1
|
Lin Q, Huang K, Ge X, Ma M, Wang W, Yang L, Chen C, Han B, Liu D. LC-HRMS profiling of Dendrobium huoshanense aqueous extract and its therapeutic effects on nonalcoholic fatty liver disease in mice through the TLR2-NF-κB and AMPK-SREBP1-SIRT1 signaling pathways. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1256:124563. [PMID: 40107184 DOI: 10.1016/j.jchromb.2025.124563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Dendrobium huoshanense (DH) belongs to the Dendrobium genus of the Orchidaceae family and is a herbaceous plant that protects the liver and nourishes the Yin according to traditional Chinese Medicine (TCM) theory. This research aimed to determine the therapeutic effect and mechanisms of DH on a nonalcoholic fatty liver disease (NAFLD) mouse model and its chemical composition. For pharmacological research, the pathological damage and lipid accumulation in liver tissues were evaluated using HE and oil red staining, respectively. The differential proteins between the model and DHH groups were screened using 4D label-free quantitative proteomics, and the proteomic results were verified using Western blot. The potential mechanism was validated by metabolomic analysis. The main active ingredients in a DH aqueous extract were identified using UHPLC-Q Exactive HF HRMS. Pathological staining results showed that DH can reverse liver pathological damage and lipid accumulation in the NAFLD model. Quantitative proteomics revealed that the differential proteins were mainly associated with liver lipid deposition (LAL, AMPK, TM7SF2, SBCAD, and SIRT1), insulin resistance (GYS1, GYS2, PYGL, FoxO1, and PPAR-γ), and inflammation (TLR2 and MAPKAPK). Western blot verified the above-mentioned results. Metabolomic analysis also indicated that the DH aqueous extract ameliorated NAFLD in mice by affecting cholesterol metabolism and AMPK signaling pathway, proving its significant therapeutic effects on the NAFLD model. Sixty-five compounds were identified from DH aqueous extract by analyzing the precise molecular weight and MS/MS fragmentation pathway. The pharmacological mechanism of DH in treating NAFLD mainly involved the TLR2-NF-κB and AMPK-SREBP1-SIRT1 signaling pathways.
Collapse
Affiliation(s)
- Qiyan Lin
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Key Laboratory of Protection and Utilization of Characteristic Biological Resources in Dabie Mountains, Lu'an, 237012, Anhui, PR China
| | - Ke Huang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Key Laboratory of Protection and Utilization of Characteristic Biological Resources in Dabie Mountains, Lu'an, 237012, Anhui, PR China
| | - Xiyu Ge
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Key Laboratory of Protection and Utilization of Characteristic Biological Resources in Dabie Mountains, Lu'an, 237012, Anhui, PR China
| | - Menghua Ma
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Key Laboratory of Protection and Utilization of Characteristic Biological Resources in Dabie Mountains, Lu'an, 237012, Anhui, PR China
| | - Wei Wang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Key Laboratory of Protection and Utilization of Characteristic Biological Resources in Dabie Mountains, Lu'an, 237012, Anhui, PR China
| | - Li Yang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Cunwu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Key Laboratory of Protection and Utilization of Characteristic Biological Resources in Dabie Mountains, Lu'an, 237012, Anhui, PR China
| | - Bangxing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Key Laboratory of Protection and Utilization of Characteristic Biological Resources in Dabie Mountains, Lu'an, 237012, Anhui, PR China.
| | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Key Laboratory of Protection and Utilization of Characteristic Biological Resources in Dabie Mountains, Lu'an, 237012, Anhui, PR China.
