1
|
Lei X, Wang F, Zhang X, Huang J, Huang Y. The potential mechanisms by which Xiaoyao Powder may exert therapeutic effects on thyroid cancer were examined at various levels. Comput Biol Chem 2025; 117:108412. [PMID: 40056710 DOI: 10.1016/j.compbiolchem.2025.108412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Thyroid cancer (TC) is the most prevalent endocrine malignancy, with a rising incidence necessitating safer treatment strategies to reduce overtreatment and its side effects. Xiaoyao Powder (XYP), a widely used herbal formula, shows promise in treating TC. This study aims to investigate the mechanisms by which XYP may affect TC. METHODS The components of XYP were identified through database retrieval, and targets related to TC were collected to construct a target network for key screening. GEO dataset samples analyzed immune cells and identified significantly differentially expressed core genes (SDECGs). Based on SDECG expression and clustering, samples were classified for comparison. WGCNA was employed to identify gene modules linked to clinical characteristics. ML models screened characteristic genes and constructed a nomogram validated using another GEO dataset. MR methods explored causal relationships between genes and TC. RESULTS The top ten active components of XYP were identified, along with 27 SDECGs that exhibited significant differences in immune cell infiltration between TC patients and normal controls. The nomogram effectively predicted TC risk, validated through ROC curves. Key characteristic genes included SMIM1, PPP1R16A, KIAA1462, DNAJC22, and EFNA5. CONCLUSION XYP may treat TC by regulating SMIM1, PPP1R16A, KIAA1462, DNAJC22, EFNA5, and associated immune pathways; this provides theoretical support for its potential mechanisms.
Collapse
Affiliation(s)
- Xiaoli Lei
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feifei Wang
- Department of Quality Control, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, China
| | - Xinying Zhang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiaxi Huang
- Department of Pharmacy, Huoqiu County First People's Hospital, Liuan, China
| | - Yanqin Huang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
2
|
Li Y, Wang L, Wang H, Leng X, Gao J, Huang D. Polysaccharides from Eucommia ulmoides Oliv. leaves alleviates alcohol-induced mouse brain injury and BV-2 microglial dysfunction. Int J Biol Macromol 2024; 273:132887. [PMID: 38851621 DOI: 10.1016/j.ijbiomac.2024.132887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Acute alcohol intoxication is a harmful clinical condition characterized by behavioral and neurological symptoms, for which few effective therapies are available at present. Dysfunction of microglial BV-2 cells has been reported to be associated with acute alcohol-induced brain injuries. In the present study, the protective effects of Eucommia ulmoides Oliv. leaves polysaccharides (EULP) on acute alcoholic brain injury and microglial dysfunction were investigated. 14-day pretreatment of EULP significantly attenuated neurobehavioral deficit and neurotransmitter damage in the brain tissue of mice caused by acute alcohol exposure. Additionally, EULP regulated the metabolic disorder of brain tissue. Consistently, it was shown that EULP pretreatment significantly improved alcohol-induced phagocytosis decrease, oxidative stress and inflammation in BV-2 cells. Therefore, EULP may be proposed and employed as a potential therapeutic agent for alcohol-induced brain damage.
Collapse
Affiliation(s)
- Yingzhi Li
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Luchen Wang
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Huimei Wang
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xueping Leng
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiaming Gao
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Danfei Huang
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
3
|
He L, Shen K, He L, Chen Y, Tang Z. The Mechanism of Plantaginis Semen in the Treatment of Diabetic Nephropathy based on Network Pharmacology and Molecular Docking Technology. Endocr Metab Immune Disord Drug Targets 2024; 24:363-379. [PMID: 37718520 DOI: 10.2174/1871530323666230915100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/28/2023] [Accepted: 07/20/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the common complications of diabetes. Plantaginis Semen (PS) has a variety of therapeutic effects, however its mechanism on DN is unclear. OBJECTIVE This paper aims to find the ingredients, the key targets, and the action pathways of PS on DN from the perspective of network pharmacology. METHODS The databases of network pharmacology, such as Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Pharmmapper, OMIM, DrugBank, Gene- Cards, TTD, Disgenet, STRING, and Cytoscape software, were used to find the main ingredients and targets. Gene Ontology (GO) function and Kyoto Encyclopedia of Genome and Genomes (KEGG) pathway enrichment analysis were used to reveal the potential pathways of the PS on DN. The GEO database was used to find the targets of DN based on valid experimental research. The molecular docking technology was used to evaluate the combination between ingredients of PS and the targets. RESULTS A total of 9 active ingredients and 216 potential therapeutic targets were obtained for PS on DN. Hub targets were discovered by the Cytoscape software analysis. CASP3 was screened by Venn diagram by making intersection between GSE30529 and hub genes. Moreover, CASP3 was combined with one of the nine active ingredients, quercetin, by molecular docking analysis. The KEGG pathways were mainly involved in diabetic nephropathy, and were simultaneously associated with CASP3 as followed: AGE-RAGE signaling pathway in diabetic complications, apoptosis, lipid and atherosclerosis, MAPK signaling pathway, TNF signaling pathway, IL-17 signaling pathway, and p53 signaling pathway. CONCLUSION PS can have the treatment on DN through CASP3. Quercetin, as one of the nine active ingredients, can be bounded to CASP3 to inhibit apoptosis in DN. PS can also take action on DN probably through many pathways. The role of PS on DN through other pathways still needs to be further elaborated.
