1
|
Lin ZR, Bao MY, Xiong HM, Cao D, Bai LP, Zhang W, Chen CY, Jiang ZH, Zhu GY. Boswellianols A-I, Structurally Diverse Diterpenoids from the Oleo-Gum Resin of Boswellia carterii and Their TGF- β Inhibition Activity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1074. [PMID: 38674483 PMCID: PMC11054202 DOI: 10.3390/plants13081074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Olibanum, a golden oleo-gum resin from species in the Boswellia genus (Burseraceae family), is a famous traditional herbal medicine widely used around the world. Previous phytochemical studies mainly focused on the non-polar fractions of olibanum. In this study, nine novel diterpenoids, boswellianols A-I (1-9), and three known compounds were isolated from the polar methanolic fraction of the oleo-gum resin of Boswellia carterii. Their structures were determined through comprehensive spectroscopic analysis as well as experimental and calculated electronic circular dichroism (ECD) data comparison. Compound 1 is a novel diterpenoid possessing an undescribed prenylmaaliane-type skeleton with a 6/6/3 tricyclic system. Compounds 2-4 were unusual prenylaromadendrane-type diterpenoids, and compounds 5-9 were new highly oxidized cembrane-type diterpenoids. Compounds 1 and 5 showed significant transforming growth factor β (TGF-β) inhibitory activity via inhibiting the TGF-β-induced phosphorylation of Smad3 and the expression of fibronectin and N-cadherin (the biomarker of the epithelial-mesenchymal transition) in a dose-dependent manner in LX-2 human hepatic stellate cells, indicating that compounds 1 and 5 should be potential anti-fibrosis agents. These findings give a new insight into the chemical constituents of the polar fraction of olibanum and their inhibitory activities on the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Zhi-Rong Lin
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China; (Z.-R.L.); (M.-Y.B.); (H.-M.X.); (D.C.); (L.-P.B.); (W.Z.)
| | - Meng-Yu Bao
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China; (Z.-R.L.); (M.-Y.B.); (H.-M.X.); (D.C.); (L.-P.B.); (W.Z.)
| | - Hao-Ming Xiong
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China; (Z.-R.L.); (M.-Y.B.); (H.-M.X.); (D.C.); (L.-P.B.); (W.Z.)
| | - Dai Cao
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China; (Z.-R.L.); (M.-Y.B.); (H.-M.X.); (D.C.); (L.-P.B.); (W.Z.)
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China; (Z.-R.L.); (M.-Y.B.); (H.-M.X.); (D.C.); (L.-P.B.); (W.Z.)
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China; (Z.-R.L.); (M.-Y.B.); (H.-M.X.); (D.C.); (L.-P.B.); (W.Z.)
| | - Cheng-Yu Chen
- Jiaheng Pharmaceutical Technology Co., Ltd., Zhuhai 519000, China;
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China; (Z.-R.L.); (M.-Y.B.); (H.-M.X.); (D.C.); (L.-P.B.); (W.Z.)
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China; (Z.-R.L.); (M.-Y.B.); (H.-M.X.); (D.C.); (L.-P.B.); (W.Z.)
| |
Collapse
|
2
|
Dwita LP, Iwo MI, Mauludin R, Elfahmi. Neuroprotective potential of lignan-rich fraction of Piper cubeba L. by improving antioxidant capacity in the rat's brain. BRAZ J BIOL 2023; 82:e266573. [PMID: 36629543 DOI: 10.1590/1519-6984.266573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/24/2022] [Indexed: 01/11/2023] Open
Abstract
Piper cubeba contains various types of lignans. These compounds have been found to have potential pharmacological activities, one being a neuroprotector through an antioxidant mechanism, especially in the brain. This study examined the antioxidant activity of the lignan-rich fraction of P. cubeba (LF) in rat brains. The rats were given LF (200 and 400 mg/kg), Vitamin C (200 mg/kg), and a carrier as the control group for one-week p.o. The following day, rat brains were collected for antioxidant tests, including examining lipid peroxide inhibition, superoxide dismutase and catalase activity, and determination of nitric oxide (NO) concentration. The phytochemical compounds were analyzed with thin-layer chromatography (TLC), ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS), and gas chromatography-mass spectrometry (GC-MS). Test results show that the LF of both doses of 200 and 400 mg/kg could significantly increase antioxidant activity in the brain by inhibiting lipid peroxidation. LF could also increase catalase, despite the decrease in superoxide dismutase activity. Reduction in NO only occurred in the LF-200 group, while LF-400 showed insignificant results compared to the control group. In conclusion, LF showed potential as an antioxidant in the brain and could be beneficial for treating neurological diseases.
