bleomycin and doxorubicin). The incredible diversity in the chemical structures and biological properties of compounds obtained from million species of plants, marine organisms and microorganisms present in nature has commenced a new era of potential therapeutic anti-cancer agents.
Collapse
Affiliation(s)
- Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pratibha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pankaj Kumar Singh
- Department of Chemistry and Pharmacy, University of Sassari 07100, Italy
| | | | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
8
|
Vhavenda Herbal Remedies as Sources of Antihypertensive Drugs: Ethnobotanical and Ethnopharmacological Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2020:6636766. [PMID: 33381266 PMCID: PMC7748911 DOI: 10.1155/2020/6636766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Hypertension is a dominant risk factor for the development of cardiovascular, kidney, and eye diseases. In Africa, it increasingly leads to hospitalisation and a strain on the public health system. However, rather than modern medicine, African traditional healers are the first choice for most South Africans. Therefore, this study is aimed at gathering information on herbal remedies traditionally used for the treatment of high blood pressure in Vhavenda, South Africa, and comparing this information with reports in the literature regarding plants used to manage high blood pressure. An ethnobotanical survey was carried out in Vhembe district and its environs with 53 herbalists and indigenous people aged between 36 and 66 years from January to October 2019 using a semistructured questionnaire. The plants were collected with each respondent; they were authenticated and kept in herbarium. A total of 51 different plants were mentioned as being most commonly used for hypertension treatment. Of these, 44 plants were identified, with those from the Fabaceae family followed by plants from the Celastraceae family being commonly mentioned. Of these, the Elaeodendron transvaalense, Tabernaemontana elegans, Elephantorrhiza elephantina, and Aloe vossii were commonly cited species. According to the literature data, most of the identified plants are yet to be scientifically investigated for the treatment of hypertension, whereas only preliminary investigations have been carried out on other plants, suggesting that these preliminary investigations may have highlight promising antihypertensive activities in vitro that are indicative of their potential as antihypertensive drugs. Therefore, there is a need to scientifically investigate the antihypertensive potentials of these plants as a potential source of antihypertensive treatment and compounds.
Collapse
|
9
|
Zhang Y, Hu C. Anticancer activity of bisindole alkaloids derived from natural sources and synthetic bisindole hybrids. Arch Pharm (Weinheim) 2020; 353:e2000092. [PMID: 32468606 DOI: 10.1002/ardp.202000092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022]
Abstract
The bisindole moiety, as a versatile pharmacophore, is one of the widespread heterocycles in naturally occurring and synthetic bioactive compounds. The bisindole alkaloids derived from natural sources possess structural and mechanistic diversity, and they were found to be generally more active than monoindole alkaloids against various cancer cell lines. Moreover, some bisindole alkaloids such as the tubulin inhibitors, vinorelbine and vinblastine, have already been approved for cancer therapy, suggesting that bisindole alkaloids are a significant source of anticancer agents and lead hits. Bisindole hybrids have the potential to overcome drug resistance, enhance efficiency, and reduce severe side effects. The bisindole-lactam hybrid midostaurin has already been approved for the treatment of adult patients with newly diagnosed acute myeloid leukemia who are FLT3 mutation-positive, highlighting the importance of bisindole hybrids in the development of novel anticancer agents. In this review, we present a brief account of the bisindole alkaloids derived from nature and of synthetic hybrids with potential anticancer activity developed in the recent 10 years.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Joardar S, Dewanjee S, Bhowmick S, Dua TK, Das S, Saha A, De Feo V. Rosmarinic Acid Attenuates Cadmium-Induced Nephrotoxicity via Inhibition of Oxidative Stress, Apoptosis, Inflammation and Fibrosis. Int J Mol Sci 2019; 20:E2027. [PMID: 31022990 PMCID: PMC6514581 DOI: 10.3390/ijms20082027] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
The present investigation was executed to reveal the protective mechanism of rosmarinic acid (RA) against cadmium (Cd)-induced nephrotoxicity. RA exhibited a concentration-dependent anti-apoptotic effect against CdCl2 in isolated mouse proximal tubular epithelial cells. Cd treatment significantly (p < 0.01) imparted oxidative stress to the renal cells via excessive ROS production, triggering NO level, NADPH oxidase activation, and impairment of cellular redox defense system. Cd-mediated oxidative stress significantly (p < 0.01) endorsed apoptosis to the murine kidney cells by triggering NF-κB/PKC-δ/TNFR2 activation. In addition, CdCl2 induced renal fibrosis by triggering TGF-β1/SMAD3/α-SMA/collagen signaling within renal cells. On the other hand, RA significantly (p < 0.05-0.01) attenuated Cd-provoked oxidative stress and associated pathological signal transduction in murine renal cells. RA treatment also could significantly (p < 0.05-0.01) reciprocate Cd-mediated pathological changes in blood and urine parameters in mice. In addition, histological data supported the pharmacological findings. In silico chemometric analyses predicted the possible interactions between RA and different signal proteins and anticipated drug-likeness characteristics of RA. Hence, RA can potentially be applied as a therapeutic agent to treat Cd-mediated nephrotoxicity in future.