| |
Collapse
|
2
|
Qi Y, Wu XJ, Shi JB, Shi XW, Zhao N, Xiong Y, Wang LP. Sanhuang Xiexin Decoction Ameliorates TNBC By Modulating JAK2-STAT3 and Lipid Metabolism. Chin J Integr Med 2024; 30:1080-1089. [PMID: 37930511 DOI: 10.1007/s11655-023-3555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE To investigate the therapeutic effect of Sanhuang Xiexin Decoction (SXD) on triple-negative breast cancer (TNBC) in mice and its underlying mechanism. METHODS The high-performance liquid chromatography (HPLC) was used to quantitate and qualify SXD. A total of 15 female BALB/c mice were inoculated subcutaneously on the right hypogastrium with 3×105 of 4T1-Luc cells to establish TNBC mouse model. All mice were divided randomly into 3 groups, including phosphate buffered solution (PBS), SXD and doxorubicin (DOX) groups (positive drug). Additionally, tumor growth, pathological changes, serum lipid profiles, expression of Janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) signaling pathway and its key targets including inflammatory factors, cell cycle and epithelial-mesenchymal transition (EMT) markers were investigated. Besides, the biosafety of SXD was also evaluated in mice. RESULTS Rhein, coptisine, berberine hydrochloride and baicalin were all found in SXD, and the concentrations of these 4 components were 0.57, 2.61, 2.93, and 46.04 mg/g, respectively. The mouse experiment showed that SXD could notably suppress the development of tumors and reduce the density of tumor cells (P<0.01). The serum lipid analysis and Oil-Red-O staining both showed the differences, SXD group exhibited higher serum adiponectin and HDL-C levels with lower TC and LDL-C levels compared to the PBS and DOX groups (P<0.05 or P<0.01), respectively. SXD also decreased the levels of phospho-JAK2 (p-JAK2), phospho-STAT3 (p-STAT3) expressions and its downstream factors, including mostly inflammatory cytokine, EMT markers, S phase of tumor cells and vascular endothelial growth factor (VEGF) expression (P<0.05 or P<0.01), respectively. The biosafety assessment of SXD revealed low levels of toxicity in mice. CONCLUSION SXD could inhibit TNBC by suppressing JAK2-STAT3 phosphorylation which may be associated with modulation of lipid metabolism.
Collapse
Affiliation(s)
- Ying Qi
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 311121, China
| | - Xin-Jie Wu
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 311121, China
| | - Jing-Bin Shi
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiao-Wei Shi
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Na Zhao
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yang Xiong
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Li-Pei Wang
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 311121, China.
| |
Collapse
|
3
|
Ji X, Ma Q, Wang X, Ming H, Bao G, Fu M, Wei C. Digeda-4 decoction and its disassembled prescriptions improve dyslipidemia and apoptosis by regulating AMPK/SIRT1 pathway on tyloxapol-induced nonalcoholic fatty liver disease in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116827. [PMID: 37348794 DOI: 10.1016/j.jep.2023.116827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nonalcoholic fatty liver disease (NAFLD) is a manifestation of metabolic syndrome in the liver and the leading cause of chronic liver disease worldwide. Digeda-4 decoction (DGD-4) is a commonly prescribed Mongolian herbal drug for treating acute and chronic liver injury and fatty liver. However, the mechanisms underlying the improvement of dislipidemia and liver injury via treatment with DGD-4 remain unclear. Disassembling a prescription is an effective approach to studying the effects and mechanisms underlying Mongolian medicine prescriptions. By disassembling a prescription, it is feasible to discover effective combinations of individual herbs to optimize a given prescription. Accordingly, we disassembled DGD-4 into two groups: the single Lomatogonium rotatum (L.) Fries ex Nym (LR) (DGD-1) and non-LR (DGD-3). AIM OF THIS STUDY To study whether DGD-4 and its disassembled prescriptions have protective effects against tyloxapol (TY)-induced NAFLD and to explore the underlying mechanisms of action and compatibility of prescriptions. MATERIAL AND METHODS NAFLD mice were developed by TY induction. Biochemical horizontal analyses, enzyme-linked immunosorbent assay, and liver histological staining were performed to explore the protective effects of DGD-4 and its disassembled prescriptions DGD-3 and DGD-1. Furthermore, we performed immunohistochemical analyses and Western blotting to further explore the expression of target proteins. RESULTS DGD-4 and its disassembled prescriptions could inhibit TY-induced dislipidemia and liver injury. In addition, DGD-4 and its disassembled prescriptions increased the levels of p-AMPKα and p-ACC, but decreased the levels of SREBP1c, SCD-1, SREBP-2, and HMGCS1 proteins. The activation of lipid metabolic pathways SIRT1, PGC-1α, and PPARα improved lipid accumulation in the liver. Moreover, DGD-4 could inhibit hepatocyte apoptosis and treat TY-induced liver injury by upregulating the Bcl-2 expression, downregulating the expression of Bax, caspase-3, caspase-8, and the ratio of Bax/Bcl-2, and positively regulating the imbalance of oxidative stress (OxS) markers (such as superoxide dismutase [SOD], catalase [CAT], malondialdehyde [MDA], and myeloperoxidase [MPO]). DGD-1 was superior to DGD-3 in regulating lipid synthesis-related proteins such as SREBP1c, SCD-1, SREBP-2, and HMGCS1. DGD-3 significantly affected the expression of lipid metabolic proteins SIRT1, PGC-1α, PPARα, apoptotic proteins Bcl-2, Bax, caspase-3, caspase-8, and the regulation of Bax/Bcl-2 ratio. However, DGD-1 showed no regulatory effects on Bax and Bcl-2 proteins. CONCLUSION This study demonstrates the protective effects of DGD-4 in the TY-induced NAFLD mice through a mechanism involving improvement of dyslipidemia and apoptosis by regulating the AMPK/SIRT1 pathway. Although the Monarch drug DGD-1 reduces lipid accumulation and DGD-3 inhibits apoptosis and protects the liver from injury, DGD-4 can be more effective overall as a therapy when compared to DGD-1 and DGD-3.
