1
|
Duan Y, Jia Z, Lu Z, Hu H, Zhan R. Comparative response mechanisms of two cultivars of Musa paradisiaca L. to Fusarium oxysporum f.sp. cubense infection. FRONTIERS IN PLANT SCIENCE 2025; 15:1492711. [PMID: 39850207 PMCID: PMC11754190 DOI: 10.3389/fpls.2024.1492711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025]
Abstract
With the aim of enhancing plants' ability to respond to pathogenic fungi, this study focuses on disease resistance genes. We commenced a series of investigations by capitalizing on the pronounced differences in resistance to Fusarium wilt between resistant and susceptible varieties. Through an in-depth exploration of the metabolic pathways that bolster this defense, we identified genes associated with resistance to Fusarium oxysporum f. sp. cubense (Foc). For our analysis, root tissues from seedlings that had been in contact with Fusarium oxysporum for four days were harvested, including both infected and uninfected samples, which served as our study specimens. The crude extract treatment led to a significant increase in malondialdehyde (MDA) levels, lignin content, and phenylalanine ammonia lyase (PAL) activity. Conversely, there was a notable decline in protein content, ergosterol levels, and pectinase activity. In the control group, it was observed that 4,474 genes in the resistant varieties were significantly up-regulated compared to the susceptible varieties. The functional annotation of these differentially expressed genes (DEGs) emphasized their predominant participation in biological processes. Further analysis via the KEGG database revealed that 14 DEGs in the susceptible varieties were particularly enriched in pathways related to plant hormone signaling. Through the perspective of transcriptome data, we focused on genes associated with lignin and cell wall development for Q-PCR validation. Notably, the expression levels of Macma4_02_g07840 (COMT) and Macma4_10_g06530 (CCOAOMT) were relatively elevated. Our findings suggest that the resistance of these varieties to wilt infection can be ascribed to the accumulation of lignin metabolites, which inhibits pathogenic fungus growth by restricting the synthesis of cellular metabolites. The evidence documented in our research provides a framework for a deeper understanding of the disease resistance mechanisms in bananas, laying a solid theoretical foundation for future studies in this area.
Collapse
Affiliation(s)
- Yajie Duan
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Zhiwei Jia
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Zhiwei Lu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Huigang Hu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Rulin Zhan
- Fruit Tree Center, Tropical Crops Genetic Resources Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
2
|
Hoang TNN, Nguyen QL, Le TTN, Vo NH, Dong TAD, Le THA. Comparative Study on the Hypoglycemic Effects of Different Parts of Musa balbisiana. Food Sci Nutr 2024; 12:10347-10356. [PMID: 39723093 PMCID: PMC11666822 DOI: 10.1002/fsn3.4573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 12/28/2024] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder that can cause elevated blood glucose levels due to impaired insulin secretion or resistance. Different parts of Musa balbisiana have been used widely in traditional medicine to treat many disorders. The present study aims to evaluate the antidiabetic ability of the corm, pseudostem, inflorescence, fruit, peel, and seed of M. balbisiana via in vitro experiments by inhibiting α-amylase and α-glucosidase enzymes as well as in vivo models on diabetic alloxan-induced mice. The results show that all investigated parts have performed potential inhibition on two investigated digestive enzymes. Seed poses the highest capacity among surveyed parts on α-amylase (IC50:f μg/mL) and α-glucosidase (IC50: 21.63 μg/mL) as well as effectively lowers the blood glucose index (IG) in alloxan-induced mice. In addition, fruit, corm, and inflorescence are considered essential parts that have high hypoglycemic effects via in vivo experiments. These findings indicate that all M. balbisiana parts are possibly a potential source for hypoglycemic agents; further clinical studies are needed to evaluate the safety of human beings before applying them in functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Thi Ngoc Nhon Hoang
- Faculty of Food Science and TechnologyHo chi Minh City University of Industry and Trade (HUIT)Ho Chi Minh CityVietnam
| | - Quang Liem Nguyen
- Faculty of Food Science and TechnologyHo chi Minh City University of Industry and Trade (HUIT)Ho Chi Minh CityVietnam
| | - Thi Thanh Ngan Le
- Faculty of Food Science and TechnologyHo chi Minh City University of Industry and Trade (HUIT)Ho Chi Minh CityVietnam
| | - Ngoc Hoa Vo
- Faculty of Food Science and TechnologyHo chi Minh City University of Industry and Trade (HUIT)Ho Chi Minh CityVietnam
| | - Thi Anh Dao Dong
- Department of Food Technology, Faculty of Chemical EngineeringHo chi Minh City University of Technology (HCMUT)Ho Chi Minh CityVietnam
- Vietnam National University Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Thi Hong Anh Le
- Faculty of Food Science and TechnologyHo chi Minh City University of Industry and Trade (HUIT)Ho Chi Minh CityVietnam
| |
Collapse
|
3
|