Collapse
Affiliation(s)
- Swarnalata Joardar
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, Kolkata 700009, India.
| | - Tarun K Dua
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Sonjit Das
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata 700009, India.
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy.
| |
Collapse
|
11
|
Paterna A, Khonkarn R, Mulhovo S, Moreno A, Madeira Girio P, Baubichon-Cortay H, Falson P, Ferreira MJU. Monoterpene indole alkaloid azine derivatives as MDR reversal agents. Bioorg Med Chem 2018; 26:421-434. [DOI: 10.1016/j.bmc.2017.11.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022]
|
12
|
Sun J, Zhang X, Sun Y, Tang ZS, Guo DY. Effects of Hylomecon vernalis ethanol extracts on cell cycle and apoptosis of colon cancer cells. Mol Med Rep 2017; 15:3485-3492. [PMID: 28393197 PMCID: PMC5436294 DOI: 10.3892/mmr.2017.6426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/19/2017] [Indexed: 11/29/2022] Open
Abstract
Hylomecon vernalis Maxim. has traditionally been used to promote blood circulation, alleviate pain, dissipate stasis, and reduce swelling. The aim of the present study was to investigate the effect and potential mechanism of H. vernalis Maxim. ethanol extracts (HVMEE) on the growth and apoptosis of human colon cancer HT-29 and SW620 cells. H. vernalis samples were extracted three times with ethanol, dried, and concentrated into powder. The components of HVMEE were investigated using high performance liquid chromatography in tandem with mass spectrometry analysis. MTT assay was used to investigate the effect of HVMEE on viability of human colon cancer HT-29 and SW620 cells. Apoptosis of HT-29 and SW620 cells was evaluated using flow cytometric analysis. Expression levels of apoptosis and cell cycle-related proteins were assessed by western blot. The findings demonstrated that the alkaloid content of HVMEE was as high as 89.67%, and it effectively inhibited viability in HT-29 and SW620 cells, with IC50 values of 0.105±0.022 mg/ml and 0.146±0.013 mg/ml, respectively. In addition, HVMEE induced apoptosis in HT-29 and SW620 cells, by increasing caspase-3, caspase-9 and BCL2 associated X expression, and reducing Bcl-2 expression. The present study suggests that HVMEE has a potential role in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Jing Sun
- College of Pharmacy, Shannxi University of Chinese Medicine, Xianyang, Shannxi 712046, P.R. China
| | - Xin Zhang
- College of Pharmacy, Shannxi University of Chinese Medicine, Xianyang, Shannxi 712046, P.R. China
| | - Yang Sun
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shannxi 710032, P.R. China
| | - Zhi-Shu Tang
- College of Pharmacy, Shannxi University of Chinese Medicine, Xianyang, Shannxi 712046, P.R. China
| | - Dong-Yan Guo
- College of Pharmacy, Shannxi University of Chinese Medicine, Xianyang, Shannxi 712046, P.R. China
| |
Collapse
|
13
|
Huang Y, Ohno O, Suenaga K, Miyamoto K. Apoptosis-inducing activity and antiproliferative effect of Paeoniflorigenone from moutan cortex. Biosci Biotechnol Biochem 2017; 81:1106-1113. [PMID: 28317437 DOI: 10.1080/09168451.2017.1300517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ninety samples from the extracts of plants from traditional Chinese medicines were screened for antitumor activity. Paeoniflorigenone (PFG) was isolated as an active ingredient from the root of moutan cortex, which showed the strongest activity. In addition, our data indicated that PFG was cytotoxic and induced apoptosis selectively in the cancer cell lines. These effects were cancelled by the addition of caspase inhibitor Z-VAD-FMK, suggesting that it was mediated by caspase-3 activation.
Collapse
Affiliation(s)
- Ying Huang
- a Department of Biosciences & Informatics , Keio University , Yokohama , Japan
| | - Osamu Ohno
- b Department of Chemistry and Life Science , School of Advanced Engineering, Kogakuin University , Hachioji , Japan
| | | | - Kenji Miyamoto
- a Department of Biosciences & Informatics , Keio University , Yokohama , Japan
| |
Collapse
|
14
|
Paterna A, Kincses A, Spengler G, Mulhovo S, Molnár J, Ferreira MJU. Dregamine and tabernaemontanine derivatives as ABCB1 modulators on resistant cancer cells. Eur J Med Chem 2017; 128:247-257. [DOI: 10.1016/j.ejmech.2017.01.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/02/2017] [Accepted: 01/28/2017] [Indexed: 02/07/2023]
|
15
|
Emerging Cytotoxic Alkaloids in the Battle against Cancer: Overview of Molecular Mechanisms. Molecules 2017; 22:molecules22020250. [PMID: 28208712 PMCID: PMC6155614 DOI: 10.3390/molecules22020250] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 12/24/2022] Open
Abstract
Considered as the second deadliest disease globally, cancer has captured the attention of researchers who have been trying with perseverance to decode its hidden aspects, to find new prognosis methods, and to develop better and more effective treatments. Plants have continuously offered an excess of unique secondary metabolites with remarkable biological applications. Alkaloids, one of the most abundant metabolites, constitute a large conglomerate of basic heterocyclic nitrogen-containing natural compounds which are normally produced by plants as toxic substances. Out of the 27,000 different alkaloids, more than 17,000 have displayed diversified pharmacological properties including anticancer activities. These metabolites have been classified either according to their chemical structures or their taxonomic origin. None of the researched alkaloids have been classified according to their molecular mechanism of action against cancer. In fact, only a fraction of the tremendous number of anticancer alkaloids has been copiously mentioned in journals. Here, we aim to provide a summary of the literature on some of the promising anticancer alkaloids that have not been well discussed previously and to classify them according to their molecular mechanisms of action. This review will provide a better understanding of the anticancer mechanisms of these promising natural products that are a rich reservoir for drug discovery.
