1
|
Li X, Lin L, Pang L, Pu K, Fu J, Shen Y, Zhang W, Xu H, Niu Y. Application and development trends of network toxicology in the safety assessment of traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119480. [PMID: 39947372 DOI: 10.1016/j.jep.2025.119480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 02/19/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Integrating network toxicology into traditional Chinese medicine toxicology boosts the efficiency and comprehensiveness of safety evaluations for these medicines. AIM OF THE STUDY This paper aims to deepen the comprehension of network toxicology and facilitate its application in the safety evaluation of traditional Chinese medicines. MATERIALS AND METHODS Using "network pharmacology," "network toxicology," and "traditional Chinese medicine" as keywords, relevant literature was searched in databases such as Web of Science, PubMed, and CNKI. The cited literature spans from 1999 to 2024. RESULTS Network toxicology constructs a "toxicity-gene-target-drug" network model to characterize the toxicological features of the research subject. This paper reviews existing toxicity prediction tools and databases, explores methodologies for toxicity prediction, and comprehensively summarizes the applications of network toxicology in the prediction of harmful components, analysis of toxicity mechanisms, integration of interdisciplinary approaches, and combination with omics technologies. Additionally, it analyzes the current challenges and limitations of network toxicology. CONCLUSIONS Network toxicology has been extensively utilized in the safety research of traditional Chinese medicine, particularly in identifying toxic components and elucidating their mechanisms. However, there remains significant space for advancement. Future research could investigate integrating network toxicology with cutting-edge technologies like artificial intelligence and multi-omics approaches, thereby offering robust theoretical foundations for developing a comprehensive traditional Chinese medicine safety evaluation system.
Collapse
Affiliation(s)
- Xiaoyan Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Lishan Lin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Li Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Ke Pu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Jiayue Fu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Yushan Shen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Wenjing Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China.
| | - Yinbo Niu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China.
| |
Collapse
|
2
|
Liu N, Tu J, Yi F, Zhang X, Zhong X, Wang L, Xie L, Zhou J. The Identification of Potential Anti-Depression/Anxiety Drug Targets by Stress-Induced Rat Brain Regional Proteome and Network Analyses. Neurochem Res 2024; 49:2957-2971. [PMID: 39088164 DOI: 10.1007/s11064-024-04220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Depression and anxiety disorders are prevalent stress-related neuropsychiatric disorders and involve multiple molecular changes and dysfunctions across various brain regions. However, the specific and shared pathophysiological mechanisms occurring in these regions remain unclear. Previous research used a rat model of chronic mild stress (CMS) to segregate and identify depression-susceptible, anxiety-susceptible, and insusceptible groups; then the proteomes of six distinct brain regions (the hippocampus, prefrontal cortex, hypothalamus, pituitary, olfactory bulb, and striatum) were separately and quantitatively analyzed. To gain a comprehensive and systematic understanding of the molecular abnormalities, this study aimed to investigate and compare differential proteomics data from the six regions. Differentially expressed proteins (DEPs) were identified in between specific regions and across all regions and subjected to a series of bioinformatics analyses. Regional comparisons showed that stress-induced proteomic changes and corresponding gene ontology and pathway enrichments were largely distinct, attributable to differences in cell populations, protein compositions, and brain functions of these areas. Additionally, a notable degree of overlap in the significantly enriched terms was identified, potentially suggesting strong connections in the enrichment across different regions. Furthermore, intra-regional and inter-regional protein-protein interaction networks and drug-target-DEP networks were constructed. Integrated analysis of the three association networks in the six regions, along with the DisGeNET database, identified ten DEPs as potential targets for anti-depression/anxiety drugs. Collectively, these findings revealed commonalities and differences across different brain regions at the protein level induced by CMS, and identified several novel protein targets for the development of new therapeutics for depression and anxiety.
Collapse
Affiliation(s)
- Nan Liu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Jiaxin Tu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Faping Yi
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xiong Zhang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xianhui Zhong
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lili Wang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Liang Xie
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Jian Zhou
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
3
|
Mou Z, Gong T, Wu Y, Liu J, Yu J, Mao L. The efficacy and safety of Dachaihu decoction in the treatment of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Front Med (Lausanne) 2024; 11:1397900. [PMID: 39015790 PMCID: PMC11249752 DOI: 10.3389/fmed.2024.1397900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD), also known as metabolic associated fatty liver disease (MAFLD), is a common liver condition characterized by excessive fat accumulation in the liver which is not caused by alcohol. The main causes of NAFLD are obesity and insulin resistance. Dachaihu decoction (DCHD), a classic formula in traditional Chinese medicine, has been proved to treat NAFLD by targeting different aspects of pathogenesis and is being progressively used in the treatment of NAFLD. DCHD is commonly applied in a modified form to treat the NAFLD. In light of this, it is imperative to conduct a systematic review and meta-analysis to assess the effectiveness and safety of DCHD in the management of NAFLD. There is a need for a systematic review and meta-analysis to assess the effectiveness and safety of modified DCHD in treating NAFLD. Objective The objective of this meta-analysis was to systematically assess the clinical effectiveness and safety of DCHD in treating NAFLD. Methods This meta-analysis adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Including seven databases, both Chinese and English databases were searched for relevant studies. The quality of included studies was carefully assessed using the bias risk assessment tool in the Cochrane Handbook. Eligible articles were the source of extracted data which was meta-analyzed by using Review Manager 5.4 and Stata 17.0. Results A total of 10 studies containing 825 patients were included. Compared with conventional treatments, combined treatment could clearly improve the liver function of NAFLD patients, which could reduce the levels of ALT (MD = -7.69 U/L, 95% CI: -11.88 to -3.51, p < 0.001), AST (MD = -9.58 U/L, 95% CI: -12.84 to -6.33, p < 0.01), and it also had a certain impact on regulating lipid metabolism, which could reduce the levels of TC (MD = -0.85 mmol/L, 95% CI: -1.22 to 0.48, p < 0.01), TG (MD = -0.45 mmol/L, 95% CI: -0.64 to 0.21, p < 0.01). Adverse event showed that DCHD was relatively safe. Due to the inclusion of less than 10 trials in each group, it was not possible to conduct a thorough analysis of publication bias. Conclusion According to the meta-analysis, in the treatment of the NAFLD, it is clear that the combination of DCHD was advantages over conventional treatment alone in improving liver function, regulating lipid metabolism. Additionally, DCHD demonstrates a relatively safe profile. Nevertheless, due to limitations in the quality and quantity of the studies incorporated, the effectiveness and safety of DCHD remain inconclusive. Consequently, further high-quality research is imperative to furnish more substantial evidence supporting the widespread clinical application of DCHD. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023397353, CRD42023397353.
Collapse
Affiliation(s)
- Zhiqing Mou
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Tao Gong
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanzuo Wu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Liu
- Zhejiang Chinese Medical University, Hangzhou, China
| | | | - Lichan Mao
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
4
|
Gao KX, Peng X, Wang JY, Wang Y, Pei K, Meng XL, Zhang SS, Hu MB, Liu YJ. In vivo absorption, in vitro simulated digestion and fecal fermentation properties of polysaccharides from Pinelliae Rhizoma Praeparatum Cum Alumine and their effects on human gut microbiota. Int J Biol Macromol 2024; 266:131391. [PMID: 38582456 DOI: 10.1016/j.ijbiomac.2024.131391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Polysaccharides from Pinelliae Rhizoma Praeparatum Cum Alumine (PPA) have various biological activities, but their properties after oral administration are not clear. In this study, the absorption, digestion and fermentation properties of PPA were studied using in vivo fluorescence tracking, in vitro simulated digestion and fecal fermentation experiments. The absorption experiment showed that fluorescence was only observed in the gastrointestinal system, indicating that PPA could not be absorbed. Simulated digestion results showed that there were no significant changes in the molecular weight, Fourier transform infrared spectroscopy (FT-IR) spectrum, monosaccharides and reducing sugar of PPA during the digestion process, showing that the overall structure of PPA was not damaged. However, the carbohydrate gel electrophoresis bands of PPA enzymatic hydrolysates after simulated digestion were significantly changed, indicating that simulated digestion might impact the configuration of PPA. In vitro fermentation showed that PPA could be degraded by microorganisms to produce short chain fatty acids, leading to a decrease in pH value. PPA can promote the proliferation of Bacteroideaceae, Megasphaera, Bacteroideaceae, and Bifidobacteriaceae, and inhibit the growth of Desulfobacteriota and Enterobacteriaceae. The results indicated that PPA could treat diseases by regulating gut microbiota, providing a scientific basis for the application and development of PPA.