Collapse
Affiliation(s)
- Xiaoping Ji
- School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, 028000, China; Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Qianqian Ma
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Xuan Wang
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Hui Ming
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Guihua Bao
- School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Minghai Fu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China.
| | - Chengxi Wei
- School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, 028000, China; Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| |
Collapse
|
4
|
Shi H, Qiao F, Huang K, Lu W, Zhang X, Ke Z, Wu Y, Cao L, Chen Y. Exploring therapeutic mechanisms of San-Huang-Tang in nonalcoholic fatty liver disease through network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115477. [PMID: 35764198 DOI: 10.1016/j.jep.2022.115477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE San-Huang-Tang (SHT), a traditional Chinese medicine (TCM) formula, has been clinically used to treat obesity and type 2 diabetes mellitus. Recently it has proved that SHT have a good effect on non-alcoholic fatty liver disease (NAFLD). AIM OF THE STUDY Our study was designed to investigate the therapeutic mechanisms of the SHT against NAFLD. The data of SHT were obtained through network pharmacology platform and validated experimentally in vivo and in vitro. MATERIALS AND METHODS The candidate targets of SHT were predicted by network pharmacological analysis and crucial targets were chosen by the protein-protein interaction (PPI) network. Furthermore, Gene Ontology (GO) and Kyoto encyclopedia of genes and Genomes (KEGG) were applied to analyze the NAFLD-related signaling pathways affected by SHT, and then the analysis results were verified with molecular biological experiments in vivo and in vitro. RESULTS Molecules were screened with network pharmacological analysis, and then the improvement of insulin resistance of NAFLD mice was measured by IPITTs and IPGTTs. Through series of molecular experiments, it is revealed that SHT could increase the transcription of insulin receptor (INSR) and insulin receptor substrate (IRS1), and enhance the phosphorylation of both threonine protein kinase (AKT) and forkhead box O1 (FoxO1). CONCLUSIONS Screened by bioinformatics and verified by experiments in vivo and in vitro, SHT could contribute to NAFLD by affecting insulin resistance via activating INSR/IRS1/AKT/FoxO1 pathway. Our research findings provide not only an experimental basis for the therapeutic effect of SHT but also a new target against NAFLD.
Collapse
Affiliation(s)
- Huilian Shi
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Fei Qiao
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Kaiyue Huang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Weiting Lu
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Xinzhuang Zhang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co.,Ltd, Lianyungang, Jiangsu, PR China
| | - Zhipeng Ke
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co.,Ltd, Lianyungang, Jiangsu, PR China
| | - Yanchi Wu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Liang Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co.,Ltd, Lianyungang, Jiangsu, PR China; Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China.