Collapse
|
16
|
Dey A, Mukherjee A, Chaudhury M. Alkaloids From Apocynaceae. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63931-8.00010-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Silveira D, de Melo AF, Magalhães P, Fonseca-Bazzo Y. Tabernaemontana Species: Promising Sources of New Useful Drugs. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63929-5.00007-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
18
|
Paterna A, Gomes SE, Borralho PM, Mulhovo S, Rodrigues CMP, Ferreira MJU. (3'R)-hydroxytabernaelegantine C: A bisindole alkaloid with potent apoptosis inducing activity in colon (HCT116, SW620) and liver (HepG2) cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:236-244. [PMID: 27616029 DOI: 10.1016/j.jep.2016.09.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tabernaemontana elegans Stapf. (Apocynaceae) is a medicinal plant traditionally used in African countries to treat cancer. AIMS OF THE STUDY To discover new apoptosis inducing lead compounds from T. elegans and provide scientific validation of the ethnopharmacological use of this plant. MATERIALS AND METHODS Through fractionation, (3'R)-hydroxytaberanelegantine C (1), a vobasinyl-iboga bisindole alkaloid, was isolated from a cytotoxic alkaloid fraction of the methanol extract of T. elegans roots. Its structure was identified by spectroscopic methods, mainly 1D and 2D NMR experiments. Compound 1 was evaluated for its ability to induce apoptosis in HCT116 and SW620 colon and HepG2 liver carcinoma cells. The cell viability of compound 1 was evaluated by the MTS and lactate dehydrogenase (LDH) assays. Induction of apoptosis was analyzed through Guava ViaCount assay, by flow cytometry, caspase-3/7 activity assays and evaluation of nuclear morphology by Hoechst staining. To determine the molecular pathways elicited by 1 exposure, immunoblot analysis was also performed. RESULTS (3'R)-hydroxytaberanelegantine C (1) displayed strong apoptosis induction activity as compared to 5-fluorouracil (5-FU), the most used anticancer agent in colorectal cancer treatment. In the MTS assay, compound 1 exhibited IC50 values similar or lower than 5-FU in the three cell lines tested. The IC50 value of 1 was also calculated in CCD18co normal human colon fibroblasts. The lactate dehydrogenase assay showed increased LDH release by compound 1, and the Guava ViaCount assay revealed that 1 significantly increased the incidence of apoptosis to a further extent than 5-FU. Moreover, the induction of apoptosis was corroborated by evaluation of nuclear morphology by Hoechst staining and caspase-3/7 activity assays of 1 treated cells. As expected, in immunoblot analysis, compound 1 treatment led to poly(ADP-ribose) polymerase cleavage. This was accompanied by decreased anti-apoptotic proteins Bcl-2 and XIAP steady state levels in all three cancer cell lines tested. CONCLUSIONS Compound 1 showed remarkable induction of apoptosis in HCT116, SW620 and HepG2 cells. Together, the results suggest that compound 1 is a promising lead structure for inducing apoptosis.
Collapse
Affiliation(s)
- Angela Paterna
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Sofia E Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Pedro M Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Silva Mulhovo
- Centro de Estudos Moçambicanos e de Etnociências (CEMEC), Faculty of Natural Sciences and Mathematics, Pedagogical University, 21402161 Maputo, Mozambique.
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria-José U Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
19
|
Paterna A, Gomes SE, Borralho PM, Mulhovo S, Rodrigues CMP, Ferreira MJU. Vobasinyl-Iboga Alkaloids from Tabernaemontana elegans: Cell Cycle Arrest and Apoptosis-Inducing Activity in HCT116 Colon Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2016; 79:2624-2634. [PMID: 27704811 DOI: 10.1021/acs.jnatprod.6b00552] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Phytochemical investigation of the roots of the African medicinal plant Tabernaemontana elegans led to the isolation of three new (1-3) and two known (4 and 5) bisindole alkaloids of the vobasinyl-iboga type. The structures of 1-3 were assigned by spectroscopic methods, mainly using 1D and 2D NMR experiments. All of the isolated compounds were evaluated for their cytotoxicity against HCT116 colon and HepG2 liver carcinoma cells by the MTS metabolism assay. Compounds 1-3 and 5 were found to be cytotoxic to HCT116 colon cancer cells, displaying IC50 values in the range 8.4 to >10 μM. However, the compounds did not display significant cytotoxicity against HepG2 cancer cells. The cytotoxicity of compounds 1-3 and 5 was corroborated using a lactate dehydrogenase assay. Hoechst staining and nuclear morphology assessment and caspase-3/7 activity assays were also performed for investigating the activity of compounds 1-3 and 5 as apoptosis inducers. The induced inhibition of proliferation of HCT116 cells by compounds 1 and 2 was associated with G1 phase arrest, while compounds 3 and 5 induced G2/M cell cycle arrest. These results showed that the new vobasinyl-iboga alkaloids 1-3 and compound 5 are strong inducers of apoptosis and cell cycle arrest in HCT116 colon cancer cells.