Collapse
Affiliation(s)
- Kui-Xu Gao
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030600, PR China
| | - Xi Peng
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030600, PR China
| | - Jing-Ya Wang
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030600, PR China
| | - Yao Wang
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030600, PR China
| | - Ke Pei
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030600, PR China
| | - Xiang-Long Meng
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030600, PR China
| | - Shuo-Sheng Zhang
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030600, PR China
| | - Mei-Bian Hu
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030600, PR China,.
| | - Yu-Jie Liu
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030600, PR China,.
| |
Collapse
|
5
|
Bo C, Liu M, You Q, Liu X, Zhu Y, Duan Y, Wang D, Xue T, Xue J. Integrated analysis of transcriptome and miRNAome reveals the heat stress response of Pinellia ternata seedlings. BMC Genomics 2024; 25:398. [PMID: 38654150 DOI: 10.1186/s12864-024-10318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Pinellia ternata (Thunb.) Briet., a valuable herb native to China, is susceptible to the "sprout tumble" phenomenon because of high temperatures, resulting in a significant yield reduction. However, the molecular regulatory mechanisms underlying the response of P. ternata to heat stress are not well understood. In this study, we integrated transcriptome and miRNAome sequencing to identify heat-response genes, microRNAs (miRNAs), and key miRNA-target pairs in P. ternata that differed between heat-stress and room-temperature conditions. Transcriptome analysis revealed extensive reprogramming of 4,960 genes across various categories, predominantly associated with cellular and metabolic processes, responses to stimuli, biological regulation, cell parts, organelles, membranes, and catalytic and binding activities. miRNAome sequencing identified 1,597 known/conserved miRNAs that were differentially expressed between the two test conditions. According to the analysis, genes and miRNAs associated with the regulation of transcription, DNA template, transcription factor activity, and sequence-specific DNA binding pathways may play a major role in the resistance to heat stress in P. ternata. Integrated analysis of the transcriptome and miRNAome expression data revealed 41 high-confidence miRNA-mRNA pairs, forming 25 modules. MYB-like proteins and calcium-responsive transcription coactivators may play an integral role in heat-stress resistance in P. ternata. Additionally, the candidate genes and miRNAs were subjected to quantitative real-time polymerase chain reaction to validate their expression patterns. These results offer a foundation for future studies exploring the mechanisms and critical genes involved in heat-stress resistance in P. ternata.
Collapse
Affiliation(s)
- Chen Bo
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
- Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Mengmeng Liu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Qian You
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Xiao Liu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Yanfang Zhu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
- Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Yongbo Duan
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
- Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Dexin Wang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China.
| | - Tao Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
- Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Jianping Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
- Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| |
Collapse
|
6
|
Tian X, Liu F, Wang Z, Zhang J, Liu Q, Zhang Y, Zhang D, Huang C, Zhao J, Jiang S. Modified Biejia Jianwan decoction restrains PD-L1-mediated immune evasion through the HIF-1α/STAT3/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117577. [PMID: 38104877 DOI: 10.1016/j.jep.2023.117577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/26/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Modified Biejia Jianwan (M-BJJW), a Traditional Chinese Medicine (TCM) decoction, has exhibited great potential in treating hepatocellular carcinoma (HCC). However, its underlying functional mechanism still remains unknown. AIM OF THE STUDY The study aimed to explore the anti-hepatocarcinogenic effects of M-BJJW, specifically its influence on PD-L1-mediated immune evasion in hypoxic conditions, and elucidate the related molecular mechanisms in HCC. MATERIALS AND METHODS To investigate the therapeutic efficacy and mechanisms underlying M-BJJW's effects on HCC, we employed a diethylnitrosamine (DEN)-induced rat model maintained for 120 days. Following model establishment, flow cytometry was utilized to assess the distribution of immune cell populations in peripheral blood, spleens, and tumor tissues after M-BJJW administration. Simultaneously, enzyme-linked immunosorbent assays (ELISA) were conducted to analyze cytokine profiles in serum samples. Immunohistochemistry was employed to determine the expression levels of crucial proteins within tumor tissues. Furthermore, HCC cells exposed to CoCl2 underwent Western blot analysis to validate the expression levels of HIF-1α, PD-L1, STAT3, and nuclear factor kappa B (NF-κB) p65. The modulatory effects of STAT3 and NF-κB p65 were investigated using specific inhibitors and activators in wild-type cell lines. High-performance liquid chromatography coupled with mass spectrometry (HPLC/MS) was utilized to identify the chemical constituents present in M-BJJW-medicated serum. The immunomodulatory properties and the anti-tumor activities of M-BJJW were evaluated by co-culturing with peripheral blood mononuclear cells (PBMC) and the CCK-8 assay. Additionally, we assessed M-BJJW's impact on hypoxia-induced alterations in HCC cell lines using immunofluorescence and Western blot assessments. RESULTS M-BJJW exhibited substantial therapeutic advantages by effectively alleviating pathological deterioration within the HCC microenvironment. In the DEN-induced rat model, M-BJJW administration notably reduced tumor growth. Flow cytometry analyses revealed an increased proportion of Cytotoxic T lymphocytes (CTLs) accompanied by a simultaneous decrease in regulatory T cells (Tregs). ELISA data supported a marked decrease in pro-inflammatory cytokines, including interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor α (TNF-α). Immunohistochemistry confirmed the suppressive effect of M-BJJW on the expression of HIF-1α and PD-L1. Notably, western blotting unveiled the role of HIF-1α in regulating PD-L1 expression via the STAT3 and NF-κB signaling pathways in HCC cell lines, which was validated using activators and inhibitors of STAT3 and NF-κB. The CCK-8 assay and co-culture techniques demonstrated the anti-tumor activity of M-BJJW. Immunofluorescence and western blotting further confirmed that M-BJJW-containing serum dose-dependently inhibited HIF-1α, PD-L1, p-STAT3, and p-p65 in hypoxic HCC cell lines. CONCLUSIONS M-BJJW demonstrates significant therapeutic potential against HCC by influencing the hypoxic microenvironment, thereby regulating the immunosuppressive milieu. Specifically, M-BJJW modulates the HIF-1α/STAT3/NF-κB signaling pathway, leading to reduced PD-L1 expression and an elevated ratio of cytotoxic T lymphocytes (CTLs), while concurrently decreasing T regulatory cells (Tregs) and immunosuppressive factors. These synergistic effects aid in countering PD-L1-mediated immune evasion, presenting compelling pharmacological evidence supporting the clinical application of M-BJJW as a therapeutic approach for HCC.
Collapse
Affiliation(s)
- Xinchen Tian
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Fen Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zijian Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiaqi Zhang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Yiming Zhang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Dengtian Zhang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Chen Huang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Jing Zhao
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China.
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China; First Clinical Medical School, Shandong University of Traditional Chinese Medicine.
| |
Collapse
|
7
|
Li ZF, Feng JK, Zhao XC, Liu W, Gu SA, Li R, Lu YL, Mao RJ, Xia LL, Dong LL, Zhang LW, Ruan JY, Liu J, Li GF, Li T, Sun R, Qiu SL, Zheng ZZ, Dong T. The Extract of Pinellia Ternata-Induced Apoptosis of Leukemia Cells by Regulating the Expression of Bax, Bcl-2 and Caspase-3 Protein Expression in Mice. Transplant Proc 2023; 55:2232-2240. [PMID: 37777366 DOI: 10.1016/j.transproceed.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 10/02/2023]
Abstract
The study aims to lessen the monetary burden on patients and society by decreasing the price of proprietary drugs used in leukemia therapy. Flow cytometry, reverse transcription polymerase chain reaction, western blot, and a patient-derived xenograft mouse model were used to confirm the therapeutic effect of Pinellia ternata extract on leukemia. Three types of leukemia cells (K562, HL-60, and C8166 cell lines) were found to undergo early apoptosis (P ≤ .05) after being exposed to P. ternata extract, as measured by flow cytometry. Reverse transcription polymerase chain reaction results showed that P. ternata extract at both middle (300 μg/mL) and high (500 μg/mL) concentrations was able to down-regulate Bcl-2 and upregulate mRNA expression of Bax and caspase-3. In the patient-derived xenograft mouse model formed by BALB/c-nu/nu nude mice, immunohistochemistry indicated that P. ternata extract effectively suppressed the proliferation of leukemia cells. Therefore, P. ternata extract at 300 μg/mL and 500 μg/mL could effectively inhibit myeloid and lymphocytic leukemia cell proliferation and promote leukemia cell apoptosis by regulating Bax/Bcl-2 and caspase-3.