| | - Yuanyuan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
5
|
Pak ME, Park YJ, Yang HJ, Hwang YH, Li W, Go Y. Samhwangsasim-tang attenuates neuronal apoptosis and cognitive decline through BDNF-mediated activation of tyrosin kinase B and p75-neurotrophin receptors. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153997. [PMID: 35279612 DOI: 10.1016/j.phymed.2022.153997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Samhwangsasim-tang (SST) is a traditional medicine used to treat hypertension and arteriosclerosis. Additionally, due to the effects of its constituent herbs, SST is considered effective for memory-related disorders. PURPOSE We investigated the effects of SST on neuronal survival and memory in glutamate-induced hippocampal cells and in a mouse model of scopolamine-induced memory impairment. METHODS SST components were identified using 3D-ultra performance liquid chromatography (3D-UPLC). In vitro, we induced glutamate-induced excitotoxicity in HT22 cells after SST pretreatment. We used a cell counting kit-8 and cell cytotoxicity assay, flow cytometry, and western blotting to test the protective effects of SST on neuronal death. In vivo, C57BL/6J mice were administered with 150 and 300 mg/kg SST once daily for 7 days and then intraperitoneally injected with 1 mg/kg scopolamine for 7 days to induce cognitive impairment. We then measured cognitive behavior using a novel object recognition test (NORT) and passive avoidance test (PAT) and analyzed the histological and protein changes. RESULTS Our results showed that treatment with 50 and 100 μg/ml SST provided significant protection against glutamate-induced cell death. Flow cytometry and western blotting results suggested that 100 μg/ml SST treatment reduced oxidative stress and mitochondrial dysfunction. SST treatment also increased brain-derived neurotrophic factor (BDNF), its receptor, TrkB receptor, and cAMP-response element binding protein (CREB) activation while reducing the P75NTR and JNK signaling activation. Our in vivo results showed that SST administration improved cognitive impairment, similar to donepezil treatment (as a positive control), in NORT and PAT. SST and donepezil decreased neuronal cell death and apoptosis, and acetylcholine levels were increased in the scopolamine-treated hippocampus. Additionally, SST promoted CREB phosphorylation and BDNF maturation while reducing JNK and P75NTR activation; in contrast, donepezil did not alter levels of these proteins in the scopolamine-treated mouse hippocampus. CONCLUSION Our results suggest that SST has neuroprotective effects to attenuate neuronal cell death and oxidative stress through CREB/JNK signaling via BDNF activation. SST may regulate endogenous survival factors in the hippocampus, which may be a safe and potential clinical treatment for cognitive impairment in AD.
Collapse
Affiliation(s)
- Malk Eun Pak
- Korean medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Yeo Jin Park
- Korean medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea; Korean Convergence Medicine, University of Science and Technology, Daejeon 34054, Republic of Korea
| | - Hye Jin Yang
- Korean medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Youn-Hwan Hwang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Wei Li
- Korean medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Younghoon Go
- Korean medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea.
| |
Collapse
|
6
|
Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers 2021; 25:1315-1360. [PMID: 33844136 PMCID: PMC8040371 DOI: 10.1007/s11030-021-10217-3] [Citation(s) in RCA: 427] [Impact Index Per Article: 106.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Drug designing and development is an important area of research for pharmaceutical companies and chemical scientists. However, low efficacy, off-target delivery, time consumption, and high cost impose a hurdle and challenges that impact drug design and discovery. Further, complex and big data from genomics, proteomics, microarray data, and clinical trials also impose an obstacle in the drug discovery pipeline. Artificial intelligence and machine learning technology play a crucial role in drug discovery and development. In other words, artificial neural networks and deep learning algorithms have modernized the area. Machine learning and deep learning algorithms have been implemented in several drug discovery processes such as peptide synthesis, structure-based virtual screening, ligand-based virtual screening, toxicity prediction, drug monitoring and release, pharmacophore modeling, quantitative structure-activity relationship, drug repositioning, polypharmacology, and physiochemical activity. Evidence from the past strengthens the implementation of artificial intelligence and deep learning in this field. Moreover, novel data mining, curation, and management techniques provided critical support to recently developed modeling algorithms. In summary, artificial intelligence and deep learning advancements provide an excellent opportunity for rational drug design and discovery process, which will eventually impact mankind. The primary concern associated with drug design and development is time consumption and production cost. Further, inefficiency, inaccurate target delivery, and inappropriate dosage are other hurdles that inhibit the process of drug delivery and development. With advancements in technology, computer-aided drug design integrating artificial intelligence algorithms can eliminate the challenges and hurdles of traditional drug design and development. Artificial intelligence is referred to as superset comprising machine learning, whereas machine learning comprises supervised learning, unsupervised learning, and reinforcement learning. Further, deep learning, a subset of machine learning, has been extensively implemented in drug design and