Collapse
Affiliation(s)
- Angela Paterna
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa , 1649-003 Lisbon, Portugal
| | - Sofia E Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa , 1649-003 Lisbon, Portugal
| | - Pedro M Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa , 1649-003 Lisbon, Portugal
| | - Silva Mulhovo
- Centro de Estudos Moçambicanos e de Etnociências (CEMEC), Faculty of Natural Sciences and Mathematics, Pedagogical University , 21402161 Maputo, Mozambique
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa , 1649-003 Lisbon, Portugal
| | - Maria-José U Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa , 1649-003 Lisbon, Portugal
| |
Collapse
|
20
|
Melodinine V, an antitumor bisindole alkaloid with selective cytotoxicity from Melodinus henryi. Bioorg Med Chem Lett 2016; 26:4895-4898. [DOI: 10.1016/j.bmcl.2016.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 11/21/2022]
|
21
|
Fang Y, Xu Z, Shi Y, Pei F, Yang W, Ma N, Kimatu BM, Liu K, Qiu W, Hu Q. Protection mechanism of Se-containing protein hydrolysates from Se-enriched rice on Pb 2+-induced apoptosis in PC12 and RAW264.7 cells. Food Chem 2016; 219:391-398. [PMID: 27765242 DOI: 10.1016/j.foodchem.2016.09.131] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/13/2016] [Accepted: 09/20/2016] [Indexed: 01/08/2023]
Abstract
This study aimed to investigate the protection mechanism of Se-containing protein hydrolysates (SPH) from Se-enriched rice on Pb2+-induced apoptosis in PC12 and RAW264.7 cells. Results showed that SPHs could alleviate Pb2+-induced morphological changes of apoptosis and the loss of mitochondrial transmembrane potential in both cell types. Besides this, SPHs could significantly reduce the activation of caspase-3, -8, -9 induced by Pb2+, reverse the Pb2+-induced upregulation of Bax and release of cytochrome C, and downregulate Bcl-2 in cells. HPLC-ICP-MS and SEC-HPLC assays showed that SPHs were low molecular weight peptides (229.4-534.9Da), and the major Se species found in SPHs was SeMet. Taken together, these findings suggested that SPHs could possibly protect the cells against Pb2+-induced apoptosis via a caspase-dependent mitochondrial pathway, and the primary effective constituents in SPHs were SeMet and Se-containing peptides, suggesting that SPHs might be a novel potential candidate to improve the health of people with Se deficiency or in Pb-contaminated areas.
Collapse
Affiliation(s)
- Yong Fang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China
| | - Zi Xu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China
| | - Yi Shi
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China
| | - Fei Pei
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China
| | - Wenjian Yang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China
| | - Ning Ma
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China
| | - Benard Muinde Kimatu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Kunlun Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Weifen Qiu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China
| | - Qiuhui Hu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
22
|
Dua TK, Dewanjee S, Khanra R. Prophylactic role of Enhydra fluctuans against arsenic-induced hepatotoxicity via anti-apoptotic and antioxidant mechanisms. Redox Rep 2016; 21:147-54. [PMID: 26066906 DOI: 10.1179/1351000215y.0000000021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVES The present study was undertaken to evaluate the prophylactic effect of aqueous extract of Enhydra fluctuans (AEEF) against NaAsO2-induced hepatotoxicity. METHODS The cytoprotective effect of AEEF against NaAsO2 (10 µM) toxicity was measured on isolated murine hepatocytes. The effect on lipid peroxidation, protein carbonylation, cellular redox markers and signal proteins were measured after incubating the hepatocytes with NaAsO2 (10 µM) + AEEF (400 µg/ml). Finally, the prophylactic effect of AEEF (50 and 100 mg/kg) against NaAsO2 (10 mg/kg) toxicity was measured by in vivo assay in experimental mice. RESULTS In vitro bioassay on isolated mouse hepatocytes confirmed cytoprotective effect of AEEF. The NaAsO2 treatment significantly (P<0.01) increased the levels of lipid peroxidation, protein carbonylation with concomitant reduction (P<0.01) of antioxidant enzymes and reduced glutathione levels in hepatocytes. In addition, NaAsO2 significantly (P<0.05-0.01) altered the expression of intrinsic (Bad↑, Bcl-2↓, cleaved-caspase 3↑ and cleaved-caspase 9↑) and extrinsic (Fas↑, Bid↑, cleaved-caspase 8↑) transcription proteins participating in the apoptotic event. However, AEEF treatment could significantly rescue the aforementioned parameters near-normal levels. In in vivo bioassay, NaAsO2 intoxication increased (p<0.01) bioaccumulation of As along with the abnormalities in haematological parameters and redox imbalance in the livers of experimental mice. Treatment with AEEF, however, could significantly (P<0.05-0.01) restore the hematological and redox parameters to the near-normal levels, with histological studies of livers supporting the protective role of AEEF. DISCUSSION Presence of substantial quantity of ascorbic acid, phenolics and flavonoids in the extract may be responsible for overall protective effect.