Collapse
Affiliation(s)
- Linlin He
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Kai Shen
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lei He
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yuqing Chen
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zhiyuan Tang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
4
|
Geniposidic Acid from Eucommia ulmoides Oliver Staminate Flower Tea Mitigates Cellular Oxidative Stress via Activating AKT/NRF2 Signaling. Molecules 2022; 27:molecules27238568. [PMID: 36500666 PMCID: PMC9739628 DOI: 10.3390/molecules27238568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Eucommia ulmoides Oliver staminate flower (ESF) tea enjoys a good reputation in folk medicine and displays multiple bioactivities, such as antioxidant and antifatigue properties. However, the underlying biological mechanisms remain largely unknown. In this study, we aimed to investigate whether ESF tea can mitigate cellular oxidative stress. Crude ethyl alcohol extract and its three subfractions prepared by sequential extraction with chloroform, n-butyl alcohol and residual water were prepared from ESF tea. The results of antioxidant activity tests in vitro manifested n-butyl alcohol fraction (n-BUF) showed the strongest antioxidant capacity (DPPH: IC50 = 24.45 ± 0.74 μg/mL, ABTS: IC50 = 17.25 ± 0.04 μg/mL). Moreover, all subfractions of ESF tea, especially the n-BUF, exhibited an obvious capacity to scavenge the reactive oxygen species (ROS) and stimulate the NRF2 antioxidative response in human keratinocytes HaCaT treated by H2O2. Using ultra-high-performance liquid chromatography, we identified geniposidic acid (GPA) as the most abundant component in ESF tea extract. Furthermore, it was found that GPA relieved oxidative stress in H2O2-induced HaCaT cells by activating the Akt/Nrf2/OGG1 pathway. Our findings indicated that ESF tea may be a source of natural antioxidants to protect against skin cell oxidative damage and deserves further development and utilization.
Collapse
|
5
|
Xi J, Kan W, Zhu Y, Huang S, Wu L, Wang J. Synthesis of silver nanoparticles using Eucommia ulmoides extract and their potential biological function in cosmetics. Heliyon 2022; 8:e10021. [PMID: 35942280 PMCID: PMC9356174 DOI: 10.1016/j.heliyon.2022.e10021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/12/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022] Open
Abstract
Silver nanoparticles (AgNPs) synthesized from plant extracts have recently emerged as a rapidly growing field with numerous applications in pharmaceutical and clinical contexts. The purpose of this research is to come up with a novel method for the biosynthesis of silver nanoparticles that use Eucommia ulmoides leaf extract as a reducing agent. The synthesis of AgNPs was confirmed using UV-vis spectroscopy, and the properties of AgNPs were characterized using Transmission Electron Microscope, Fourier Infrared Spectrometer, X-ray diffraction, Thermogravimetric Analysis, and Zeta potential. The results showed that the AgNPs exhibited a characteristic absorption peak at 430 nm, their diameter ranged from 4 nm to 52 nm, and C, O, and Cl elements, which might represent flavonoids and phenolic components absorbed on the surface of AgNPs. The zeta potential of AgNPs was found to be −30.5 mV, which indicates repulsion among AgNPs and they have good dispersion stability. AgNPs have been found to suppress the tyrosinase activity both in mushroom tyrosinase and A375 cells, as well as diminish ROS formation in HaCat cells. According to this study, AgNPs is a novel material that can enhance skin health by preventing melanin development.
Collapse
Affiliation(s)
- Jinfeng Xi
- The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Wenjie Kan
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yan Zhu
- The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Shengwei Huang
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
- Corresponding author.
| | - Lifang Wu
- The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
- Zhongke Taihe Experimental Station, Taihe 236626, Anhui, China
- Corresponding authors at: The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.
| | - Jun Wang
- The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
- Zhongke Taihe Experimental Station, Taihe 236626, Anhui, China
- Corresponding authors at: The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.
| |
Collapse
|
6
|
Han R, Yu Y, Zhao K, Wei J, Hui Y, Gao JM. Lignans from Eucommia ulmoides Oliver leaves exhibit neuroprotective effects via activation of the PI3K/Akt/GSK-3β/Nrf2 signaling pathways in H 2O 2-treated PC-12 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154124. [PMID: 35487038 DOI: 10.1016/j.phymed.2022.154124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Neuronal apoptosis and oxidative stress have the most crucial influence on neurodegenerative diseases, including Parkinson's disease. Rat adrenal pheochromocytoma cells (PC-12) induced by H2O2 are one of the primary in vitro models of Parkinson's disease (PD) . Previous studies have found that E ulmoides leaf extract exerts good neuroprotective activity and has the potential to treat neurodegenerative diseases. However, the molecular pathways involved in the neuroprotective effects of its primary leaf component, lignans, have not yet been well elucidated yet. PURPOSE This study aimed to evaluate the neuroprotective effects of lignans in E. ulmoides leaves and to explore the underlying mechanism. METHODS Cell viability was measured using the CCK-8 assay. Apoptosis was assessed by calcein/PI staining. The release levels of ROS and LDH were assessed using a commercial assay kit. The enzyme activities of SOD and GPx were measured using kits. The establishment of the compound-target-pathway-disease network was performed using a database and computer software. Antioxidant proteins (HO-1, NQO-1, and Cat) and related regulatory proteins (Nrf2, GSK-3β, p-GSK 3β (Ser 9), Akt, p-Akt (Tyr326), PI3K) were detected by western blotting. Apoptosis in the zebrafish head was assessed using acridine orange (AO) staining. RESULTS In the present study, 12 lignans were isolated and characterized from E. ulmoides leaves, including a new compound, (-)-7‑epi-pinoresinol mr1 (1). Compounds 1-12 exerted neuroprotective effects in H2O2-treated PC-12 cells by increasing cell viability, improving the enzyme activity of SOD and GPx, and reducing levels of ROS and LDH. Compared to the positive control group (25 μM hesperetin), cell viability in response to 25 μM compound 1 (78.0 ± 0.8%) was highest, but its relative percent LDH release (20.1 ± 2.5%) was the lowest; 25 μM compound 4 resulted in the lowest ROS release levels (101.7 ± 2.6%) and highest SOD enzyme activity (35.9 ± 4.2 U/mg), and the GPx enzyme activity of 25 μM compound 1 was strongest (197.6 ± 0.6 U/mg). Next, the potential targets (PI3K, GSK-3β) of the test compounds' antioxidant activity were identified using pharmacological network analysis. Using DAVID software for pharmacological network analysis, potential targets (PI3K, GSK-3β, and SOD2) of 12 lignans were identified. Based on the initial screening results, biological experiments confirmed that diepoxylignans 1, 2, and 4 exerted significant neuroprotection by regulating the PI3K/AKT/GSK-3β/Nrf2 signaling pathways, increasing protein expression of HO-1, NQO-1, and CAT, and enhancing the antioxidant enzyme activity of SOD and GPx. CONCLUSION Our experiments first propose that the diepoxylignans from E. ulmoides leaves exert neuroprotective effects via activation of the PI3K/Akt/GSK-3β/Nrf2 signaling pathway. These findings further indicate that lignans could be the primary components of E. ulmoides Oliver as agents for the prevention and treatment of neurodegenerative diseases. Collectively, Eucommia ulmoides leaves with important research value may be a potential candidate for traditional Chinese medicine for treating oxidative stress-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Rui Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yao Yu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Kanghong Zhao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jing Wei