Collapse
Affiliation(s)
- L P Dwita
- Institut Teknologi Bandung, School of Pharmacy, Jawa Barat, Indonesia.,Universitas Muhammadiyah Prof. DR. HAMKA, Faculty of Pharmacy and Science, Jakarta, Indonesia
| | - M I Iwo
- Institut Teknologi Bandung, School of Pharmacy, Jawa Barat, Indonesia
| | - R Mauludin
- Institut Teknologi Bandung, School of Pharmacy, Jawa Barat, Indonesia
| | - Elfahmi
- Institut Teknologi Bandung, School of Pharmacy, Jawa Barat, Indonesia
| |
Collapse
|
3
|
Ourani-Pourdashti S, Mirzaei E, Heidari R, Ashrafi H, Azadi A. Preparation and evaluation of niosomal chitosan-based in situ gel formulation for direct nose-to-brain methotrexate delivery. Int J Biol Macromol 2022; 213:1115-1126. [PMID: 35691430 DOI: 10.1016/j.ijbiomac.2022.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022]
Abstract
Achieving effective treatments for various brain disorders due to the blood-brain barrier existence and the brain's complex structure has become a challenging goal. To overcome these challenges, one of the non-invasive strategies aimed at direct brain drug delivery is the use of the intranasal route. Novel drug delivery systems can be used to overcome the limitations in this administration route. This study suggested niosomal methotrexate (MTX) in situ gel formulation, which could be a suitable candidate for drug delivery to the brain. Here, niosomal MTX was prepared by a modified reverse-phase evaporation method, optimized with the aid of the design expert® software, and characterized. Optimum niosomal MTX with particle size, zeta potential, and entrapment efficiency (EE%), equal to 130.5 nm, -38.5 mV, and 91.39 %, respectively, were added into the temperature-sensitive in situ gel formulation composed of chitosan and Poloxamer 407. This study demonstrates that the simultaneous use of niosome and in situ gel formulations causes long-term persistence in the nasal cavity and helps us to have a more controlled drug release system with higher brain concentration, lower plasma concentration, higher Kp, and lower side effects compared to the free drug (MTX solution), MTX-gel (MTX-loaded in situ gel), and niosomal MTX formulations.
Collapse
Affiliation(s)
- Shima Ourani-Pourdashti
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Benkhaira N, Ibnsouda Koraichi S, Fikri-Benbrahim K. Ruta montana (L.) L.: An insight into its medicinal value, phytochemistry, biological properties, and toxicity. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ruta montana (RM) is a medicinal and aromatic plant (MAP) used in folk medicine, especially in North Africa, to treat digestive, infectious, respiratory, neurological, gynecological, and diabetic diseases. The current work aims to review the scientifically validated ethno-medicinal usage, bioactivities and phytochemistry of RM, in order to provide data support for further investigations. Data were procured from PubMed, Scopus, Google Scholar, Web of Science, ScienceDirect, and PubChem. The present study revealed that RM could be used to manage many diseases involved in public health problems, such as diabetes, hypertension, neurological disorders, infections, reproductive system disorders, and cancer. It might also replace chemical insecticides and fungicides since it exhibits antifungal, insecticidal, and larvicidal properties. RM extracts also contain mainly coumarins and alkaloids. The volatile oil of RM is characterized by an abundance of ketone compounds and 2-undecanone as major constituents. In the case of a high-dose administration, RM infusion can cause poisoning through the oral path. Thus, in-depth in vivo pharmacological studies and clinical trials are needed to transmute the traditional applications of RM into scientific-based information.