Collapse
Affiliation(s)
- Tarun K Dua
- a Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology , Jadavpur University , Kolkata 700032 , India
| | - Saikat Dewanjee
- a Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology , Jadavpur University , Kolkata 700032 , India
| | - Ritu Khanra
- a Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology , Jadavpur University , Kolkata 700032 , India
| |
Collapse
|
23
|
Cytoprotective and Antioxidant Effects of an Edible Herb, Enhydra fluctuans Lour. (Asteraceae), against Experimentally Induced Lead Acetate Intoxication. PLoS One 2016; 11:e0148757. [PMID: 26859407 PMCID: PMC4747604 DOI: 10.1371/journal.pone.0148757] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/09/2016] [Indexed: 01/31/2023] Open
Abstract
Background Enhydra fluctuans Lour. (Asteraceae), an edible aquatic herb, is traditionally employed against toxic effects of heavy metals in India. The present study was planned to discover the protective effect of edible extract of E. fluctuans (AEEF) against Pb toxicity. Methods The cytoprotective role of AEEF was determined on murine hepatocytes employing MTT assay and Hoechst staining. The effects on lipid peroxidation, protein carbonylation, endogenous redox systems and the transcription levels of apoptotic proteins were studied after incubating the hepatocytes with AEEF (400 μg/ml) + Pb-acetate (6.8 μM). The defensive role of AEEF (100 mg/kg) against Pb-acetate (5 mg/kg) intoxication was measured in mice by in vivo assays. Biochemical, haematological and histological parameters, intracellular Pb burden and redox status were measured. Results AEEF exhibited a concentration dependent cytoprotective effect against Pb-induced cytotoxicity in vitro. Pb-acetate incubation significantly (p < 0.01) altered the extents of ROS production ↑, protein carbonylation ↑, lipid peroxidation ↑, endogenous antioxidant enzymes ↓ and GSH ↓ in vitro. Besides, Pb-acetate significantly (p < 0.01) induced apoptosis in the hepatocytes apparent from the altered expressions of apoptotic proteins viz. Apaf-1 ↑, Bad ↑, Bcl-2 ↓, Cyt C ↑, cleaved caspases↑, Bid ↑ and Fas ↑. However, AEEF (400 μg/ml) could significantly (p < 0.05–0.01) attenuate the Pb-acetate mediated toxic manifestation in vitro. In in vivo assay, Pb-acetate (5 mg/kg) treated mice exhibited significantly (p < 0.01) high intracellular Pb content. A high Pb-burden within the tissues caused significant (p < 0.05–0.01) patho-physiological alterations viz. ROS production ↑, protein carbonylation↑, lipid peroxidation ↑, DNA fragmentation ↑, ATP formation ↑, mitochondrial co-enzymes Q ↓, endogenous antioxidant enzymes ↓ and GSH ↓ within the selected tissues. The haematological and serum biochemical parameters were significantly (p < 0.05–0.01) different in the Pb-acetate treated mice. Finally, histological assessment imposed significant toxic occurrence within the organs of Pb-intoxicated animals. However, concurrent administration of AEEF (100 mg/kg) could significantly (p < 0.05–0.01) reinstate the Pb-acetate mediated toxicity. Conclusion Presence of metal chelators and phyto-antioxidants within AEEF would offer overall protection through promoting Pb clearance coupled with restoring redox balance.
Collapse
|
24
|
Abstract
This chapter covers the literature on bisindole alkaloids consisting of monoterpenoid indoles, published up to June 2015. Bisindole alkaloids isolated from plants belonging to the families Apocynaceae and Loganiaceae, including Iboga-vobasine type, Aspidosperma-Aspidosperma type, eburnan-Aspidosperma type, Strychnos-Strychnos type, macroline-macroline type, and so on, are described. Some recent syntheses of monoterpenoid bisindole alkaloids are outlined as well.