- College of Biology Pharmacy & Food Engineering, Shangluo University, Shangluo, Shaanxi 726000, People's Republic of China
| | - Yuhu Hui
- Shaanxi Jiahe Pharmaceutical Co., Ltd. No. 7 Binhe Road, Yangling, Shaanxi 712100, People's Republic of China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
7
|
Wang T, Fan L, Feng S, Ding X, An X, Chen J, Wang M, Zhai X, Li Y. Network pharmacology of iridoid glycosides from Eucommia ulmoides Oliver against osteoporosis. Sci Rep 2022; 12:7430. [PMID: 35523810 PMCID: PMC9076851 DOI: 10.1038/s41598-022-10769-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/13/2022] [Indexed: 12/12/2022] Open
Abstract
Eucommia ulmoides Oliver is one of the commonly used traditional Chinese medicines for the treatment of osteoporosis, and iridoid glycosides are considered to be its active ingredients against osteoporosis. This study aims to clarify the chemical components and molecular mechanism of iridoid glycosides of Eucommia ulmoides Oliver in the treatment of osteoporosis by integrating network pharmacology and molecular simulations. The active iridoid glycosides and their potential targets were retrieved from text mining as well as Swiss Target Prediction, TargetNet database, and STITCH databases. At the same time, DisGeNET, GeneCards, and Therapeutic Target Database were used to search for the targets associated with osteoporosis. A protein–protein interaction network was built to analyze the interactions between targets. Then, DAVID bioinformatics resources and R 3.6.3 project were used to carry out Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis. Moreover, interactions between active compounds and potential targets were investigated through molecular docking, molecular dynamic simulation, and binding free energy analysis. The results showed that a total of 12 iridoid glycosides were identified as the active iridoid glycosides of Eucommia ulmoides Oliver in the treatment of osteoporosis. Among them, aucubin, reptoside, geniposide and ajugoside were the core compounds. The enrichment analysis suggested iridoid glycosides of Eucommia ulmoides Oliver prevented osteoporosis mainly through PI3K-Akt signaling pathway, MAPK signaling pathway and Estrogen signaling pathway. Molecular docking results indicated that the 12 iridoid glycosides had good binding ability with 25 hub target proteins, which played a critical role in the treatment of osteoporosis. Molecular dynamic and molecular mechanics Poisson–Boltzmann surface area results revealed these compounds showed stable binding to the active sites of the target proteins during the simulations. In conclusion, our research demonstrated that iridoid glycosides of Eucommia ulmoides Oliver in the treatment of osteoporosis involved a multi-component, multi-target and multi-pathway mechanism, which provided new suggestions and theoretical support for treating osteoporosis.
Collapse
Affiliation(s)
- Ting Wang
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Liming Fan
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Shuai Feng
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xinli Ding
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xinxin An
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jiahuan Chen
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Minjuan Wang
- Physical and Chemical Laboratory, Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, 710054, China
| | - Xifeng Zhai
- School of Pharmaceutical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Yang Li
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
8
|
Deciphering the Therapeutic Mechanisms of Wuzi Ershen Decoction in Treating Oligoasthenozoospermia through the Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5591844. [PMID: 34394386 PMCID: PMC8363445 DOI: 10.1155/2021/5591844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022]
Abstract
Background Infertility affects approximately 15% of couples around the world, and male factors are accounted for 40–50%. Oligoasthenozoospermia is the most common reason for male infertility. Unfortunately, effective drug therapy is still lacking except for assisted reproductive technology (ART). Previous researchers found that Wuzi Ershen decoction (WZESD) can increase sperm count, enhance sperm vitality, and improve semen quality. However, the pharmacological mechanisms remain unclear. Methods In this study, we screened compounds and predicted the targets of WZESD based on the TCMSP and BATMAN-TCM database combined with literature searching in the PubMed database. We obtained proteins related to oligoasthenozoospermia through GeneCards and submitted them to STRING to obtain the protein-protein interaction (PPI) network. Potential targets of WZESD were mapped to the network, and the hub targets were screened by topology. We used online platform Metascape and Enrichr for GO and KEGG enrichment analyses. AutoDock Vina was utilized for further verification of the binding mode between compounds and targets. Results Totally, 276 bioactive compounds were obtained and targeted 681 proteins. 446 oligoasthenozoospermia disease-specific proteins were acquired, and further bioinformatics analysis found that they were mainly involved in the formation of gametes, meiosis, and sperm differentiation. Protein interaction network analysis revealed that target proteins of WZESD were associated with oligoasthenozoospermia disease-specific proteins. The 79 targets of disease-specific proteins, which were anchored by WZESD, mainly participate in the cellular response to the organic cyclic compound, regulation of the apoptotic process, nitricoxide biosynthetic and metabolic process, oxidative stress, and protein phosphorylation regulation, which are the causes for oligoasthenozoospermia. Molecular docking simulation further validated that bioactive compounds originated from WZESD with targeted proteins showed high binding efficiency. Conclusions This study uncovers the therapeutic mechanisms of WZESD for oligoasthenozoospermia treatment from the perspective of network pharmacology and may provide a valuable reference for further experimental research studies and clinical applications.