Collapse
Affiliation(s)
- Nesrine Benkhaira
- Department of Microbiology, Laboratory of Microbial Biotechnology and Bioactive Molecules Department of Biology, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Morocco
| | - Saad Ibnsouda Koraichi
- Department of Microbiology, Laboratory of Microbial Biotechnology and Bioactive Molecules Department of Biology, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Morocco
| | - Kawtar Fikri-Benbrahim
- Department of Microbiology, Laboratory of Microbial Biotechnology and Bioactive Molecules Department of Biology, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Morocco
| |
Collapse
|
5
|
A P, Agrawal M, Dethe MR, Ahmed H, Yadav A, Gupta U, Alexander A. Nose-to-brain drug delivery for the treatment of Alzheimer's Disease: Current advancements and challenges. Expert Opin Drug Deliv 2022; 19:87-102. [PMID: 35040728 DOI: 10.1080/17425247.2022.2029845] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The irreversible destruction of neurons, progressive loss of memory and cognitive behavior, high cost of therapy, and impact on society desire a better, effective, and affordable treatment of AD. The nose-to-brain drug delivery approach holds a great potential to access the brain without any hindrance of BBB and result in higher bioavailability thus better therapeutic efficacy of anti-AD drugs. AREAS COVERED The present review article highlighted the current facts and worldwide statistics of AD and its detailed etiology. Followed by barriers to brain delivery, nose-to-brain delivery, their limitations, and amalgamation with various novel carrier systems. We have emphasized recent advancements in nose-to-brain delivery using mucoadhesive, stimuli-responsive carriers, polymeric nanoparticles, lipid nanoparticles, protein/peptide delivery for treatment of AD. EXPERT OPINION The available therapies are symptomatic, mitigate the symptoms of AD at the initial stages. In this lieu, nose-to-brain delivery has the ability to overcome these limitations and increase drug bioavailability in the brain. Various novel strategies including stimuli-responsive systems, nanoparticles, etc. enhance the nasal drug permeation, protects the drug, and enhance its therapeutic potency. Although, successful preclinical data does not assure the clinical success of the therapy and hence exhaustive clinical investigations are needed to make the therapy available for patients.
Collapse
Affiliation(s)
- Prabakaran A
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Sila, Changsari, Kamrup, Guwahati, Assam, India, 781101
| | - Mukta Agrawal
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad, India, 509301
| | - Mithun Rajendra Dethe
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Sila, Changsari, Kamrup, Guwahati, Assam, India, 781101
| | - Hafiz Ahmed
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Sila, Changsari, Kamrup, Guwahati, Assam, India, 781101
| | - Awesh Yadav
- National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, India, 226002
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India, 305817
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Sila, Changsari, Kamrup, Guwahati, Assam, India, 781101
| |
Collapse
|
6
|
Zangooei Pourfard M, Mirmoosavi SJ, Beiraghi Toosi M, Rakhshandeh H, Rashidi R, Mohammad-Zadeh M, Gholampour A, Noras M. Efficacy and tolerability of hydroalcoholic extract of Paeonia officinalis in children with intractable epilepsy: An open-label pilot study. Epilepsy Res 2021; 176:106735. [PMID: 34388412 DOI: 10.1016/j.eplepsyres.2021.106735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/18/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Despite a wide range of medications available to control epilepsy, seizures in more than 30 % of patients remain uncontrolled. However, in traditional medicine, Paeonia officinalis (P. officinalis), a native perennial herb of Southern Europe and Western Asia, has been used for an anticonvulsant effect for over 2000 years globally. In an open-label pilot study implemented on 30 children with intractable epilepsy aged 1-14 years, the hydroalcoholic extract of P. officinalis was administered. This study's purpose was to assess the efficacy and tolerability of the P. officinalis extract as an adjunct therapy to a patient's antiseizure medications in reducing the frequency and duration of the seizures in childhood intractable epilepsy. The mean frequency of seizures decreased significantly during treatment with the P. officinalis extract (P < 0.05). At the end of the intervention, 62.5 % and 36.7 % of the patients showed a≥50 % and a≥75 % reduction in seizure frequency, respectively. Regarding safety and tolerability, no serious adverse events occurred during the trial, although restlessness was reported in one child and the other children who experienced constipation, stopped treatment. The results show that the P. officinalis root extract was well tolerated and has contributed to a significant improvement in seizure control in children with medically intractable epilepsy. This trial was registered with the Iranian Registry of Clinical Trials (www.irct.ir; registration number: IRCT20131125015533N2.