Collapse
Affiliation(s)
- Zheng-Fa Li
- Department of Hematology, Department of Laboratory of the First People's Hospital of Yunnan Province (Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan, China
| | - Jia-Kun Feng
- Department of Hematology, Department of Laboratory of the First People's Hospital of Yunnan Province (Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan, China
| | - Xiao-Chen Zhao
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wei Liu
- Department of Hematology, Department of Laboratory of the First People's Hospital of Yunnan Province (Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan, China
| | - Shi-An Gu
- Department of Hematology, Department of Laboratory of the First People's Hospital of Yunnan Province (Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan, China
| | - Rui Li
- Department of Hematology, Department of Laboratory of the First People's Hospital of Yunnan Province (Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan, China
| | - Yang-Liu Lu
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Rui-Jiao Mao
- Department of Hematology, Department of Laboratory of the First People's Hospital of Yunnan Province (Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan, China
| | - Li-Ling Xia
- Department of Hematology, Department of Pathology of Yunnan New Kun Hua Hospital, Kunming, Yunnan, China
| | - Lu-Lu Dong
- Department of Hematology, Department of Pathology of Yunnan New Kun Hua Hospital, Kunming, Yunnan, China
| | - Li-Wen Zhang
- Department of Hematology, Department of Pathology of Yunnan New Kun Hua Hospital, Kunming, Yunnan, China
| | - Jing-Yan Ruan
- Department of Hematology, Department of Pathology of Yunnan New Kun Hua Hospital, Kunming, Yunnan, China
| | - Jiao Liu
- Department of Hematology, Department of Pathology of Yunnan New Kun Hua Hospital, Kunming, Yunnan, China
| | - Guang-Fen Li
- Department of Hematology, Department of Pathology of Yunnan New Kun Hua Hospital, Kunming, Yunnan, China
| | - Tao Li
- Department of Hematology, Department of Pathology of Yunnan New Kun Hua Hospital, Kunming, Yunnan, China
| | - Rong Sun
- Department of Hematology, Department of Pathology of Yunnan New Kun Hua Hospital, Kunming, Yunnan, China
| | - Shui-Lan Qiu
- Department of Hematology, Department of Pathology of Yunnan New Kun Hua Hospital, Kunming, Yunnan, China
| | | | - Ting Dong
- Department of Hematology, Department of Laboratory of the First People's Hospital of Yunnan Province (Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan, China.
| |
Collapse
|
8
|
Chen C, Sun Y, Wang Z, Huang Z, Zou Y, Yang F, Hu J, Cheng H, Shen C, Wang S. Pinellia genus: A systematic review of active ingredients, pharmacological effects and action mechanism, toxicological evaluation, and multi-omics application. Gene 2023; 870:147426. [PMID: 37044184 DOI: 10.1016/j.gene.2023.147426] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
The dried tuber of Pinellia ternata (Thunb.) Breit, Pinelliae Rhizoma (PR, also named 'Banxia' in Chinese), is widely used in traditional medicine. This review aims to provide detail summary of active ingredients, pharmacological effects, toxic ingredients, detoxification strategies, and omic researches, etc. Pharmacological ingredients from PR are mainly classified into six categories: alkaloids, amino acids, polysaccharides, phenylpropanoids, essential oils, and glucocerebrosides. Diversity of chemical composition determines the broad-spectrum efficacy and gives a foundation for the comprehensive utilization of P. ternata germplasm resources. The pharmacological compounds are involved in inhibition of cancer cells by targeting various pathways, including activation of immune system, inhibition of proliferation and cycle, induction of apoptosis, and inhibition of angiogenesis. The pharmacological components of PR act on nervous system by targeting neurotransmitters, activating immune system, decreasing apoptosis, and increasing redox system. Lectins, one major class of the toxic ingredients extracted from raw PR, possess significant toxic effects on human cells. Inflammatory factors, cytochrome P450 proteins (CYP) family enzymes, mammalian target of rapamycin (mTOR) signaling factors, transforming growth factor-β (TGF-β) signaling factors, and nervous system, are considered to be the target sites of lectins. Recently, omic analysis is widely applied in Pinellia genus studies. Plastome genome-based molecular markers are deeply used for identifying and resolving phylogeny of Pinellia genus plants. Various omic works revealed and functional identified a series of environmental stress responsive factors and active component biosynthesis-related genes. Our review summarizes the recent progress in active and toxic ingredient evaluation, pharmacological effects, detoxification strategies, and functional gene identification and accelerates efficient utilization of this traditional herb.
Collapse
Affiliation(s)
- Cheng Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yunting Sun
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311121, China.
| | - Zhijing Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhihua Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuqing Zou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Feifei Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jing Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Huijuan Cheng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
9
|
Chen W, Luo H, Zhong Z, Wei J, Wang Y. The safety of Chinese medicine: A systematic review of endogenous substances and exogenous residues. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154534. [PMID: 36371955 DOI: 10.1016/j.phymed.2022.154534] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Safety and toxicity have become major challenges in the internationalization of Chinese medicine. Inspite of its wide application, security problems of Chinese medicine still occur from time to time, raising widespread concerns about its safety. Most of the studies either only partially discussed the intrinsic toxicities or extrinsic harmful residues in Chinese medicine, or briefly described detoxification and attenuation methods. It is necessary to systematically discuss Chinese medicine's extrinsic and intrinsic toxic components and corresponding toxicity detoxification or detection methods as a whole. PURPOSE This review comprehensively summarizes various toxic components in Chinese medicine from intrinsic and extrinsic. Then the corresponding methods for detoxification or detection of toxicity are highlighted. It is expected to provide a reference for safeguards for developing and using Chinese medicine. METHODS A literature search was conducted in the databases, including PubMed, Web of Science,Wan-fang database, and the China National Knowledge Infrastructure (CNKI). Keywords used were safety, toxicity, intrinsic toxicities, extrinsic harmful residues, alkaloids, terpene and macrolides, saponins, toxic proteins, toxic crystals, minerals, heavy metals, pesticides, mycotoxins, sulfur dioxide, detoxification, detection, processing (Paozhi), compatibility (Peiwu), Chinese medicine, etc., and combinations of these keywords. All selected articles were from 2006 to 2022, and each was assessed critically for our exclusion criteria. Studies describe the classification of toxic components of Chinese medicine, the toxic effects and mechanisms of Chinese medicine, and the corresponding methods for detoxification or detection of toxicity. RESULTS The toxic components of Chinese medicines can be classified as intrinsic toxicities and extrinsic harmful residues. Firstly, we summarized the intrinsic toxicities of Chinese medicine, the adverse effects and toxicity mechanisms caused by these components. Next, we focused on the detoxification or attenuation methods for intrinsic toxicities of Chinese medicine. The other main part discussed the latest progress in analytical strategies for exogenous hazardous substances, including heavy metals, pesticides, and mycotoxins. Beyond reviewing mainstream instrumental methods, we also introduced the emerging biochip, biosensor and immuno-based techniques. CONCLUSION In this review, we provide an overall assessment of the recent progress in endogenous toxins and exogenous hazardous substances concerning Chinese medicine, which is expected to render deeper insights into the safety of Chinese medicine.