Collapse
Affiliation(s)
- Mariko Kitajima
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiromitsu Takayama
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
25
|
Dewanjee S, Dua TK, Khanra R, Das S, Barma S, Joardar S, Bhattacharjee N, Zia-Ul-Haq M, Jaafar HZE. Water Spinach, Ipomoea aquatic (Convolvulaceae), Ameliorates Lead Toxicity by Inhibiting Oxidative Stress and Apoptosis. PLoS One 2015; 10:e0139831. [PMID: 26473485 PMCID: PMC4608788 DOI: 10.1371/journal.pone.0139831] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/17/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ipomoea aquatica (Convolvulaceae), an aquatic edible plant, is traditionally used against heavy metal toxicity in India. The current study intended to explore the protective role of edible (aqueous) extract of I. aquatica (AEIA) against experimentally induced Pb-intoxication. METHODS The cytoprotective role of AEIA was measured on mouse hepatocytes by cell viability assay followed by Hoechst staining and flow cytometric assay. The effect on ROS production, lipid peroxidation, protein carbonylation, intracellular redox status were measured after incubating the hepatocytes with Pb-acetate (6.8 μM) along with AEIA (400 μg/ml). The effects on the expressions of apoptotic signal proteins were estimated by western blotting. The protective role of AEIA was measured by in vivo assay in mice. Haematological, serum biochemical, tissue redox status, Pb bioaccumulation and histological parameters were evaluated to estimate the protective role of AEIA (100 mg/kg) against Pb-acetate (5 mg/kg) intoxication. RESULTS Pb-acetate treated hepatocytes showed a gradual reduction of cell viability dose-dependently with an IC50 value of 6.8 μM. Pb-acetate treated hepatocytes exhibited significantly enhanced levels (p < 0.01) of ROS production, lipid peroxidation, protein carbonylation with concomitant depletion (p < 0.01) of antioxidant enzymes and GSH. However, AEIA treatment could significantly restore the aforementioned parameters in murine hepatocytes near to normalcy. Besides, AEIA significantly reversed (p < 0.05-0.01) the alterations of transcription levels of apoptotic proteins viz. Bcl 2, Bad, Cyt C, Apaf-1, cleaved caspases [caspase 3, caspase 8 and caspase 9], Fas and Bid. In in vivo bioassay, Pb-acetate treatment caused significantly high intracellular Pb burden and oxidative pressure in the kidney, liver, heart, brain and testes in mice. In addition, the haematological and serum biochemical factors were changed significantly in Pb-acetate-treated animals. AEIA treatment restored significantly the evaluated-parameters to the near-normal position. CONCLUSION The extract may offer the protective effect via counteracting with Pb mediated oxidative stress and/or promoting the elimination of Pb by chelating. The presence of substantial quantities of flavonoids, phenolics and saponins would be responsible for the overall protective effect.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Tarun K. Dua
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Ritu Khanra
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Shilpa Das
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Sujata Barma
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Swarnalata Joardar
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Niloy Bhattacharjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - M. Zia-Ul-Haq
- Department of Pharmacognosy, University of Karachi, Karachi, 75270, Pakistan
| | - Hawa Z. E. Jaafar
- Department of Crop Science, Faculty of Agriculture, Universiti Putra, Selangor, 43400, Malaysia
| |
Collapse
|
26
|
Paterna A, Borralho PM, Gomes SE, Mulhovo S, Rodrigues CM, Ferreira MJU. Monoterpene indole alkaloid hydrazone derivatives with apoptosis inducing activity in human HCT116 colon and HepG2 liver carcinoma cells. Bioorg Med Chem Lett 2015; 25:3556-9. [DOI: 10.1016/j.bmcl.2015.06.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 01/16/2023]
|
27
|
Brito H, Martins AC, Lavrado J, Mendes E, Francisco AP, Santos SA, Ohnmacht SA, Kim NS, Rodrigues CMP, Moreira R, Neidle S, Borralho PM, Paulo A. Targeting KRAS Oncogene in Colon Cancer Cells with 7-Carboxylate Indolo[3,2-b]quinoline Tri-Alkylamine Derivatives. PLoS One 2015; 10:e0126891. [PMID: 26024321 PMCID: PMC4449006 DOI: 10.1371/journal.pone.0126891] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/08/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND A guanine-rich strand within the promoter of the KRAS gene can fold into an intra-molecular G-quadruplex structure (G4), which has an important role in the regulation of KRAS transcription. We have previously identified indolo[3,2-b]quinolines with a 7-carboxylate group and three alkylamine side chains (IQ3A) as effective G4 stabilizers and promising selective anticancer leads. Herein we investigated the anticancer mechanism of action of these compounds, which we hypothesized due to stabilization of the G4 sequence in the KRAS promoter and subsequent down-regulation of gene expression. METHODOLOGY/PRINCIPAL FINDINGS IQ3A compounds showed greater stabilization of G4 compared to duplex DNA structures and reduced KRAS promoter activity in a dual luciferase reporter assay. Moreover, IQ3A compounds showed high anti-proliferative activity in HCT116 and SW620 colon cancer cells (IC50 < 2.69 μM), without eliciting cell death in non-malignant HEK293T human embryonic kidney, and human colon fibroblasts CCD18co. IQ3A compounds significantly reduced KRAS mRNA and protein steady-state levels at IC50 concentrations, and increased p53 protein steady-state levels and cell death by apoptosis in HCT116 cells (mut KRAS, wt p53). Furthermore, KRAS silencing in HCT116 p53 wild-type (p53(+/+)) and null (p53(-/-)) isogenic cell lines induced a higher level of cell death, and a higher IQ3A-induced cell death in HCT116 p53(+/+) compared to HCT116 p53(-/-). CONCLUSIONS Herein we provide evidence that G4 ligands such as IQ3A compounds can target G4 motifs present in KRAS promoter, down-regulate the expression of the mutant KRAS gene through inhibition of transcription and translation, and induce cell death by apoptosis in colon cancer cell lines. Thus, targeting KRAS at the genomic level with G4 ligands may be a new anticancer therapy strategy for colon cancer.