Collapse
Affiliation(s)
- Mohammad Zangooei Pourfard
- Department of Persian Medicine, Faculty of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Jamal Mirmoosavi
- Iranian Research Center for Healthy Aging, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mehran Beiraghi Toosi
- Pediatric Ward, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hasan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Rashidi
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mohammad-Zadeh
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Gholampour
- Department of Persian Medicine, Faculty of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Noras
- Department of Persian Medicine, Faculty of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
The Effect of a Traditional Preparation Containing Piper nigrum L. and Bunium persicum (Boiss.) B.Fedtsch. on Immobility Stress-Induced Memory Loss in Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5577594. [PMID: 34235220 PMCID: PMC8216790 DOI: 10.1155/2021/5577594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/02/2021] [Indexed: 01/23/2023]
Abstract
Objective Alzheimer's disease is a progressive, age-related, and neurodegenerative disease characterized by mental decline. The exact cause of Alzheimer's disease is unclear, but cholinergic dysfunction, protein accumulation, and oxidative stress are among the most important hypotheses. The main purpose of our study was to investigate the effects of aqueous and hydroalcoholic extract combination of these two medicinal plants, black pepper and cumin (as a related formulation in traditional Persian medicine), on memory and learning of an immobilized stress animal model. Methods In this study, hydroalcoholic and aqueous extracts of cumin and black pepper fruits were prepared. Six groups of mice were treated orally for 2 weeks: control group, immobility stress, and stress-induced immobility mice received different doses of the hydroalcoholic extract (100 and 200 mg/kg) and aqueous extract (100 and 200 mg/kg). The shuttle box, novel object detection, and rotarod test were used to evaluate memory and learning. The activities of acetylcholinesterase, catalase (CAT), and superoxide dismutase (SOD) and the level of reduced glutathione (GSH) and malondialdehyde (MDA) were measured in the brain tissue. Results Immobility stress significantly reduced learning and motor coordination. Furthermore, MDA levels and acetylcholinesterase activity were significantly increased, while CAT and SOD activities were significantly reduced in the brain of immobility-induced stress mice. Other findings indicated that hydroalcoholic and aqueous extracts (100 and 200 mg/kg) of cumin and black pepper fruits have an improving effect on animal motor coordination and learning ability, GSH content, and CAT, SOD, and acetylcholinesterase enzyme function in comparison with stress groups (p < 0.05). Conclusion The hydroalcoholic and aqueous extracts of cumin and black pepper fruits have protective effects against stress-induced memory deficit and oxidative stress and may have beneficial therapeutic effect in the treatment of neurodegenerative diseases.