Collapse
|
9
|
Tuhuaiyin alleviates imiquimod-induced psoriasis via inhibiting the properties of IL-17-producing cells and remodels the gut microbiota. Biomed Pharmacother 2021; 141:111884. [PMID: 34243099 DOI: 10.1016/j.biopha.2021.111884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND psoriasis is a chronic inflammatory skin disease. The accumulation of IL-17 cytokines in the lesions leads to epidermis proliferation. Traditional Chinese medicine has a significant effect on psoriasis treatment. Among them, Tuhuaiyin is a representative prescription, which has an outstanding curative effect in acute and remission stage. METHODS To reveal the target and molecular mechanism of Tuhuaiyin, systematic pharmacology platform and database screening were used to construct the Tuhuaiyin interaction network with compounds, targets and diseases. The intervention of Tuhuaiyin on keratinocyte proliferation and inflammation was verified in the model of psoriasis-like lesions induced by imiquimod. The effect on the number and function of IL-17-producing cells was detected, and the regulatory effect of Tuhuaiyin on gut microbial was explored. RESULTS 32 selected active molecules in Tuhuaiyin acted on psoriasis biological processes. Tuhuaiyin significantly alleviates erythema and scales in the psoriasis like mouse model induced by imiquimod. Excessive proliferation of keratinocytes and infiltration of inflammatory cells were restrained in the dermis by using Tuhuaiyin. The expression of IL-17 was down-regulated in skin and peripheral blood. The proportion of IL-17-producing cells was decreased in immune organs. And phosphorylation of JNK inhibited in skin lesions. At the same time, the change of gut microbial diversity in the psoriasis-like model was improved. CONCLUSION our study predicted and verified the molecular immunological mechanism of Tuhuaiyin, alleviated the abnormal proliferation of keratinocytes by inhibiting the proportion of IL-17-producing cells and the expression of IL-17 cytokines. Taken together, our data identify the therapeutic potential of Tuhuaiyin for psoriasis.
Collapse
|
10
|
Liu W, Li Y, Xiong X, Chen Y, Qiao L, Wang J, Su X, Chu F, Liu H. Traditional Chinese medicine protects against hypertensive kidney injury in Dahl salt-sensitive rats by targeting transforming growth factor-β signaling pathway. Biomed Pharmacother 2020; 131:110746. [PMID: 33152915 DOI: 10.1016/j.biopha.2020.110746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/29/2020] [Accepted: 09/07/2020] [Indexed: 12/29/2022] Open
Abstract
This study investigated the therapeutic efficacy of Bu-Shen-Jiang-Ya decoction (BSJYD) on hypertensive renal damage to determine whether it regulates the expression of transforming growth factor-β (TGF-β)/SMADs signaling pathways, thereby relieving renal fibrosis in Dahl salt-sensitive (SS) rats. Dahl SS rats on a high-sodium diet were prospectively treated with BSJYD (n = 12) or valsartan (n = 12) for 8 weeks. The blood pressure (BP) of these rats was measured and their kidneys were subjected to biochemical analysis, including serum creatinine (Scr) and blood urea nitrogen (BUN); hematoxylin and eosin staining; Masson trichrome staining; real-time polymerase chain reaction; and western blot analysis. The primary outcome was that BSJYD significantly reduced BP, debased BUN, and Scr and ameliorated renal pathological changes. As underlying therapeutic mechanisms, BSJYD reduces TGFβ1 and Smad2/3 expression and suppresses renal fibrosis, as suggested by the decreased expression of connective tissue growth factor(CTGF). These data suggest that BSJYD acts as an optimal therapeutic agent for hypertensive renal damage by inhibiting the TGF-β/SMADs signaling pathway.
Collapse
Affiliation(s)
- Wei Liu
- Department of Cardiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yixuan Li
- Community Healthcare Center of Shangzhuang Town, Haidian District, Beijing, 100053, China
| | - Xingjiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yuyi Chen
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Lumin Qiao
- Department of Emergency, Yinchuan Chinese Medicine Hospital, Ningxia, 750001, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xing Su
- Medical Administration Division, Beijing Mentougou Hospital of Traditional Chinese Medicine, Beijing, 102300, China
| | - Fuyong Chu
- Department of Cardiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Hongxu Liu
- Department of Cardiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
11
|
Guo J, Li J, Yang X, Wang H, He J, Liu E, Gao X, Chang YX. A Metabolomics Coupled With Chemometrics Strategy to Filter Combinatorial Discriminatory Quality Markers of Crude and Salt-Fired Eucommiae Cortex. Front Pharmacol 2020; 11:838. [PMID: 32625085 PMCID: PMC7311666 DOI: 10.3389/fphar.2020.00838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 05/21/2020] [Indexed: 01/04/2023] Open
Abstract
Eucommiae Cortex is commonly used for treating various diseases in a form of the crude and salt-fired products. Generally, it is empirical to distinguish the difference between two types of Eucommiae Cortex. The metabolomics coupled with chemometrics strategy was proposed to filter the combinatorial discriminatory quality markers for precise distinction and further quality control of the crude and salt-fired Eucommiae Cortex. The metabolomics data of multiple batches of Eucommiae Cortex samples was obtained by ultra-high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS). Orthogonal partial least-squares discriminant analysis was utilized to filter candidate markers for characterizing the obvious difference of the crude and salt-fired Eucommiae Cortex. The accuracy of combinatorial markers was validated by random forest and partial least squares regression. Finally, eleven combinatorial discriminatory quality markers from 67 identified compounds were rapidly screened, identified, and determined for distinguishing the difference between crude and salt-fired Eucommiae Cortex. It was demonstrated that UHPLC-MS based metabolomics with chemometrics was a powerful strategy to screen the combinatorial discriminatory quality markers for distinguishing the crude and salt-fired Eucommiae Cortex and to provide the reference for precise quality control of Eucommiae Cortex.