Collapse
Affiliation(s)
- Hugo Brito
- Cell Function and Therapeutic Targeting Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana Cláudia Martins
- Medicinal Chemistry Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - João Lavrado
- Medicinal Chemistry Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Eduarda Mendes
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana Paula Francisco
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Sofia A. Santos
- Medicinal Chemistry Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Stephan A. Ohnmacht
- UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Nam-Soon Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
| | - Cecília M. P. Rodrigues
- Cell Function and Therapeutic Targeting Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rui Moreira
- Medicinal Chemistry Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Stephen Neidle
- UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Pedro M. Borralho
- Cell Function and Therapeutic Targeting Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- * E-mail: (PMB); (AP)
| | - Alexandra Paulo
- Medicinal Chemistry Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- * E-mail: (PMB); (AP)
| |
Collapse
|
28
|
Lavrado J, Brito H, Borralho PM, Ohnmacht SA, Kim NS, Leitão C, Pisco S, Gunaratnam M, Rodrigues CMP, Moreira R, Neidle S, Paulo A. KRAS oncogene repression in colon cancer cell lines by G-quadruplex binding indolo[3,2-c]quinolines. Sci Rep 2015; 5:9696. [PMID: 25853628 PMCID: PMC5382548 DOI: 10.1038/srep09696] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/05/2015] [Indexed: 01/29/2023] Open
Abstract
KRAS is one of the most frequently mutated oncogenes in human cancer, yet remaining undruggable. To explore a new therapeutic strategy, a library of 5-methyl-indolo[3,2-c]quinoline derivatives (IQc) with a range of alkyldiamine side chains was designed to target DNA and RNA G-quadruplexes (G4) in the promoter and 5′-UTR mRNA of the KRAS gene. Biophysical experiments showed that di-substituted IQc compounds are potent and selective KRAS G4 stabilizers. They preferentially inhibit the proliferation of KRAS mutant cancer cell lines (0.22 < IC50 < 4.80 μM), down-regulate KRAS promoter activity in a luciferase reporter assay, and reduce both KRAS mRNA and p21KRAS steady-state levels in mutant KRAS colon cancer cell lines. Additionally, IQcs induce cancer cell death by apoptosis, explained in part by their capacity to repress KRAS expression. Overall, the results suggest that targeting mutant KRAS at the gene level with G4 binding small molecules is a promising anticancer strategy.
Collapse
Affiliation(s)
- João Lavrado
- Medicinal Chemistry Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Hugo Brito
- Cell Function and Therapeutic Targeting Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Pedro M Borralho
- Cell Function and Therapeutic Targeting Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Stephan A Ohnmacht
- The School of Pharmacy, University College London. 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Nam-Soon Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
| | - Clara Leitão
- The School of Pharmacy, University College London. 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Sílvia Pisco
- The School of Pharmacy, University College London. 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Mekala Gunaratnam
- The School of Pharmacy, University College London. 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Cecília M P Rodrigues
- Cell Function and Therapeutic Targeting Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rui Moreira
- Medicinal Chemistry Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Stephen Neidle
- The School of Pharmacy, University College London. 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Alexandra Paulo
- Medicinal Chemistry Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
29
|
Dua TK, Dewanjee S, Gangopadhyay M, Khanra R, Zia-Ul-Haq M, De Feo V. Ameliorative effect of water spinach, Ipomea aquatica (Convolvulaceae), against experimentally induced arsenic toxicity. J Transl Med 2015; 13:81. [PMID: 25890105 PMCID: PMC4359489 DOI: 10.1186/s12967-015-0430-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/06/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Ipomea aquatica (Convolvulaceae) is traditionally used against Arsenic (As) poisoning in folk medicines in India. The present study was designed to explore the therapeutic role of aqueous extract of I. aquatica (AEIA) against As-intoxication. METHODS AEIA was chemically standardized by spectroscopic and chromatographic analysis. The cytoprotective role of AEIA was measured on isolated murine hepatocytes. The effect on redox status were measured after incubating the hepatocytes with NaAsO2 (10 μM) + AEIA (400 μg/ml). The protective effect of AEIA (400 μg/ml) in expressions of apoptotic proteins were estimated in vitro. The protective role of AEIA was measured by in vivo assay in mice. Haematological, biochemical, As bioaccumulation and histological parameters were evaluated to ensure the protective role of AEIA (100 mg/kg) against NaAsO2 (10 mg/kg) intoxication. RESULTS Phytochemical analysis revealed presence of substantial quantities of phenolics, flavonoids, saponins and ascorbic acid in AEIA. Incubation of murine hepatocytes with AEIA (0-400 μg/ml) + NaAsO2 (10 μM) exerted a concentration dependent cytoprotective effect. Incubation of murine hepatocytes with NaAsO2 (10 μM, ~ IC50) induced apoptosis via augmenting oxidative stress. NaAsO2 treated hepatocytes exhibited significantly (p < 0.01) enhanced levels of ROS production, lipid peroxidation and protein carbonylation with concomitant depletion of antioxidant enzymes (p < 0.05-0.01) and GSH (p < 0.01) levels. However, AEIA (400 μg/ml) + NaAsO2 (10 μM) could significantly (p < 0.05-0.01) reinstate the aforementioned parameters to near-normal status. Besides, AEIA (400 μg/ml) could significantly counteract (p <0.05-0.01) ROS mediated alteration in the expressions of apoptotic proteins viz. Bcl-2, BAD, Cyt C, Apaf 1, caspases, Fas and Bid. In in vivo bioassay, NaAsO2 (10 mg/kg) treatment in mice caused significantly (p < 0.05-0.01) elevated As bioaccumulation, ATP levels, DNA fragmentations and oxidative stress in the liver, kidney, heart, brain and testes along with alteration in cytoarchitecture of these organs. In addition, the serum biochemical and haematological parameters were significantly (p < 0.05-0.01) altered in the NaAsO2-treated animals. However, concurrent administration of AEIA (100 mg/ml) could significantly reinstate the NaAsO2-induced pathogenesis. CONCLUSION Presence of substantial quantities of dietary antioxidants within AEIA would be responsible for overall protective effect.