development. The artificial neural network, deep neural network, support vector machines, classification and regression, generative adversarial networks, symbolic learning, and meta-learning are examples of the algorithms applied to the drug design and discovery process. Artificial intelligence has been applied to different areas of drug design and development process, such as from peptide synthesis to molecule design, virtual screening to molecular docking, quantitative structure-activity relationship to drug repositioning, protein misfolding to protein-protein interactions, and molecular pathway identification to polypharmacology. Artificial intelligence principles have been applied to the classification of active and inactive, monitoring drug release, pre-clinical and clinical development, primary and secondary drug screening, biomarker development, pharmaceutical manufacturing, bioactivity identification and physiochemical properties, prediction of toxicity, and identification of mode of action.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Devesh Srivastava
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Swati Tiwari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
7
|
Li H, Xu Q, Xu C, Hu Y, Yu X, Zhao K, Li M, Li M, Xu J, Kuang H. Bicyclol Regulates Hepatic Gluconeogenesis in Rats with Type 2 Diabetes and Non-alcoholic Fatty Liver Disease by Inhibiting Inflammation. Front Pharmacol 2021; 12:644129. [PMID: 34093184 PMCID: PMC8175979 DOI: 10.3389/fphar.2021.644129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Hepatic gluconeogenesis plays an important role in maintaining the body’s glucose metabolism homeostasis. Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver diseases, when combined with type 2 diabetes mellitus (T2DM), it can cause severe glucose metabolism disorders. Studies have confirmed that chronic liver inflammatory lesions are the basis of T2DM combined with NAFLD (T2DM–NAFLD), inhibiting liver inflammation can improve glucose metabolism disorders. It is essential to explore safe and effective drugs to inhibit liver inflammation to improve the body’s glucose metabolism disorders. Bicyclol is a biphenyl derivative that has anti-oxidative and anti-inflammatory properties. In the present study, the hepatoprotective effects and underlying mechanisms of bicyclol in T2DM–NAFLD were investigated, and T2DM–NAFLD with/without bicyclol treatment models were established. The results revealed that bicyclol alleviated fasting blood glucose, serum transaminase levels, insulin resistance, hepatic adipogenesis, lipid accumulation and markedly reduced T2DM–NAFLD rat histological alterations of livers. Not only that, bicyclol markedly attenuated T2DM–NAFLD induced production of inflammation factors (IL-1β and TNF-α). Moreover, bicyclol suppressed the expression of insulin/gluconeogenesis signaling pathway (Akt, PGC-1α and PEPCK). These findings suggested that bicyclol might be a potentially effective drug for the treatment of T2DM–NAFLD and other metabolic disorders.
Collapse
Affiliation(s)
- Hongxue Li
- First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qian Xu
- First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengye Xu
- First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuxin Hu
- First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingyang Yu
- First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kangqi Zhao
- First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingqing Li
- First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meng Li
- First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junfang Xu
- First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Kuang
- First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Mu J, Tan F, Zhou X, Zhao X. Lactobacillus fermentum CQPC06 in naturally fermented pickles prevents non-alcoholic fatty liver disease by stabilizing the gut-liver axis in mice. Food Funct 2021; 11:8707-8723. [PMID: 32945305 DOI: 10.1039/d0fo01823f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we used a HFD/F to induce NAFLD in mice and intervened with CQPC06 to determine the preventive effect of CQPC06 on NAFLD and its potential regulatory mechanism. C57BL/6J mice were fed with LFD, HFD/F, HFD/F supplemented with CQPC06, and HFD/F supplemented with LDBS for 8 weeks to test the properties of the probiotic. Biochemical and molecular biology methods were used to determine the levels of related indexes in mouse serum, liver tissue, epididymal fat, small intestine tissue, and feces. The results showed that CQPC06 exhibited satisfactory probiotic properties, significantly inhibited mouse weight gain, and decreased the liver index and serum lipid levels, including ALT, AKP, AST, TC, TG, LDL-C, LPS, and HDL-C levels. The HOMA-IR index calculated based on the blood glucose levels and serum insulin levels showed that the HOMA-IR index of NAFLD mice treated with CQPC06 significantly decreased. From the molecular biology level, CQPC06 significantly increased the mRNA and protein expression of PPAR-α, CYP7A1, CPT1, and LPL in NAFLD mouse livers, and decreased the expression of PPAR-γ and C/EBP-α. Furthermore, CQPC06 enhanced the expression of ZO-1, occludin, and claudin-1 in the small intestine of NAFLD mice, and decreased the expression of CD36. CQPC06 decreased the level of Firmicutes and increased the levels of Bacteroides and Akkermansia in the feces of NAFLD mice, and the ratio of Firmicutes/Bacteroides was significantly decreased. CQPC06 is highly resistant in vitro and survived in the gastrointestinal tract and exerted its probiotic effect, altered the intestinal microecology of NAFLD mice, and played an important role in NAFLD prevention through the unique anatomical advantages of the gut-liver axis. There was a clear preventive effect with high concentrations of CQPC06 and it was stronger than that of l-carnitine.