Collapse
|
8
|
Neuroprotective Effect of Syringic Acid by Modulation of Oxidative Stress and Mitochondrial Mass in Diabetic Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8297984. [PMID: 33457416 PMCID: PMC7787734 DOI: 10.1155/2020/8297984] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/28/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Diabetes is a metabolic complaint associated with oxidative stress and dysfunction of mitochondria. One of the most common complications of diabetes mellitus is neuropathy. This study evaluated the possible neuroprotective effects of syringic acid (SYR), a natural polyphenolic derivative of benzoic acid, on oxidative damage and mitochondria in the brain, spinal cord, and sciatic nerve of streptozotocin-induced diabetic rats. Different groups of rats including normal control, diabetics (induced by streptozotocin), diabetic groups treated with 25, 50, and 100 mg/kg of SYR, and non-diabetic group treated with only 100 mg/kg of SYR were treated for 6 weeks. Learning and memory function, physical coordination, and acetylcholinesterase (AChE) and antioxidant indexes, as well as mRNA expression of mitochondrial biogenesis, were measured in the brain, spinal cord, and sciatic nerves. Diabetic rats treated with 100 mg/kg SYR exhibited significantly improved learning, memory, and movement deficiency (p < 0.05). SYR 100 mg/kg also significantly upregulated the brain mRNA expression of PGC-1α and NRF-1, the key regulators of energy metabolism, oxidative phosphorylation, and mitochondrial biogenesis. In addition, SYR 100 mg/kg and SYR 50 mg/kg increased the mtDNA/nDNA ratio in the brain and the spinal cord of diabetic rats, respectively (p < 0.05). SYR attenuated the lipid peroxidation in all the tissues, but not significant effects were observed on GSH, AChE, catalase, and superoxide dismutase activity. In all the tests, nonsignificant differences were observed between the control and SYR 100 mg/kg groups. Moreover, SYR reduced inflammation and demyelination in sciatic nerves. This is the first study to reveal the regulation of mitochondrial biogenesis and energy metabolism by SYR, beyond its antioxidant role in the diabetic rats' brain and spinal tissues.
Collapse
|
9
|
Deshkar SS, Jadhav MS, Shirolkar SV. Development of Carbamazepine Nanostructured Lipid Carrier Loaded Thermosensitive Gel for Intranasal Delivery. Adv Pharm Bull 2020; 11:150-162. [PMID: 33747862 PMCID: PMC7961220 DOI: 10.34172/apb.2021.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2020] [Accepted: 04/19/2020] [Indexed: 11/09/2022] Open
Abstract
Purpose: The present research work was designed to formulate and evaluate carbamazepine (CBZ) loaded nanostructured lipid carrier (NLC) based in-situ gel for nasal delivery. Methods: The NLC formulation of CBZ was prepared by microemulsion technique followed by probe sonication and evaluated for particle size, zeta potential, entrapment efficiency and in vitro drug diffusion. NLC formulation was incorporated into in-situ gelling formulation using poloxamer 407 (P407), poloxamer 188 (P188) and mucoadhesive polymer. The effect of concentration of poloxamer 188 (X1 ), type of mucoadhesive polymer (X2 ) and concentration of mucoadhesive polymer (X3 ) on gelling temperature (Y1 ) and drug diffusion after 8 h (Y2 ) was studied using Box-Behnken design. In vivo anticonvulsant activity of optimized formulation was studied in Wistar rats by maximal electro-convulsion model (MES). Results: The optimized CBZ NLC formulation, with 20% drug loading, 0.5:1 as Precirol:Capmul MCM ratio as lipid phase and 1:3 as Lipid:Smix ratio, resulted in 89.73±0.2% drug entrapment, 55.95±1.09% of drug diffusion after 8 h, particle size of 132.8 nm with polydispersity index of 0.302 and zeta potential of -29.2±6.1 mV. The in-situ gel formulation with 20% P407, 5% P188 and 0.2% chitosan was optimized and demonstrated excellent gelling ability, gelling temperature in the range of 30 to 35°C, 42.46% of drug diffusion in 8 h by Fickian diffusion mechanism and 31.34±0.76% of drug permeation through sheep nasal mucosa. In vitro anticonvulsant activity in MES model in rat demonstrated significant efficacy (71.95% protection against seizure in extension phase) as compared to plain in-situ nasal gel (50.26% protection against seizure in extension phase). Conclusion: NLC based in-situ gelling formulation demonstrated its potential for nasal delivery of CBZ with improved anticonvulsant activity.