Collapse
Affiliation(s)
- Wenyue Chen
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Hua Luo
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Jinchao Wei
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
10
|
Peng W, Li N, Jiang E, Zhang C, Huang Y, Tan L, Chen R, Wu C, Huang Q. A review of traditional and current processing methods used to decrease the toxicity of the rhizome of Pinellia ternata in traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115696. [PMID: 36087845 DOI: 10.1016/j.jep.2022.115696] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The rhizome of Pinellia ternata (Thunb.) Breit, called Pinelliae Rhizoma (PR) and Banxia in Chinese, is a well-known traditional Chinese medicine (TCM) with the functions of "removing dampness-phlegm" and "downbear counterflow and check vomiting". PR has potential toxic effects that can be detoxified by Fuzhi processing (repeated processing using one or multiple adjuvants) with specific adjuvants. AIM OF THE STUDY This paper aims to provide a summary of traditional and current processing methods used to detoxify PR. MATERIALS AND METHODS The available references of the processing methods of PR from the classic books of Materia Medica, literature, online databases and masters or doctoral theses are collected and summarized. We also discussed the possible processing mechanisms of how we can achieve a safer and effective application of PR via these processing methods. RESULTS PR cannot be administered orally before processing. PR contains nucleoside alkaloids, cerebrosides, fatty acids, lectin, polysaccharides, and calcium oxalate crystals. To date, although the active substances of PR are still unclear, the toxic components are almost completely clarified as needle-like calcium oxalate crystals (NCOCs) and lectin proteins. Furthermore, the toxic effects of PR include causing death in animals, inflammation, conjunctival irritation, pregnancy toxicity, teratogenicity, visceral toxicity, aphonia and vomiting. From ancient times to now, Fuzhi methods have remained the predominant method for PR processing, and the main adjuvants used are ginger juice, alum, licorice and lime. In addition, detoxification mechanisms are related to removing or damaging the NCOC and lectin in PR based on processing with adjuvants. Currently, Fuzhi processing has been greatly improved, and novel processing technologies with novel adjuvants have been used for PR processing. However, there are still some flaws in PR processing, which should be urgently solved in the future, and clarifying the characteristic bioactive compounds in PR corresponding to its function or effects is the most important step for PR processing. CONCLUSION Our present paper reviewed the previous literature regarding all aspects of the processing of PR, and this paper will be helpful for achieving a safer and effective application of PR and its processed products and will also be beneficial for the further optimization of processing technology and clinical medication safety of PR.
Collapse
Affiliation(s)
- Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ercheng Jiang
- Sichuan Neautus Traditional Chinese Medicine Co., Ltd, Chengdu, 611731, China
| | - Chao Zhang
- Sichuan Neautus Traditional Chinese Medicine Co., Ltd, Chengdu, 611731, China
| | - Yongliang Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ling Tan
- Sichuan Neautus Traditional Chinese Medicine Co., Ltd, Chengdu, 611731, China
| | - Ruyan Chen
- Sichuan Neautus Traditional Chinese Medicine Co., Ltd, Chengdu, 611731, China
| | - Chunjie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Qinwan Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
11
|
Guo W, Han J, Li X, He Z, Zhang Y. Large-scale analysis of protein crotonylation reveals its diverse functions in Pinellia ternata. BMC PLANT BIOLOGY 2022; 22:457. [PMID: 36151520 PMCID: PMC9502611 DOI: 10.1186/s12870-022-03835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Pinellia ternata is an important traditional medicine in China, and its growth is regulated by the transcriptome or proteome. Lysine crotonylation, a newly identified and important type of posttranslational modification, plays a key role in many aspects of cell metabolism. However, little is known about its functions in Pinellia ternata. RESULTS In this study, we generated a global crotonylome analysis of Pinellia ternata and examined its overlap with lysine succinylation. A total of 2106 crotonylated sites matched on 1006 proteins overlapping in three independent tests were identified, and we found three specific amino acids surrounding crotonylation sites in Pinellia ternata: KcrF, K***Y**Kcr and Kcr****R. Gene Ontology (GO) and KEGG pathway enrichment analyses showed that two crucial alkaloid biosynthesis-related enzymes and many stress-related proteins were also highly crotonylated. Furthermore, several enzymes participating in carbohydrate metabolism pathways were found to exhibit both lysine crotonylation and succinylation modifications. CONCLUSIONS These results indicate that lysine crotonylation performs important functions in many biological processes in Pinellia ternata, especially in the biosynthesis of alkaloids, and some metabolic pathways are simultaneously regulated by lysine crotonylation and succinylation.
Collapse
Affiliation(s)
- Weiwei Guo
- Shandong Provincial Key Laboratory of Dry Farming Technology/Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Jiayi Han
- Shandong Provincial Key Laboratory of Dry Farming Technology/Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Ximei Li
- Shandong Provincial Key Laboratory of Dry Farming Technology/Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Zihan He
- Shandong Provincial Key Laboratory of Dry Farming Technology/Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Yumei Zhang
- Shandong Provincial Key Laboratory of Dry Farming Technology/Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China.
| |
Collapse
|
12
|
Zhang Z, Leng Y, Fu X, Yang C, Xie H, Yuan H, Liang Q, Gao H, Xie C. The efficacy and safety of dachaihu decoction in the treatment of type 2 diabetes mellitus: A systematic review and meta-analysis. Front Pharmacol 2022; 13:918681. [PMID: 36003504 PMCID: PMC9393237 DOI: 10.3389/fphar.2022.918681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM) is a clinical metabolic syndrome characterized by persistent hyperglycemia, which is caused by defective insulin secretion and decreased function in regulating glucose metabolism. Dachaihu Decoction (DCHD) is a traditional Chinese medicine formula that has been gradually used in T2DM treatment. A comprehensive analysis on the efficacy and safety of DCHD in T2DM treatment is necessary.Objective: This meta-analysis aimed to systematically assess the clinical efficacy and safety of DCHD in the T2DM treatment and provide a reference for subsequent research and clinical practice.Methods: Both Chinese and English databases were searched from their inceptions to November 2021. All retrieved studies were screened according to inclusion and exclusion criteria and randomized controlled trials about DCHD on T2DM were enrolled. The quality of the literature was assessed using the bias risk assessment tool in the Cochrane Handbook. Data extraction was performed on the selected studies. Review Manager 5.4 and Stata 16.0 were used for meta-analysis. Sources of heterogeneity were also explored by using meta-regression and subgroup analysis. Funnel plot and Egger’s test were used to assess publication bias and the evidence quality was assessed by GRADE.Results: 17 eligible studies, involving 1,525 patients, were included in this study. Compared with conventional treatment, combined treatment with DCHD was significantly better in improving HbA1c (MD = −0.90%, 95%CI: −1.20 to −0.60, p < 0.01), FBG (MD = −1.08 mmol/L, 95%CI: −1.28 to −0.87, p < 0.01), 2hPG (MD = −1.25 mmol/L, 95%CI: −1.42 to −1.09, p < 0.01), TC (MD = −0.50 mmol/L, 95%CI: −0.70 to −0.30, p < 0.01), TG (MD = −0.44 mmol/L, 95%CI: −0.61 to −0.26, p < 0.01), LDL-C (MD = −0.58 mmol/L, 95%CI: −0.85 to −0.31, p < 0.01), HOMA-IR (SMD = −2.04, 95%CI: −3.09 to −0.99, p < 0.01), HOMA-β (SMD = 2.48, 95%CI: 2.20 to 2.76, p < 0.01) and BMI (MD = −1.52 kg/m2, 95%CI: −2.55 to −0.49, p < 0.01). When DCHD used alone, it had a similar efficacy to conventional treatment in HbA1c (MD = −0.04%, 95%CI: −0.17 to 0.09, p = 0.57) and FBG (MD = 0.13 mmol/L, 95%CI: −0.09 to 0.36, p = 0.24). It can also reduce 2hPG, even if not as effective as conventional treatment (MD = 0.54 mmol/L, 95%CI: 0.19 to 0.89, p < 0.01). Due to the small number of included studies, it is unclear whether DCHD used alone has an improving effect on lipid metabolism, BMI, HOMA-IR and HOMA-β. Analysis of adverse events showed DCHD was relatively safe. No obvious publication bias was detected by Funnel plot and Egger’s test.Conclusion: Based on this meta-analysis, we found that the combination with DCHD in the T2DM treatment has more advantages than conventional treatment alone, which can further regulate the glucose and lipid metabolism, reduce insulin resistance, improve islet function and lower BMI. DCHD alone also plays a certain role in regulating glucose. Meanwhile, DCHD is relatively safe. However, limited by the quality and quantity of included studies, the efficacy and safety of DCHD remain uncertain. More high-quality studies are still needed to provide more reliable evidence for the clinical application of DCHD.Systematic Review Registration:https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021296718, identifier CRD42021296718.