Collapse
Affiliation(s)
- Jiading Guo
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuejing Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Hui Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun He
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Erwei Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan-Xu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
12
|
Network Pharmacology-Based Investigation of the System-Level Molecular Mechanisms of the Hematopoietic Activity of Samul-Tang, a Traditional Korean Herbal Formula. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9048089. [PMID: 32104198 PMCID: PMC7040423 DOI: 10.1155/2020/9048089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
Abstract
Hematopoiesis is a dynamic process of the continuous production of diverse blood cell types to meet the body's physiological demands and involves complex regulation of multiple cellular mechanisms in hematopoietic stem cells, including proliferation, self-renewal, differentiation, and apoptosis. Disruption of the hematopoietic system is known to cause various hematological disorders such as myelosuppression. There is growing evidence on the beneficial effects of herbal medicines on hematopoiesis; however, their mechanism of action remains unclear. In this study, we conducted a network pharmacological-based investigation of the system-level mechanisms underlying the hematopoietic activity of Samul-tang, which is an herbal formula consisting of four herbal medicines, including Angelicae Gigantis Radix, Rehmanniae Radix Preparata, Paeoniae Radix Alba, and Cnidii Rhizoma. In silico analysis of the absorption-distribution-metabolism-excretion model identified 16 active phytochemical compounds contained in Samul-tang that may target 158 genes/proteins associated with myelosuppression to exert pharmacological effects. Functional enrichment analysis suggested that the targets of Samul-tang were significantly enriched in multiple pathways closely related to the hematopoiesis and myelosuppression development, including the PI3K-Akt, MAPK, IL-17, TNF, FoxO, HIF-1, NF-kappa B, and p53 signaling pathways. Our study provides novel evidence regarding the system-level mechanisms underlying the hematopoiesis-promoting effect of herbal medicines for hematological disorder treatment.
Collapse
|
13
|
Singh P, Omer A. An integrated approach of network based system pharmacology approach and molecular docking to explore multiscale role of Pinus roxburghii and investigation into its mechanism. Pharmacogn Mag 2020. [DOI: 10.4103/0973-1296.301874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Li J, Zhao M, Jiang X, Liu T, Wang M, Zhao C. Synergistic therapeutic effects of Duzhong Jiangya Tablets and amlodipine besylate combination in spontaneously hypertensive rats using 1 H-NMR- and MS-based metabolomics. Biomed Chromatogr 2019; 34:e4741. [PMID: 31743479 DOI: 10.1002/bmc.4741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 01/09/2023]
Abstract
Duzhong Jiangya Tablet (DJT) composed of Eucommia ulmoides Oliv. and several other traditional Chinese medicines is a Chinese herbal compound, which is clinically used to treat hypertension. The aim of this study was to evaluate the antihypertensive effect of DJT and amlodipine besylate (AB) on the synergistic treatment of spontaneously hypertensive rats (SHRs), and to explore its antihypertensive mechanism. The synergistic therapeutic effect of DJT in combination with AB on SHR was studied using two metabolomics methods based on mass spectrum (MS) and nuclear magnetic resonance. Metabolomics analysis of plasma, urine, liver, and kidney and the combination of orthogonal partial least squares discriminant analysis was performed to expose potential biomarkers. Then, the overall metabolic characteristics and related abnormal metabolic pathways in hypertensive rats were constructed. Blood pressure measurements showed that DJT combined with AB has better effects in treating hypertension than it being alone. A total of 30 biomarkers were identified, indicating that hypertension disrupted the balance of multiple metabolic pathways in the body, and that combined administration restored metabolite levels better than their administration alone. The changes of biomarkers revealed the synergistic therapeutic mechanism of DJT combined with AB, which provided a reference for the combination of Chinese and Western medicines.
Collapse
Affiliation(s)
- Jingwei Li
- School of Pharmacy, Shenyang, Liaoning Province, China
| | - Min Zhao
- School of Pharmacy, Shenyang, Liaoning Province, China
| | - Xue Jiang
- School of Pharmacy, Shenyang, Liaoning Province, China
| | - Tingting Liu
- School of Pharmacy, Shenyang, Liaoning Province, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang, Liaoning Province, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang, Liaoning Province, China
| |
Collapse
|
15
|
Ye J, Han W, Fan R, Liu M, Li L, Jia X. Integration of Transcriptomes, Small RNAs, and Degradome Sequencing to Identify Putative miRNAs and Their Targets Related to Eu-Rubber Biosynthesis in Eucommia ulmoides. Genes (Basel) 2019; 10:genes10080623. [PMID: 31430866 PMCID: PMC6722833 DOI: 10.3390/genes10080623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 01/24/2023] Open
Abstract
Eucommia ulmoides has attracted much attention as a valuable natural rubber (Eu-rubber) production tree. As a strategic material, Eu-rubber plays a vital role in general and defence industries. However, the study of Eu-rubber biosynthesis at a molecular level is scarce, and the regulatory network between microRNAs (miRNAs) and messenger RNAs (mRNAs) in Eu-rubber biosynthesis has not been assessed. In this study, we comprehensively analyzed the transcriptomes, small RNAs (sRNAs) and degradome to reveal the regulatory network of Eu-rubber biosynthesis in E. ulmoides. A total of 82,065 unigenes and 221 miRNAs were identified using high-throughput sequencing; 20,815 targets were predicted using psRNATarget software. Of these targets, 779 miRNA-target pairs were identified via degradome sequencing. Thirty-one miRNAs were differentially expressed; 22 targets of 34 miRNAs were annotated in the terpenoid backbone biosynthesis pathway (ko00900) based on the Kyoto Encyclopedia of Genes and Genomes (KEGG). These miRNAs were putatively related to Eu-rubber biosynthesis. A regulatory network was constructed according to the expression profiles of miRNAs and their targets. These results provide a comprehensive analysis of transcriptomics, sRNAs and degradome to reveal the Eu-rubber accumulation, and provide new insights into genetic engineering techniques which may improve the content of Eu-rubber in E. ulmoides.