Collapse
Affiliation(s)
- Sanjeevani Shekhar Deshkar
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India - 411018
| | - Monali Shivaji Jadhav
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India - 411018
| | - Satish Vasudeo Shirolkar
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India - 411018
| |
Collapse
|
10
|
Önder A, Nahar L, Nath S, Sarker SD. Phytochemistry, Traditional Uses and Pharmacological Properties of the Genus Opopanax W. D. J. Koch: A Mini-Review. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The genus Opopanax W.D.J. Koch is a member of the Apiaceae family, distributed throughout the Mediterranean region and comprises only three recognized and well-defined species, O. chironium (L.) W.D.J. Koch, O. hispidus (Friv.) Griseb. and O. persicus Boiss. The species of this genus with yellow flowers are well-known in traditional medicine and consumed as food. This review critically appraises published literature on the phytochemistry, traditional usages, and pharmacological activities of the genus Opopanax. In addition, it provides evidence to suggest that the plants from this genus have potential phytotherapeutic applications. Previous phytochemical and bioactivity studies revealed that the genus Opopanax predominantly produces coumarins, diterpenes, phenolics, and phthalides, and possesses various biological and pharmacological properties, including anticancer, antioxidant and antimicrobial activities. The phytochemical profile and pharmacological activities of the genus Opopanax could be useful for further study and might find additional medicinal applications in evidence-based phytotherapy
Collapse
Affiliation(s)
- Alev Önder
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, 06100 Tandogan Ankara, Turkey
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, 06100 Tandogan Ankara, Turkey
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Sushmita Nath
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, 06100 Tandogan Ankara, Turkey
| | - Satyajit D. Sarker
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, 06100 Tandogan Ankara, Turkey
| |
Collapse
|
11
|
Effect of polysorbate 80 on the intranasal absorption and brain distribution of tetramethylpyrazine phosphate in rats. Drug Deliv Transl Res 2019; 9:311-318. [PMID: 30168052 DOI: 10.1007/s13346-018-0580-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Drug delivery to the brain is limited by the blood-brain barrier (BBB). Intranasal delivery is a non-invasive route of drug administration which can bypass the BBB and contributed to a direct and rapid transport of drugs to the brain. However, intrinsic drug distribution to the brain after intranasal administration may not be sufficient to achieve required clinical efficacy. In this study, taking 2,3,5,6-tetramethylpyrazine (TMPP) as a model drug, the feasibility of using polysorbate 80 as an absorption enhancer and message guider to increase drug distribution in the brain was employed. After intravenous/intranasal administration of TMPP formulations with/without polysorbate 80, drug concentration in both plasma and brain was measured at specific time points, and the pharmacokinetic parameters were compared. It was demonstrated that compared with intravenous administration, brain targeting efficiency of TMPP was improved remarkably by intranasal route. Upon intranasal administration, the addition of polysorbate 80 significantly increased TMPP concentration in both plasma and brain linearly up to polysorbate 80 concentration 2%. Based on drug targeting efficiency, drug targeting index, and nose-to-brain direct transport percentage, polysorbate 80 decreased the nose-to-brain direct transport ratio of TMPP in a polysorbate 80 concentration-dependent manner although the total brain targeting efficiency was unchanged, with significantly enhanced absolute drug concentration in the brain achieved. In summary, polysorbate 80 is a promising excipient to increase drug concentration in both plasma and brain via intranasal route.
Collapse
|
12
|
Heydarirad G, Keyhanmehr AS, Mofid B, Nikfarjad H, Mosavat SH. Efficacy of aromatherapy with Rosa damascena in the improvement of sleep quality of cancer patients: A randomized controlled clinical trial. Complement Ther Clin Pract 2019; 35:57-61. [PMID: 31003687 DOI: 10.1016/j.ctcp.2019.01.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Ghazaleh Heydarirad
- Department of Traditional Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armaghan Sadat Keyhanmehr
- Department of Traditional Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Mofid
- Department of Clinical Oncology, Shohada-e-Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Nikfarjad
- ACECR (Academic Center for Education, Culture and Research), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hamdollah Mosavat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Center for Psychiatry and Behavior Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Vilamarim R, Bernardo J, Videira RA, Valentão P, Veiga F, Andrade PB. An egg yolk’s phospholipid-pennyroyal nootropic nanoformulation modulates monoamino oxidase-A (MAO-A) activity in SH-SY5Y neuronal model. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|