Collapse
Affiliation(s)
- Zehua Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulin Leng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoxu Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chan Yang
- West China Hospital of Sichuan University, Chengdu, China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haipo Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingzhi Liang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Chunguang Xie, ; Hong Gao,
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Chunguang Xie, ; Hong Gao,
| |
Collapse
|
13
|
LncRNA MIAT Promotes Spinal Cord Injury Recovery in Rats by Regulating RBFOX2-Mediated Alternative Splicing of MCL-1. Mol Neurobiol 2022; 59:4854-4868. [PMID: 35641779 DOI: 10.1007/s12035-022-02896-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
Abstract
LncRNA myocardial infarction-associated transcript (MIAT) alleviates acute spinal cord injury (ASCI)-induced neuronal cell apoptosis, but the specific mechanism of it involved in regulating SCI progression needs further exploration. Here, a SCI rat model was established, followed by administration with adenovirus-mediated MIAT overexpression vector (Ad-MIAT) alone or together with Ad-RBFOX2 (RNA binding fox-1 homolog 2). The data indicated that MIAT overexpression promoted motor function recovery, improved morphology of injured tissues, and restrained neuron loss and cell apoptosis in SCI rats. Then, PC-12 cells were treated with H2O2 to induce cell injury. And highly expressed MIAT suppressed H2O2-caused decrease in cell viability and increase in cell apoptosis. MIAT stabilized RBFOX2 protein expression by binding to RBFOX2, thereby promoting RBFOX2-induced upregulation of anti-apoptotic MCL-1L (myeloid cell leukemia sequence 1) and reduction of pro-apoptotic MCL-1S. And silencing RBFOX2 in vitro blocked the inhibitory effect of MIAT on cell apoptosis. Moreover, MCL-1-specific steric-blocking oligonucleotides (SBOs) were used to transfer the MCL-1 pre-mRNA splicing pattern from MCL-1L to MCL-1S. SBOs reversed the protection effect of RBFOX2 overexpression on H2O2-induced cell injury. Furthermore, overexpression of MCL-1L instead of MCL-1S facilitated autophagy activation in H2O2-stimulated cells. Interestingly, co-overexpression of MIAT and RBFOX2 had a better promoting effect on SCI recovery. In conclusion, MIAT mitigated SCI by promoting RBFOX2-mediated alternative splicing of MCL-1. Our findings might provide a promising therapeutic target for SCI.
Collapse
|
14
|
Feng L, Xing H, Zhang K. The therapeutic potential of traditional Chinese medicine in depression: Targeting adult hippocampal neurogenesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153980. [PMID: 35152089 DOI: 10.1016/j.phymed.2022.153980] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/22/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Depression is a common mental disorder characterized by persistent sadness and lack of interest or pleasure in previously rewarding or enjoyable activities. Understandably, the causes of depression are complex. Nevertheless, the understanding of depression pathophysiology has progressed considerably and numerous studies indicate that hippocampal neurogenesis plays a pivotal role. However, no drugs specifically targeting hippocampal neurogenesis yet exist. Meanwhile, the effects of traditional Chinese medicine (TCM) on hippocampal neurogenesis have received increasing attention in the field of antidepressant treatment because of its multi-ingredient, multi-target, and holistic view. However, the effects and mechanisms of TCM on hippocampal neurogenesis in clinical trials and pharmaceutical studies remain to be comprehensively delineated. PURPOSE To summarize the importance of hippocampal neurogenesis in depression and illustrate the targets and mechanisms of hippocampal neurogenesis regulation that underlie the antidepressant effects of TCM. METHOD A systematic review of clinical trials and studies ending by January 2022 was performed across eight electronic databases (Web of Science, PubMed, SciFinder, Research Gate, ScienceDirect, Google Scholar, Scopus and China Knowledge Infrastructure) according to the PRISMA criteria, using the search terms 'traditional Chinese medicine' "AND" 'depression' "OR" 'hippocampal neurogenesis' "OR" 'multi-ingredient' "OR" 'multi-target'. RESULTS Numerous studies show that hippocampal neurogenesis is attenuated in depression, and that antidepressants act by enhancing hippocampal neurogenesis. Moreover, compound Chinese medicine (CCM), Chinese meteria medica (CMM), and major bioactive components (MBCs) can promote hippocampal neurogenesis exerting antidepressant effects through modulation of neurotransmitters and receptors, neurotrophins, the hypothalamic-pituitary-adrenal axis, inflammatory factors, autophagy, and gut microbiota. CONCLUSION We have comprehensively summarized the effect and mechanism of TCM on hippocampal neurogenesis in depression providing a unique perspective on the use of TCM in the antidepressant field. TCM has the characteristics and advantages of multiple targets and high efficacy, showing great potential in the field of depression treatment.
Collapse
Affiliation(s)
- Lijin Feng
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hang Xing
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Kuo Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China; Tianjin UBasio Biotechnology Group, Tianjin 300457, China.
| |
Collapse
|
15
|
Ri MH, Ma J, Jin X. Development of natural products for anti-PD-1/PD-L1 immunotherapy against cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114370. [PMID: 34214644 DOI: 10.1016/j.jep.2021.114370] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint is one of the most promising therapeutic targets for cancer immunotherapy, but several challenges remain in current anti-PD-1/PD-L1 therapy. Natural products, mainly derived from traditional medicine, could improve and expand anti-PD-1/PD-L1 therapy because of their advantages such as large diversity and multi-target effects. AIM OF THE STUDY This review summarize natural products, raw extracts, and traditional medicines with pharmacological effects associated with the PD-1/PD-L1 axis, particularly PD-L1. MATERIALS AND METHODS Electronic literature databases, including Web of Science, PubMed, and ScienceDirect, and online drugs and chemicals databases, including DrugBank, ZINC, PubChem, STITCH, and CTD, were searched without date limitation by February 2021. 'Natural product or herb or herbal plant or traditional medicine' and 'PD-L1' and 'Cancer immunotherapy' were used as the search keywords. Among 112 articles identified in database searching, 54 articles are full text articles, reporting in silico, in vitro, in vivo and clinical trials. 68 articles included are review articles and grey literature such as thesis and congress abstracts. RESULTS Several natural products and traditional medicines have exhibited diverse and multi-functional effects including direct blockade of PD-1/PD-L1 interactions, modulation of PD-L1 expression, and cooperation with PD-1/PD-L1 inhibitors. CONCLUSION Natural products and traditional medicines can facilitate the development of more effective and acceptable diverse strategies for anti-PD-1/PD-L1 therapy, but further exploration of natural products and pharmaceutical techniques is required.
Collapse
Affiliation(s)
- Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Faculty of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
16
|
Noushahi HA, Zhu Z, Khan AH, Ahmed U, Haroon M, Asad M, Hussain M, Beibei H, Zafar M, Alami MM, Shu S. Rhizosphere microbial diversity in rhizosphere of Pinellia ternata intercropped with maize. 3 Biotech 2021; 11:469. [PMID: 34745820 DOI: 10.1007/s13205-021-03011-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 10/02/2021] [Indexed: 11/29/2022] Open
Abstract
Dry tubers of Pinellia ternata (Thunb.) Breit are used in traditional Chinese medicine. Commonly known as "banxia" in China, the tubers contain valuable compounds, including alkaloids and polysaccharides that are widely used in pharmaceuticals. The quantity and quality of these important compounds are affected by whether P. ternata is grown as a sole crop or as an intercrop, and P. ternata cultivation has become challenging in recent years. By intercropping P. ternata, its maximum yield, as well as large numbers of chemical components, can be realized. Here, a large data set derived from next-generation sequencing was used to compare changes in the bacterial communities in rhizosphere soils of P. ternata and maize grown as sole crops and as intercrops. The overall microbial population in the rhizosphere of intercropped P. ternata was significantly larger than that of sole-cropped P. ternata, whereas the numbers of distinct microbial genera, ranging from 552 to 559 among treatments, were not significantly different between the two rhizospheres. The relative abundances of the genera differed. Specifically, the numbers of Acidobacteria and Anaerolineaceae species were significantly greater, and those of Bacillus were significantly lower, in the intercropped P. ternata rhizosphere than in the sole-cropped rhizosphere. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03011-3.