Collapse
Affiliation(s)
- Jing Ye
- College of Forestry, Northwest A&F University, Shaanxi 712100, China
| | - Wenjing Han
- College of Forestry, Northwest A&F University, Shaanxi 712100, China
| | - Ruisheng Fan
- College of Forestry, Northwest A&F University, Shaanxi 712100, China
| | - Minhao Liu
- College of Forestry, Northwest A&F University, Shaanxi 712100, China
| | - Long Li
- College of Forestry, Northwest A&F University, Shaanxi 712100, China
| | - Xiaoming Jia
- College of Forestry, Northwest A&F University, Shaanxi 712100, China.
| |
Collapse
|
16
|
Liu L, Wang H. The Recent Applications and Developments of Bioinformatics and Omics Technologies in Traditional Chinese Medicine. Curr Bioinform 2019. [DOI: 10.2174/1574893614666190102125403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background:Traditional Chinese Medicine (TCM) is widely utilized as complementary health care in China whose acceptance is still hindered by conventional scientific research methodology, although it has been exercised and implemented for nearly 2000 years. Identifying the molecular mechanisms, targets and bioactive components in TCM is a critical step in the modernization of TCM because of the complexity and uniqueness of the TCM system. With recent advances in computational approaches and high throughput technologies, it has become possible to understand the potential TCM mechanisms at the molecular and systematic level, to evaluate the effectiveness and toxicity of TCM treatments. Bioinformatics is gaining considerable attention to unearth the in-depth molecular mechanisms of TCM, which emerges as an interdisciplinary approach owing to the explosive omics data and development of computer science. Systems biology, based on the omics techniques, opens up a new perspective which enables us to investigate the holistic modulation effect on the body.Objective:This review aims to sum up the recent efforts of bioinformatics and omics techniques in the research of TCM including Systems biology, Metabolomics, Proteomics, Genomics and Transcriptomics.Conclusion:Overall, bioinformatics tools combined with omics techniques have been extensively used to scientifically support the ancient practice of TCM to be scientific and international through the acquisition, storage and analysis of biomedical data.
Collapse
Affiliation(s)
- Lin Liu
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany
| | - Hao Wang
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
17
|
Zhang R, Zhu X, Bai H, Ning K. Network Pharmacology Databases for Traditional Chinese Medicine: Review and Assessment. Front Pharmacol 2019; 10:123. [PMID: 30846939 PMCID: PMC6393382 DOI: 10.3389/fphar.2019.00123] [Citation(s) in RCA: 748] [Impact Index Per Article: 124.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/31/2019] [Indexed: 12/17/2022] Open
Abstract
The research field of systems biology has greatly advanced and, as a result, the concept of network pharmacology has been developed. This advancement, in turn, has shifted the paradigm from a “one-target, one-drug” mode to a “network-target, multiple-component-therapeutics” mode. Network pharmacology is more effective for establishing a “compound-protein/gene-disease” network and revealing the regulation principles of small molecules in a high-throughput manner. This approach makes it very powerful for the analysis of drug combinations, especially Traditional Chinese Medicine (TCM) preparations. In this work, we first summarized the databases and tools currently used for TCM research. Second, we focused on several representative applications of network pharmacology for TCM research, including studies on TCM compatibility, TCM target prediction, and TCM network toxicology research. Third, we compared the general statistics of several current TCM databases and evaluated and compared the search results of these databases based on 10 famous herbs. In summary, network pharmacology is a rational approach for TCM studies, and with the development of TCM research, powerful and comprehensive TCM databases have emerged but need further improvements. Additionally, given that several diseases could be treated by TCMs, with the mediation of gut microbiota, future studies should focus on both the microbiome and TCMs to better understand and treat microbiome-related diseases.
Collapse
Affiliation(s)
- Runzhi Zhang
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Zhu
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Bai
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Ning
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
|
19
|
Zhao M, Chen Y, Wang C, Xiao W, Chen S, Zhang S, Yang L, Li Y. Systems Pharmacology Dissection of Multi-Scale Mechanisms of Action of Huo-Xiang-Zheng-Qi Formula for the Treatment of Gastrointestinal Diseases. Front Pharmacol 2019; 9:1448. [PMID: 30687082 PMCID: PMC6336928 DOI: 10.3389/fphar.2018.01448] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022] Open
Abstract
Multi-components Traditional Chinese Medicine (TCM) treats various complex diseases (multi-etiologies and multi-symptoms) via herbs interactions to exert curative efficacy with less adverse effects. However, the ancient Chinese compatibility theory of herbs formula still remains ambiguous. Presently, this combination principle is dissected through a systems pharmacology study on the mechanism of action of a representative TCM formula, Huo-xiang-zheng-qi (HXZQ) prescription, on the treatment of functional dyspepsia (FD), a chronic or recurrent clinical disorder of digestive system, as typical gastrointestinal (GI) diseases which burden human physical and mental health heavily and widely. In approach, a systems pharmacology platform which incorporates the pharmacokinetic and pharmaco-dynamics evaluation, target fishing and network pharmacological analyses is employed. As a result, 132 chemicals and 48 proteins are identified as active compounds and FD-related targets, and the mechanism of HXZQ formula for the treatment of GI diseases is based on its three function modules of anti-inflammation, immune protection and gastrointestinal motility regulation mainly through four, i.e., PIK-AKT, JAK-STAT, Toll-like as well as Calcium signaling pathways. In addition, HXZQ formula conforms to the ancient compatibility rule of "Jun-Chen-Zuo-Shi" due to the different, while cooperative roles that herbs possess, specifically, the direct FD curative effects of GHX (serving as Jun drug), the anti-bacterial efficacy and major accompanying symptoms-reliving bioactivities of ZS and BZ (as Chen), the detoxication and ADME regulation capacities of GC (as Shi), as well as the minor symptoms-treating efficacy of the rest 7 herbs (as Zuo). This work not only provides an insight of the therapeutic mechanism of TCMs on treating GI diseases from a multi-scale perspective, but also may offer an efficient way for drug discovery and development from herbal medicine as complementary drugs.