Collapse
Affiliation(s)
- Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China. and Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China and Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China and College of Food Science, Southwest University, Chongqing 400715, China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, Valenzuela 838, Philippines
| | - Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China. and Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China and Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China. and Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China and Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
| |
Collapse
|
9
|
Ge-Gen-Jiao-Tai-Wan Affects Type 2 Diabetic Rats by Regulating Gut Microbiota and Primary Bile Acids. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5585952. [PMID: 33953783 PMCID: PMC8064793 DOI: 10.1155/2021/5585952] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022]
Abstract
The Ge-Gen-Jiao-Tai-Wan (GGJTW) formula has been used to treat type 2 diabetes mellitus (T2DM) in China for a long time. Our previous study has proved that GGJTW could alleviate the type 2 diabetic symptoms, but the underlying mechanisms are still unclear. This study aimed to investigate the changes in gut microbiota and primary bile acids (PBAs) to determine the potential mechanisms of GGJTW in treating T2DM.The fecal transplant method and pseudogerm-free rats were used in our study.The16S rRNA gene sequencing method was used to analyze the changes in the intestinal flora, and PBAs in the colon contents were detected. Finally, the expression of farnesoid X receptor (FXR), G protein-coupled membrane receptor 5 (TGR5), and glucagon-like peptide-1 (GLP-1) was assessed. Following GGJTW treatment, we observed a decrease in blood glucose levels and improvements in glucose tolerance and serum lipid levels. Furthermore, we found that GGJTW could regulate the composition of the gut microbiota and upregulate the diabetic beneficial phylum Firmicutes and bile-acid-related genus Lactobacillus. PBAs in the colon contents were increased in the GGJTW-treated group, accompanied by upregulated expression of the bile acid receptors FXR and TGR5 and increased concentrations of GLP-1. These results indicated that GGJTW could alleviate symptoms of type 2 diabetic rats by regulating the gut microbiota, promoting the production of PBAs, and upregulating the PBA-FXR/TGR5-GLP-1 pathway.
Collapse
|
10
|
Benchoula K, Parhar IS, Madhavan P, Hwa WE. CREB nuclear transcription activity as a targeting factor in the treatment of diabetes and diabetes complications. Biochem Pharmacol 2021; 188:114531. [PMID: 33773975 DOI: 10.1016/j.bcp.2021.114531] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is a metabolic disorder diagnosed by elevated blood glucose levels and a defect in insulin production. Blood glucose, an energy source in the body, is regenerated by two fundamental processes: glycolysis and gluconeogenesis. These two processes are the main mechanisms used by humans and many other animals to maintain blood glucose levels, thereby avoiding hypoglycaemia. The released insulin from pancreatic β-cells activates glycolysis. However, the glucagon released from the pancreatic α-cells activates gluconeogenesis in the liver, leading to pyruvate conversion to glucose-6-phosphate by different enzymes such as fructose 1,6-bisphosphatase and glucose 6-phosphatase. These enzymes' expression is controlled by the glucagon/ cyclic adenosine 3',5'-monophosphate (cAMP)/ proteinkinase A (PKA) pathway. This pathway phosphorylates cAMP-response element-binding protein (CREB) in the nucleus to bind it to these enzyme promoters and activate their expression. During fasting, this process is activated to supply the body with glucose; however, it is overactivated in diabetes. Thus, the inhibition of this process by blocking the expression of the enzymes via CREB is an alternative strategy for the treatment of diabetes. This review was designed to investigate the association between CREB activity and the treatment of diabetes and diabetes complications. The phosphorylation of CREB is a crucial step in regulating the gene expression of the enzymes of gluconeogenesis. Many studies have proven that CREB is over-activated by glucagon and many other factors contributing to the elevation of fasting glucose levels in people with diabetes. The physiological function of CREB should be regarded in developing a therapeutic strategy for the treatment of diabetes mellitus and its complications. However, the accessible laboratory findings for CREB activity of the previous research still not strong enough for continuing to the clinical trial yet.
Collapse
Affiliation(s)
- Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia
| | - Ishwar S Parhar
- Monash University (Malaysia) BRIMS, Jeffrey Cheah School of Medicine & Health Sciences, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|