Collapse
Affiliation(s)
- Hamza Armghan Noushahi
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, 38000 Pakistan
| | - Zhenxing Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Aamir Hamid Khan
- National Key Laboratory of Crop Genetics Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Umair Ahmed
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Muhammad Haroon
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 4300070 China
| | - Muhammad Asad
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, 38000 Pakistan
| | - Mubashar Hussain
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - He Beibei
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Maimoona Zafar
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Mohammad Murtaza Alami
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shaohua Shu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
17
|
Jun P, Rahmat E, Han CH, Yang C, Kang Y. Traditional Chinese Medicine and Traditional Indonesian Medicine: A Comparative Review of Herbal Medicines Restricted in Pregnancy. Chin J Integr Med 2021; 27:794-800. [PMID: 34241802 DOI: 10.1007/s11655-021-3487-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2020] [Indexed: 11/25/2022]
Abstract
The decline in birth rates has become a very serious problem in various parts of the world. Many countries have implemented national programs for increasing birth rates, one of which involves the use of traditional medicine as an alternative solution. Among the fast-growing traditional medicines, traditional Chinese medicine (TCM) and traditional Indonesian medicine (TIM) have attracted a lot of demand globally. Here, we analyzed and compared the herbal medicines from TCM and TIM that must be avoided by pregnant women for preventing miscarriage and maintaining safety during pregnancy and the postpartum period. This review uses data from official reports from the respective government and national and international electronic databases for analysis. Although TCM and TIM have their own characteristics of treatment, they also have some similarities in concept and treatment, especially those related to herbal medicines. This review can be used as a reference base to help pregnant women consume herbal medicines at appropriate conditions and doses.
Collapse
Affiliation(s)
- Purumea Jun
- University of Science & Technology, Campus of Korea Institute of Oriental Medicine, Korean Convergence Medicine Major, Daejeon, Republic of Korea
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Endang Rahmat
- University of Science & Technology, Campus of Korea Institute of Oriental Medicine, Korean Convergence Medicine Major, Daejeon, Republic of Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Republic of Korea
| | - Chang-Hyun Han
- University of Science & Technology, Campus of Korea Institute of Oriental Medicine, Korean Convergence Medicine Major, Daejeon, Republic of Korea
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Changsop Yang
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Youngmin Kang
- University of Science & Technology, Campus of Korea Institute of Oriental Medicine, Korean Convergence Medicine Major, Daejeon, Republic of Korea.
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Republic of Korea.
| |
Collapse
|
18
|
Xue T, Xiong Y, Shi J, Chao Q, Zhu Y, Duan Y, Sheng W, Teng J, Xue J. UHPLC-MS-based metabolomic approach for the quality evaluation of Pinellia ternata tubers grown in shaded environments. J Nat Med 2021; 75:1050-1057. [PMID: 34275105 DOI: 10.1007/s11418-021-01550-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/11/2021] [Indexed: 11/28/2022]
Abstract
Pinellia ternata is a native herb in China, and its tuber is widely-used in traditional Chinese medicines. It has been identified that the shading treatment promotes tuber production during cultivation. However, the tuber quality in shaded environments is unknown, which limits the scientific cultivation of P. ternata. In this study, a metabolomics approach based on UHPLC-MS was applied to assess the metabolic components of P. ternata in response to shading. Diverse metabolites were profiled using the metabolomics approach. Then, datasets of P. ternata cultivated in natural light (control) and shaded environments were subjected to multivariate analyses. Two P. ternata tuber products were well separated by the PCA. In total, four P. ternata alkaloids with contents that were not altered by the shaded environment were detected. Metabolomic analyses further identified several organic acids [mevalonic acid, 12,13-dihydroxy-9Z-octadecenoic acid (12, 13-DiHOME), urocanic acid, and γ-aminobutyric acid] that were largely enriched in the shaded environment, which likely contributed to tuber quality and growth. This study determined that shading probably improves the quality of P. ternata tubers and laid a foundation for exploring the regulatory mechanism of the shade response in P. ternata.
Collapse
Affiliation(s)
- Tao Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Yujie Xiong
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Jiang Shi
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Qiujie Chao
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Yanfang Zhu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Yongbo Duan
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Wei Sheng
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Jingtong Teng
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Jianping Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| |
Collapse
|
19
|
Cai Z, Wang H, Wang G. Complete chloroplast genome sequence of Pinellia ternata (Thunb.) Breit, a medicinal plants to China. MITOCHONDRIAL DNA PART B-RESOURCES 2020; 5:2107-2108. [PMID: 33366935 PMCID: PMC7510631 DOI: 10.1080/23802359.2020.1765207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/25/2020] [Indexed: 10/26/2022]
Abstract
Pinellia ternata (Thunb.) Breit is one of the commonly used traditional Chinese medicine with tuber as medicine. We report herein the complete chloroplast genome sequence of Pinellia ternata (Thunb.) Breit. It is length of 167,280 bp, which contained a small single-copy (SSC) region of 23,618 bp and a large single-copy (LSC) region of 92,450 bp, separated by two copies of an inverted repeat (IR) of 25,606 bp. The chloroplast genome contains 113 unique genes, including 79 PCG, 4 rRNA genes, and 30 tRNA genes. In addition, 19 genes contained one or two introns, which of those including 13 PCG genes possess a single intron and 2 PCG genes harbor two introns; and 6 tRNA genes harbor a single intron. In this study, Pinellia ternata is sister to Pinellia pedatisecta and clustered within the group consisting of the species that belong to Araceae.
Collapse
Affiliation(s)
- Ziping Cai
- Institute of Chinese Herbal Medical, Gansu Academy of Agricultural Sciences, Gansu, Lanzhou, People's Republic of China.,Engineering Laboratory of Germplasm Improvement and Quality Control of Gansu Province, Gansu, Lanzhou, People's Republic of China
| | - Hongxia Wang
- Institute of Chinese Herbal Medical, Gansu Academy of Agricultural Sciences, Gansu, Lanzhou, People's Republic of China.,Engineering Laboratory of Germplasm Improvement and Quality Control of Gansu Province, Gansu, Lanzhou, People's Republic of China
| | - Guoxiang Wang
- Institute of Chinese Herbal Medical, Gansu Academy of Agricultural Sciences, Gansu, Lanzhou, People's Republic of China.,Engineering Laboratory of Germplasm Improvement and Quality Control of Gansu Province, Gansu, Lanzhou, People's Republic of China
| |
Collapse
|
20
|
Tang D, Yan R, Sun Y, Kai G, Chen K, Li J. Material basis, effect, and mechanism of ethanol extract of Pinellia ternata tubers on oxidative stress-induced cell senescence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153275. [PMID: 32659678 DOI: 10.1016/j.phymed.2020.153275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/25/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The tuber of Pinellia ternata has been used for a thousand years in China. P. ternata possessed the activities of anti-emetic, sedative-hypnotic, anti-cancer, anti-asthmatic, anti-tussive, and anti-inflammatory. It is the representative of expectorant medicines in Traditional Chinese Medicine (TCM). Phlegm is the pathological product and a new pathogenic factor of the metabolite, which is analogous to the damage of oxidative stress. PURPOSE The objectives of the study were to investigate the protective activity and mechanism of ethanol extract of P. ternata tubers (PTE) and its main constituents on oxidative stress-induced cell senescence. METHODS H2O2 and AAPH were used to establish cellular senescence models. The anti-aging effects of PTE and its components were evaluated by SA-β-gal staining, flow cytometry, scanning electron microscope (SEM), and multiple microplate reader, the molecular mechanisms of them were investigated by qRT-PCR and Western Blot. RESULTS We found PTE exhibited the apparent effect on cell senescence, evidenced by inhibiting senescence β-Galactosidase (SA-β-gal) expression, lipofuscin accumulation, cell cycle arrest at the G2/M phase, oxidative damage and apoptosis, and increasing telomerase activity. Their mechanisms were related to increase expressions of SIRT1, forkhead box 3a (Foxo3a), Bcl-2, active regulator of SIRT1, RPS19BP1 (AROS), and Hu antigen R (HuR), but decrease Bax, p53 and deleted in breast cancer 1 (DBC1) levels. Furthermore, adenosine, and succinic acid, as the critical substances in PTE, could also inhibit SA-β-gal expression and cell cycle arrest, down-regulate the expression of Bax, and up-regulate Bcl-2, SirT1, and Foxo3a. CONCLUSIONS We have demonstrated that PTE slows down oxidative stress-induced cell senescence, and adenosine and succinic acid are the key active components.