Collapse
Affiliation(s)
- Miaoqing Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, China.,Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Shihezi University, Shihezi, China
| | - Yangyang Chen
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Chao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Shusheng Chen
- Systems Biology Laboratory, Department of Computer & Information Science & Engineering, University of Florida, Gainesville, FL, United States
| | - Shuwei Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, China
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, China.,Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Shihezi University, Shihezi, China
| |
Collapse
|
20
|
Exploring Pharmacological Mechanisms of Xuefu Zhuyu Decoction in the Treatment of Traumatic Brain Injury via a Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8916938. [PMID: 30402137 PMCID: PMC6193325 DOI: 10.1155/2018/8916938] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022]
Abstract
Objectives Xuefu Zhuyu decoction (XFZYD), a traditional Chinese medicine (TCM) formula, has been demonstrated to be effective for the treatment of traumatic brain injury (TBI). However, the underlying pharmacological mechanisms remain unclear. This study aims to explore the potential action mechanisms of XFZYD in the treatment of TBI and to elucidate the combination principle of this herbal formula. Methods A network pharmacology approach including ADME (absorption, distribution, metabolism, and excretion) evaluation, target prediction, known therapeutic targets collection, network construction, and molecule docking was used in this study. Results A total of 119 bioactive ingredients from XFZYD were predicted to act on 47 TBI associated specific proteins which intervened in several crucial pathological processes including apoptosis, inflammation, antioxidant, and axon genesis. Almost each of the bioactive ingredients targeted more than one protein. The molecular docking simulation showed that 91 pairs of chemical components and candidate targets had strong binding efficiencies. The “Jun”, “Chen”, and “Zuo-Shi” herbs from XFZYD triggered their specific targets regulation, respectively. Conclusion Our work successfully illuminates the “multicompounds, multitargets” therapeutic action of XFZYD in the treatment of TBI by network pharmacology with molecule docking method. The present work may provide valuable evidence for further clinical application of XFZYD as therapeutic strategy for TBI treatment.
Collapse
|
21
|
Liu Z, Guo F, Wang Y, Li C, Zhang X, Li H, Diao L, Gu J, Wang W, Li D, He F. BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine. Sci Rep 2016; 6:21146. [PMID: 26879404 PMCID: PMC4754750 DOI: 10.1038/srep21146] [Citation(s) in RCA: 522] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/19/2016] [Indexed: 02/05/2023] Open
Abstract
Traditional Chinese Medicine (TCM), with a history of thousands of years of clinical practice, is gaining more and more attention and application worldwide. And TCM-based new drug development, especially for the treatment of complex diseases is promising. However, owing to the TCM's diverse ingredients and their complex interaction with human body, it is still quite difficult to uncover its molecular mechanism, which greatly hinders the TCM modernization and internationalization. Here we developed the first online Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM). Its main functions include 1) TCM ingredients' target prediction; 2) functional analyses of targets including biological pathway, Gene Ontology functional term and disease enrichment analyses; 3) the visualization of ingredient-target-pathway/disease association network and KEGG biological pathway with highlighted targets; 4) comparison analysis of multiple TCMs. Finally, we applied BATMAN-TCM to Qishen Yiqi dripping Pill (QSYQ) and combined with subsequent experimental validation to reveal the functions of renin-angiotensin system responsible for QSYQ's cardioprotective effects for the first time. BATMAN-TCM will contribute to the understanding of the "multi-component, multi-target and multi-pathway" combinational therapeutic mechanism of TCM, and provide valuable clues for subsequent experimental validation, accelerating the elucidation of TCM's molecular mechanism. BATMAN-TCM is available at http://bionet.ncpsb.org/batman-tcm.
Collapse
Affiliation(s)
- Zhongyang Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China.,National Center for Protein Sciences Beijing, Beijing 102206, China
| | - Feifei Guo
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yong Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chun Li
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinlei Zhang
- Beijing Genestone Technology Ltd., Beijing 100085, China
| | - Honglei Li
- Beijing Genestone Technology Ltd., Beijing 100085, China
| | - Lihong Diao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China.,National Center for Protein Sciences Beijing, Beijing 102206, China
| | - Jiangyong Gu
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Material Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dong Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China.,National Center for Protein Sciences Beijing, Beijing 102206, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China.,National Center for Protein Sciences Beijing, Beijing 102206, China
| |
Collapse
|
22
|
Duan L, Li M, Liu H. Biosynthesised palladium nanoparticles using
Eucommia ulmoides
bark aqueous extract and their catalytic activity. IET Nanobiotechnol 2015; 9:349-54. [DOI: 10.1049/iet-nbt.2015.0020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Liansheng Duan
- College of Chemistry and Chemical EngineeringWuhan Textile UniversityWuhan 430073People's Republic of China
- College of Chemistry and BiologyHubei University of EducationWuhan 430205People's Republic of China
| | - Ming Li
- College of Chemistry and Chemical EngineeringWuhan Textile UniversityWuhan 430073People's Republic of China
| | - Huihong Liu
- College of Chemistry and Chemical EngineeringWuhan Textile UniversityWuhan 430073People's Republic of China
- Hubei Key Laboratory of Low Dimensional Optoelectronic Material and DevicesHubei University of Arts and SciencesXiangyangHubei 440053People's Republic of China
| |
Collapse
|
23
|
Risso-Gill I, Balabanova D, Majid F, Ng KK, Yusoff K, Mustapha F, Kuhlbrandt C, Nieuwlaat R, Schwalm JD, McCready T, Teo KK, Yusuf S, McKee M. Understanding the modifiable health systems barriers to hypertension management in Malaysia: a multi-method health systems appraisal approach. BMC Health Serv Res 2015; 15:254. [PMID: 26135302 PMCID: PMC4489127 DOI: 10.1186/s12913-015-0916-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 06/08/2015] [Indexed: 02/07/2023] Open
Abstract
Background The growing burden of non-communicable diseases in middle-income countries demands models of care that are appropriate to local contexts and acceptable to patients in order to be effective. We describe a multi-method health system appraisal to inform the design of an intervention that will be used in a cluster randomized controlled trial to improve hypertension control in Malaysia. Methods A health systems appraisal was undertaken in the capital, Kuala Lumpur, and poorer-resourced rural sites in Peninsular Malaysia and Sabah. Building on two systematic reviews of barriers to hypertension control, a conceptual framework was developed that guided analysis of survey data, documentary review and semi-structured interviews with key informants, health professionals and patients. The analysis followed the patients as they move through the health system, exploring the main modifiable system-level barriers to effective hypertension management, and seeking to explain obstacles to improved access and health outcomes. Results The study highlighted the need for the proposed intervention to take account of how Malaysian patients seek treatment in both the public and private sectors, and from western and various traditional practitioners, with many patients choosing to seek care across different services. Patients typically choose private care if they can afford to, while others attend heavily subsidised public clinics. Public hypertension clinics are often overwhelmed by numbers of patients attending, so health workers have little time to engage effectively with patients. Treatment adherence is poor, with a widespread belief, stemming from concepts of traditional medicine, that hypertension is a transient disturbance rather than a permanent asymptomatic condition. Drug supplies can be erratic in rural areas. Hypertension awareness and education material are limited, and what exist are poorly developed and ineffective. Conclusion Despite having a relatively well funded health system offering good access to care, Malaysia's health system still has significant barriers to effective hypertension management. Discussion The study uncovered major patient-related barriers to the detection and control of hypertension which will have an impact on the design and implementation of any hypertension intervention. Appropriate models of care must take account of the patient modifiable health systems barriers if they are to have any realistic chance of success; these findings are relevant to many countries seeking to effectively control hypertension despite resource constraints.