Collapse
Affiliation(s)
- Tarun K Dua
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | | | - Ritu Khanra
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | | | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, 84084, Italy.
| |
Collapse
|
30
|
Mansoor TA, Borralho PM, Luo X, Mulhovo S, Rodrigues CMP, Ferreira MJU. 6-Acetonyldihydrochelerythrine Is a Potent Inducer of Apoptosis in HCT116 and SW620 Colon Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2014; 77:1825-1830. [PMID: 25066282 DOI: 10.1021/np500161n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
6-Acetonyldihydrochelerythrine (1), a benzophenanthridine alkaloid, isolated from the methanol extract of Zanthoxylum capense, displayed potent cytotoxic activity in human HCT116 and SW620 colon carcinoma cells, to a higher extent than 5-fluorouracil (5-FU), the cornerstone chemotherapeutic agent in colon cancer. Cytotoxicity of 1 was evaluated by MTS, lactate dehydrogenase (LDH), and Guava ViaCount assays. Interestingly, 1 significantly induced cytotoxicity in both cell lines, leading to a significant increase in LDH release, as compared to 5-FU. Further, Guava ViaCount flow cytometry assays demonstrated that 1 significantly increased cell death, as shown by the presence of a significantly higher population of apoptotic cells in both cell lines, as compared to cells exposed to 5-FU. Furthermore, evaluation of nuclear morphology by Hoechst staining of 1-treated HCT116 and SW620 cells confirmed flow cytometry results, demonstrating a marked induction of apoptotic cell death by 1, again to a further extent than that elicited by 5-FU. In addition, immunoblot analysis to ascertain the molecular events triggered by 1 exposure was performed. The results show that 1 exposure reduced the steady-state expression and activation of the pro-survival proteins ERK5 and Akt and increased the steady-state expression of p53 in both HCT116 and SW620 cells. Changes in ERK5 or Akt activation can be ascertained by evaluating the ratio of p-ERK5/ERK5 or p-Akt/Akt. In addition, exposure to 1 reduced expression of XIAP, Bcl-XL, and Bcl-2, while increasing the cleavage of poly(ADP-ribose) polymerase in both cell lines. Collectively, the data indicate that 6-acetonyldihydrochelerythrine (1) is a potent inducer of apoptosis in HCT116 and SW620 cell lines, highlighting its potential relevance in colon cancer.
Collapse
Affiliation(s)
- Tayyab A Mansoor
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , 1649-003 Lisbon, Portugal
| | - Pedro M Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , 1649-003 Lisbon, Portugal
| | - Xuan Luo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , 1649-003 Lisbon, Portugal
| | - Silva Mulhovo
- Centro de Estudos Moçambicanos e de Etnociências, Faculty of Natural Sciences and Mathematics, Pedagogical University , 21402161 Maputo, Mozambique
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , 1649-003 Lisbon, Portugal
| | - Maria-José U Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , 1649-003 Lisbon, Portugal
| |
Collapse
|
31
|
Liu YP, Zhao YL, Feng T, Cheng GG, Zhang BH, Li Y, Cai XH, Luo XD. Melosuavines A-H, cytotoxic bisindole alkaloid derivatives from Melodinus suaveolens. JOURNAL OF NATURAL PRODUCTS 2013; 76:2322-2329. [PMID: 24274642 DOI: 10.1021/np4007469] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Eight new bisindole alkaloids, melosuavines A-C (1-3), having an aspidosperma-scandine linkage, melosuavines D-F (4-6), possessing an aspidosperma-aspidosperma skeleton, and melosuavines G and H (7 and 8) of the aspidosperma-venalatonine type, tenuicausine (9), and melodinine J (10) were isolated from the twigs and leaves of Melodinus suaveolens. The structures of 1-8 were elucidated by extensive spectroscopic methods, and compounds 9 and 10 were identified by comparison with data in the literature. The relative configuration 9 was determined from the ROESY spectrum, and some NMR signals were reassigned. Compounds 1, 2, 4-6, 8, and 10 exhibited low micromolar cytotoxicity against one or more of five human cancer cell lines.
Collapse
Affiliation(s)
- Ya-Ping Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|