Collapse
Affiliation(s)
- Ding Tang
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Renyi Yan
- Tianjin Ubasio Biotechnology Group Co., Ltd., Tianjin 300457, China
| | - Yuan Sun
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Guoyin Kai
- College of pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Keli Chen
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Juan Li
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China.
| |
Collapse
|
21
|
Duan J, Dong W, Xie L, Fan S, Xu Y, Li Y. Integrative proteomics-metabolomics strategy reveals the mechanism of hepatotoxicity induced by Fructus Psoraleae. J Proteomics 2020; 221:103767. [DOI: 10.1016/j.jprot.2020.103767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/11/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
|
22
|
Hou C, Guo D, Yu X, Wang S, Liu T. TMT-based proteomics analysis of the anti-hepatocellular carcinoma effect of combined dihydroartemisinin and sorafenib. Biomed Pharmacother 2020; 126:109862. [PMID: 32120157 DOI: 10.1016/j.biopha.2020.109862] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC), as the major primary liver cancer, is one of the most prevalent malignant diseases with a high mortality rate worldwide. Prior studies have demonstrated that dihydroartemisinin (DHA), the semisynthetic derivative of artemisinin, possesses anti-HCC activity. The multikinase inhibitor sorafenib has been approved for the treatment of HCC. However, the anti-HCC efficacy of DHA combined with sorafenib has not been reported. In this study, we confirmed the significantly enhanced anti-HCC efficacy of DHA in combination with sorafenib compared with that of each agent alone. Tandem Mass Tag (TMT) peptide labeling coupled with LC-MS/MS was used to quantify the proteins from the control, DHA, sorafenib, and DHA + sorafenib groups. In total, 532, 426, 628 differentially expressed proteins (fold change >1.20 or <0.83 and P-value <0.05) were determined by comparing DHA versus control, sorafenib versus control and DHA + sorafenib versus control groups, respectively. Moreover, optimized screening was performed, and 101 optimized differentially expressed proteins were identified. The results of functional analysis of the optimized differentially expressed proteins suggested that they were enriched in cell components such as membrane-bound vesicles, extracellular vesicles, and organelle lumens, and they were mainly involved in biological processes such as cellular component organization, response to stress, and response to chemicals; in addition, they were related to various molecular functions such as protein binding, chromatin binding and enzyme binding. KEGG pathway analysis showed that the optimized differentially expressed proteins were enriched in pyrimidine metabolism, RNA polymerase, base excision repair, and osteoclast differentiation. Protein-protein interaction (PPI) networks of some of the optimized upregulated proteins suggested that they might not only affect vitamin and fat digestion and absorption but may also be involved in tight junctions. In the PPI network, some of the optimized downregulated proteins were enriched in base excision repair, RNA polymerase, purine metabolism, pyrimidine metabolism and mucin type O-glycan biosynthesis. Overall, this research explored the anti-HCC efficacy of DHA combined with sorafenib by using the TMT-based quantitative proteomics technique and might facilitate the understanding of the related anti-HCC molecular mechanism.
Collapse
Affiliation(s)
- Chunying Hou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongqing Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shuyan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tianhua Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
23
|
Xue T, Zhang H, Zhang Y, Wei S, Chao Q, Zhu Y, Teng J, Zhang A, Sheng W, Duan Y, Xue J. Full-length transcriptome analysis of shade-induced promotion of tuber production in Pinellia ternata. BMC PLANT BIOLOGY 2019; 19:565. [PMID: 31852442 PMCID: PMC6921527 DOI: 10.1186/s12870-019-2197-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Pinellia ternata is native to China and has been used as a traditional herb due to its antiemetic, antitussive, analgesic, and anxiolytic effects. When exposed to strong light intensity and high temperature during the reproductive growth process, P. ternata withers in a phenomenon known as "sprout tumble", which largely limits tuber production. Shade was previously found to delay sprout tumble formation (STF); however, no information exists regarding this process at the molecular level. Hence, we determined the genes involved in tuber development and STF in P. ternata. RESULTS Compared to that with natural sun-light (control), shade significantly induced chlorophyll accumulation, increased chlorophyll fluorescence parameters including initial fluorescence, maximal fluorescence, and qP, and dramatically repressed chlorophyll a:b and NPQ. Catalase (CAT) activity was largely induced by shade, and tuber products were largely increased in this environment. Transcriptome profiles of P. ternata grown in natural sun-light and shaded environments were analyzed by a combination of next generation sequencing (NGS) and third generation single-molecule real-time (SMRT) sequencing. Corrections of SMRT long reads based on NGS short reads yielded 136,163 non-redundant transcripts, with an average N50 length of 2578 bp. In total, 6738 deferentially-expressed genes (DEGs) were obtained from the comparisons, specifically D5S vs D5CK, D20S vs D20CK, D20S vs D5S, and D20CK vs D5CK, of which, 6384 DEGs (94.8%) were generated from the D20S vs D20CK comparison. Gene annotation and functional analyses revealed that these genes were related to auxin signal transduction, polysaccharide and sugar metabolism, phenylpropanoid biosynthesis, and photosynthesis. Moreover, the expression of genes enriched in photosynthesis appeared to be significantly altered by shade. The expression patterns of 16 candidate genes were consistent with changes in their transcript abundance as identified by RNA-Seq, and these might contribute to STF and tuber production. CONCLUSION The full-length transcripts identified in this study have provided a more accurate depiction of P. ternata gene transcription. Further, we identified potential genes involved in STF and tuber growth. Such data could serve as a genetic resource and a foundation for further research on this important traditional herb.
Collapse
Affiliation(s)
- Tao Xue
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Han Zhang
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Yuanyuan Zhang
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Shuqin Wei
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Qiujie Chao
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Yanfang Zhu
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Jingtong Teng
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Aimin Zhang
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Wei Sheng
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Yongbo Duan
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Jianping Xue
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| |
Collapse
|
24
|
Ding Y, Liu Y, Li H, Li Y, Li M, Liu M, Wang X, Cao F, Wang X. Chinese Medicines for Preventing and Treating Radiation-Induced Pulmonary Injury: Still a Long Way to Go. Front Pharmacol 2019; 10:927. [PMID: 31616288 PMCID: PMC6763686 DOI: 10.3389/fphar.2019.00927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
Thoracic radiotherapy is a mainstay of the treatment for lung, esophageal, and breast cancers. Radiation-induced pulmonary injury (RIPI) is a common side effect of thoracic radiotherapy, which may limit the radiotherapy dose and compromise the treatment results. However, the current strategies for RIPI are not satisfactory and may induce other side effects. Chinese medicines (CMs) have been used for more than a thousand years to treat a wide range of diseases, including lung disorders. In this review, we screened the literature from 2007 to 2017 in different online databases, including China National Knowledge Infrastructure (CNKI), Chongqing VIP, Wanfang, and PubMed; summarized the effectiveness of CMs in preventing and treating RIPI; explored the most frequently used drugs; and aimed to provide insights into potential CMs for RIPI. Altogether, CMs attenuated the risk of RIPI with an occurrence rate of 11.37% vs. 27.78% (P < 0.001) compared with the control groups. We also found that CMs (alone and combined with Western medical treatment) for treating RIPI exerted a higher efficacy rate than that of the control groups (78.33% vs. 28.09%, P < 0.001). In the screened literature, 38 CMs were used for the prevention and treatment of RIPI. The top five most frequently used CMs were Astragali Radix (with a frequency of 8.47%), Ophiopogonis Radix (with a frequency of 6.78%), Glycyrrhizae Radix et Rhizome (with a frequency of 5.08%), Paeoniae Radix Rubra (with a frequency of 5.08%), and Prunellae Spica (with a frequency of 5.08%). However, further high-quality investigations in CM source, pharmacological effects and underlying mechanisms, toxicological aspects, and ethical issues are warranted. Taken together, CMs might have a potential role in RIPI prevention and treatment and still have a long way to investigate.