Collapse
Affiliation(s)
- Isabelle Risso-Gill
- London School of Hygiene and Tropical Medicine, 15-17 Tavistock Place, London, WC1H 9SH, UK.
| | - Dina Balabanova
- London School of Hygiene and Tropical Medicine, 15-17 Tavistock Place, London, WC1H 9SH, UK.
| | | | - Kien Keat Ng
- National Defence University of Malaysia, Kuala Lumpur, Malaysia.
| | - Khalid Yusoff
- Universiti Teknologi MARA, Kuala Lumpur, Malaysia. .,UCSI University, Kuala Lumpur, Malaysia.
| | | | - Charlotte Kuhlbrandt
- London School of Hygiene and Tropical Medicine, 15-17 Tavistock Place, London, WC1H 9SH, UK.
| | - Robby Nieuwlaat
- Population Health Research Institute, McMaster University, Hamilton Ontario, Canada.
| | - J-D Schwalm
- Population Health Research Institute, McMaster University, Hamilton Ontario, Canada.
| | - Tara McCready
- Population Health Research Institute, McMaster University, Hamilton Ontario, Canada.
| | - Koon K Teo
- Population Health Research Institute, McMaster University, Hamilton Ontario, Canada.
| | - Salim Yusuf
- Population Health Research Institute, McMaster University, Hamilton Ontario, Canada.
| | - Martin McKee
- London School of Hygiene and Tropical Medicine, 15-17 Tavistock Place, London, WC1H 9SH, UK.
| |
Collapse
|
24
|
Yang G, Kyoung Seo E, Lee JH, Young Lee J. Suppression of Splenic Lymphocyte Proliferation byEucommia ulmoidesand Genipin. Chem Biodivers 2015; 12:538-46. [DOI: 10.1002/cbdv.201400376] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Indexed: 11/05/2022]
|
25
|
Liu YF, Ai N, Keys A, Fan XH, Chen MJ. Network Pharmacology for Traditional Chinese Medicine Research: Methodologies and Applications. CHINESE HERBAL MEDICINES 2015. [DOI: 10.1016/s1674-6384(15)60015-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
26
|
Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y, Xu X, Li Y, Wang Y, Yang L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014; 6:13. [PMID: 24735618 PMCID: PMC4001360 DOI: 10.1186/1758-2946-6-13] [Citation(s) in RCA: 3049] [Impact Index Per Article: 277.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/11/2014] [Indexed: 02/06/2023] Open
Abstract
Background Modern medicine often clashes with traditional medicine such as Chinese herbal medicine because of the little understanding of the underlying mechanisms of action of the herbs. In an effort to promote integration of both sides and to accelerate the drug discovery from herbal medicines, an efficient systems pharmacology platform that represents ideal information convergence of pharmacochemistry, ADME properties, drug-likeness, drug targets, associated diseases and interaction networks, are urgently needed. Description The traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) was built based on the framework of systems pharmacology for herbal medicines. It consists of all the 499 Chinese herbs registered in the Chinese pharmacopoeia with 29,384 ingredients, 3,311 targets and 837 associated diseases. Twelve important ADME-related properties like human oral bioavailability, half-life, drug-likeness, Caco-2 permeability, blood-brain barrier and Lipinski’s rule of five are provided for drug screening and evaluation. TCMSP also provides drug targets and diseases of each active compound, which can automatically establish the compound-target and target-disease networks that let users view and analyze the drug action mechanisms. It is designed to fuel the development of herbal medicines and to promote integration of modern medicine and traditional medicine for drug discovery and development. Conclusions The particular strengths of TCMSP are the composition of the large number of herbal entries, and the ability to identify drug-target networks and drug-disease networks, which will help revealing the mechanisms of action of Chinese herbs, uncovering the nature of TCM theory and developing new herb-oriented drugs. TCMSP is freely available at http://sm.nwsuaf.edu.cn/lsp/tcmsp.php.
Collapse
Affiliation(s)
- Jinlong Ru
- Center for Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Li
- Center for Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinan Wang
- Center for Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Zhou
- Center for Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bohui Li
- Center for Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Huang
- Center for Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pidong Li
- Center for Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zihu Guo
- Center for Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weiyang Tao
- Center for Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yinfeng Yang
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xue Xu
- Center for Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Li
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yonghua Wang
- Center for Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Yang
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|