Collapse
Affiliation(s)
- Yan Ding
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yuechao Liu
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Hongliang Li
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yong Li
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Minglun Li
- Department of Radiation Oncology, University Hospital, LMU, Munich, Germany
| | - Ming Liu
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xianhe Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Fengjun Cao
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
25
|
Zhao Y, Nie S, Yi M, Wu N, Wang W, Zhang Z, Yao Y, Wang D. UPLC-QTOF/MS-based metabolomics analysis of plasma reveals an effect of Xue-Fu-Zhu-Yu capsules on blood-stasis syndrome in CHD rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:111908. [PMID: 31029757 DOI: 10.1016/j.jep.2019.111908] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Blood-stasis syndrome (BSS) is a specific ZHENG type of coronary heart disease (CHD) in traditional Chinese medicine (TCM). The Xue-Fu-Zhu-Yu (XFZY) decoction is a common herbal formula that has been used for several centuries to treat BSS, but its mechanism has not been thoroughly elucidated to date. AIM OF THE STUDY In this study, serum lipid, blood haemorheology and metabolomics analyses were performed to depict a complete profile of XFZY capsules for the treatment of CHD with BSS and to reveal the potential mechanism of the XFZY capsules. MATERIALS AND METHODS A rat model of CHD with BSS was generated by combining a high-fat diet (HFD) with a left anterior descending coronary artery (LAD) ligation. After four weeks of treatment with XFZY capsules or simvastatin pills, an echocardiography was performed for a therapeutic evaluation. Blood samples and heart tissues were then collected for further analyses. A UPLC-QTOF/MS-based metabolomics analysis of the plasma was performed, and all metabolic features were fit by PCA and OPLS-DA pattern for the biomarker screen. The identified biomarkers were later implemented into a metabolic pathway analysis. Furthermore, we used qRT-PCR and Western blot analyses to verify the treatment effects of the XFZY capsules. RESULTS A total of 49 metabolites (VIP>1.0, p < 0.05, RSD%<20%) were identified in the Model rats, and 27 metabolites (VIP>1.0, p < 0.05, RSD%<20%) were identified in the XFZY-H rats. The results of the pathway analysis indicated that the XFZY capsules treated CHD primarily by regulating cardiac energy, phospholipid, polyunsaturated fatty acid (PUFA) and amino acid metabolism. In addition, blood viscosity and serum lipid assays suggested that XFZY capsules could decrease serum triglycerides, total cholesterol, low-density lipoprotein cholesterol and whole blood viscosity at a low shear rate. CONCLUSION This study demonstrated that the XFZY capsule effectively decreases serum lipids and whole blood viscosity in CHD with BSS. The underlying metabolic mechanism mainly included improving cardiac energy supply, reducing phospholipid peroxide, maintaining the PUFA metabolic balance and regulating amino acid metabolism.
Collapse
Affiliation(s)
- Yuhang Zhao
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, Hunan, 410008, China.
| | - Shanshan Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, Hunan, 410008, China.
| | - Min Yi
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, Hunan, 410008, China.
| | - Ning Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, Hunan, 410008, China.
| | - Wenbo Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, Hunan, 410008, China.
| | - Zheyu Zhang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Ye Yao
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, Hunan, 410008, China.
| | - Dongsheng Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
26
|
Hu M, Liu Y, Wang L, Wang J, Li L, Wu C. Purification, Characterization of Two Polysaccharides from Pinelliae Rhizoma Praeparatum Cum Alumine and Their Anti-Inflammatory Effects on Mucus Secretion of Airway Epithelium. Int J Mol Sci 2019; 20:ijms20143553. [PMID: 31330806 PMCID: PMC6678706 DOI: 10.3390/ijms20143553] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Pinelliae Rhizoma Praeparatum cum Alumine (PRPCA) is an important traditional processed herbal medicine mainly used for treating phlegm in China for more than 2000 years. In our previous studies, extraction optimization, characterization, and bioactivities of total polysaccharides from PRPCA were investigated. In this study, further purification of these polysaccharides was performed. Two polysaccharides named neutral fraction of total polysaccharides-II (TPN-II) and acidic fraction of total polysaccharides-II (TPA-II) were obtained by gradient ion-exchange chromatography followed by gel-permeation chromatography. Results of scanning electron microscopy (SEM) analysis in the present study showed that TPN-II had a tight structure with a rough and uneven surface, while TPA-II had a relative homogeneous surface and a loose structure. Further studies indicated that TPN-II was a homosaccharide mainly composed by glucose with a molecular weight of 8.0 kDa. TPA-II was mainly composed of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose and arabinose in a molar ratio of 2.1, 2.3, 1.7, 10.6, 2.6, 14.2, and 2.5, with a molecular weight of 1250 kDa. The nuclear magnetic resonance (NMR) results indicated that α and β form glycoside bonds existed in TPN-II and TPA-II, and TPN-II was composed of α-glucopyranose. In addition, both purified polysaccharides have significant anti-inflammatory effects on mucus secretion of human airway epithelial NCI-H292 cells without cytotoxicity. Compared with TPN-II, TPA-II exhibited more significant anti-inflammatory effects on lipopolysaccharide (LPS)-induced airway inflammation by regulating levels of interleukin-4 (IL-4) and interferon-γ (IFN-γ) and inhibiting mucus secretion. The results suggest that polysaccharides from PRPCA could be explored as therapeutic agents in treating inflammation and over secretion of mucus in asthma.
Collapse
Affiliation(s)
- Meibian Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yujie Liu
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Li Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiaolong Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lin Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
27
|
Li S, Li C, Cheng X, Liu X, Han M. Research Progress of Male Reproductive Toxicity of Chinese Materia Medicas. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:7249679. [PMID: 31379965 PMCID: PMC6662473 DOI: 10.1155/2019/7249679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/23/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
In recent years, as the infertility rate in China has been increasing year by year and semen quality decreasing, male reproductive toxicity of drugs attracts more and more attention. There are many factors that cause male reproductive toxicity, among which Chinese materia medica is an important aspect. This article will introduce the male reproductive toxicity of Chinese materia medicas grouped by different effectivenesses such as immunosuppressant, evacuant, diuretic, cardiotonic, anti-infective drug and analgesic.
Collapse
Affiliation(s)
- Sicong Li
- College of Management, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chao Li
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaoran Cheng
- College of Management, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xin Liu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mei Han
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
28
|
Yang YY, Yang FQ, Gao JL. Differential proteomics for studying action mechanisms of traditional Chinese medicines. Chin Med 2019; 14:1. [PMID: 30636970 PMCID: PMC6325846 DOI: 10.1186/s13020-018-0223-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
Differential proteomics, which has been widely used in studying of traditional Chinese medicines (TCMs) during the past 10 years, is a powerful tool to visualize differentially expressed proteins and analyzes their functions. In this paper, the applications of differential proteomics in exploring the action mechanisms of TCMs on various diseases including cancers, cardiovascular diseases, diabetes, liver diseases, kidney disorders and obesity, etc. were reviewed. Furthermore, differential proteomics in studying of TCMs identification, toxicity, processing and compatibility mechanisms were also included. This review will provide information for the further applications of differential proteomics in TCMs studies.
Collapse
Affiliation(s)
- Yi-Yao Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People’s Republic of China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People’s Republic of China
| | - Jian-Li Gao
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang People’s Republic of China
| |
Collapse
|
29
|
Wu CJ, Peng W, Wei DN, Liu YJ, Zhang MM, Hu MB. Comparative research of the curative effects of pinelliae rhizoma and pinelliae rhizoma praeparatum cum alumine on ovalbumin-induced allergic asthma in rats. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_397_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
30
|
Koriem K. Proteomic approach in human health and disease: Preventive and cure studies. Asian Pac J Trop Biomed 2018. [DOI: 10.4103/2221-1691.231285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
31
|
Tang X, Zhao H, Jiang W, Zhang S, Guo S, Gao X, Yang P, Shi L, Liu L. Pharmacokinetics and pharmacodynamics of citrus peel extract in lipopolysaccharide-induced acute lung injury combined with Pinelliae Rhizoma Praeparatum. Food Funct 2018; 9:5880-5890. [PMID: 30374490 DOI: 10.1039/c8fo01337c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dry citrus peel (Chenpi) is not only consumed as a dietary supplement, but also used for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Xiuling Tang
- Department of Pharmacy
- The Second Affiliated Hospital of Air Force Medical University
- Xi'an 710038
- PR China
| | - Huanhuan Zhao
- Department of Pharmacy
- The Second Affiliated Hospital of Air Force Medical University
- Xi'an 710038
- PR China
| | - Wei Jiang
- Department of Pharmacy
- The Second Affiliated Hospital of Air Force Medical University
- Xi'an 710038
- PR China
| | - Song Zhang
- Department of Pharmacy
- The Second Affiliated Hospital of Air Force Medical University
- Xi'an 710038
- PR China
| | - Shun Guo
- Department of Pharmacy
- The Second Affiliated Hospital of Air Force Medical University
- Xi'an 710038
- PR China
| | - Xiaobo Gao
- Department of Pharmacy
- The Second Affiliated Hospital of Air Force Medical University
- Xi'an 710038
- PR China
| | - Peng Yang
- Department of Pharmacy
- The Second Affiliated Hospital of Air Force Medical University
- Xi'an 710038
- PR China
| | - Lei Shi
- Department of Pharmacy
- The Second Affiliated Hospital of Air Force Medical University
- Xi'an 710038
- PR China
| | - Linna Liu
- Department of Pharmacy
- The Second Affiliated Hospital of Air Force Medical University
- Xi'an 710038
- PR China
| |
Collapse
|