Haque MU, Alam AHMK, Islam Shovon MT, Sujon KM, Hasan Maruf MM, Kabir SR, Faisal Hoque KM, Reza MA. Unveiling the apoptotic potential of antioxidant-rich Bangladeshi medicinal plant extractives and computational modeling to identify antitumor compounds. Heliyon 2024; 10:e38885. [PMID: 39492885 PMCID: PMC11531630 DOI: 10.1016/j.heliyon.2024.e38885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/30/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Nowadays, there has been a significant surge in the exploration of anticancer compounds derived from medicinal plants due to their perceived safety and efficacy. Therefore, our objective was to investigate the antioxidant and antiproliferative properties, along with the phytoconstituents, of methanol extracts from various parts of 15 selected Bangladeshi medicinal plants. Standard spectrophotometric methods and confocal microscopy were utilized to assess the antioxidant and antiproliferative potential of these extracts. Additionally, phytochemical profiling was executed through gas chromatography-mass spectrometry (GC-MS) analysis. Among the extractives, Bombax ceiba bark exhibited the highest scavenging capacity against DPPH (IC50: 10.3 ± 0.7 μg/mL) and hydroxyl (IC50: 3.9 ± 0.1 μg/mL) free radicals. Furthermore, the total antioxidants, reducing power, and polyphenols of B. ceiba bark were higher than those of other extracts. B. ceiba bark also showed significant antiproliferative capacity against MCF-7 cells (86.67 %) in the MTT assay, followed by Cocos nucifera roots (83.92 %), Bixa orellana leaves (44.09 %), and Leea macrophylla roots (25 %). Moreover, B. ceiba bark, L. macrophylla roots, C. nucifera roots, and B. orellana leaves-treated Ehrlich ascites carcinoma (EAC) cells demonstrated growth inhibition rates of 87.27 %, 80.45 %, 42.9 %, and 37.27 %, respectively. Fluorescence microscopic analysis of EAC cells treated with these extracts revealed apoptotic features such as condensed chromatin, cell shrinkage, nucleus fragmentation, and membrane blebbing compared to untreated EAC cells. The GC-MS analysis of B. ceiba bark identified 18 compounds, including various alcohols, alkenes, and esters. Additionally, a molecular docking study revealed oxalic acid, cyclohexyl dodecyl ester as the most potent compound (-6.5) active against breast cancer. In summary, our results demonstrate that B. ceiba bark possesses robust antioxidant and antiproliferative properties, along with potent antitumor compounds, which could be utilized in the treatment of carcinoma.
Collapse
Affiliation(s)
- Md Uzzal Haque
- Phytochemistry Research Laboratory, Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Institute of Biological Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Molecular Biology and Protein Science Laboratory (MBPSL), Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - AHM Khurshid Alam
- Phytochemistry Research Laboratory, Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Tanjil Islam Shovon
- Molecular Biology and Protein Science Laboratory (MBPSL), Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Khaled Mahmud Sujon
- Molecular Biology and Protein Science Laboratory (MBPSL), Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Mahmudul Hasan Maruf
- Molecular Biology and Protein Science Laboratory (MBPSL), Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Kazi Md Faisal Hoque
- Molecular Biology and Protein Science Laboratory (MBPSL), Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Abu Reza
- Molecular Biology and Protein Science Laboratory (MBPSL), Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
4
|
de Oliveira Costa G, Mansur Pontes CL, Parize AL, Sandjo LP. Unveiling chemical responses in the kombucha-based fermentation of black tea, banana flower, and grape juice: LC-ESIMS, GNPS, MS-DIAL, and MS-FINDER-assisted chemical characterization. Food Funct 2024; 15:2497-2523. [PMID: 38334749 DOI: 10.1039/d3fo04977a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The lack of studies evaluating the chemical responses of kombucha microorganisms when exposed to plants is notable in the literature. Therefore, this work investigates the chemical behaviour of 7-, 14- and 21 day-fermentation of kombucha derived from three extracts obtained from banana inflorescence, black tea, and grape juice. After the acquisition of UPLC-ESI-MS data, GNPS molecular networking, MS-Dial, and MS-Finder were used to chemically characterize the samples. The microbial chemical responses were enzymatic hydrolysis, oxidation, and biosynthesis. The biosynthesis was different among the kombucha samples. In fermented black tea, gallic and dihydrosinapic acids were found as hydrolysis products alongside a sugar-derived product namely 7-(α-D-glucopyranosyloxy)-2,3,4,5,6-pentahydroxyheptanoic acid. The sphingolipids, safingol and cedefingol alongside capryloyl glycine and palmitoyl proline were identified. In fermented grapes, sugar degradation and chemical transformation products were detected together with three cell membrane hopanoids characterized as hydroxybacteriohopanetetrol cyclitol ether, (Δ6 or Δ11)-hydroxybacteriohopanetetrol cyclitol ether, and methyl (Δ6 or Δ11)-hydroxybacteriohopanetetrol cyclitol. The fermented banana blossom showed the presence of methyl (Δ6 or Δ11)-hydroxybacteriohopanetetrol cyclitol together with sphingofungin B, sphinganine and other fatty acid derivatives. Parts of these samples were tested for their inhibition against α-glucosidase and their antioxidant effects. Except for the 14-day fermented extracts, other black tea extracts showed significant inhibition of α-glucosidase ranging from 42.5 to 42.8%. A 14-day fermented extract of the banana blossom infusion showed an inhibition of 29.1%, while grape samples were less active than acarbose. The 21-day fermented black tea extract showed moderate antioxidant properties on a DPPH-based model with an EC50 of 5.29 ± 0.10 μg mL-1, while the other extracts were weakly active (EC50 between 80.76 and 168.12 μg mL-1).
Collapse
Affiliation(s)
| | - Carime L Mansur Pontes
- Department of Chemistry, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| | - Alexandre L Parize
- Department of Chemistry, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| | - Louis P Sandjo
- Department of Chemistry, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
5
|
Singh S, Shukla A, Sharma S. Overview of Natural Supplements for the Management of Diabetes and Obesity. Curr Diabetes Rev 2024; 20:e061123223235. [PMID: 37933216 DOI: 10.2174/0115733998262859231020071715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 11/08/2023]
Abstract
Bioactive compounds found in various natural sources, such as fruits, vegetables, and herbs, have been studied for their potential benefits in managing obesity and diabetes. These compounds include polyphenols, flavonoids, other antioxidants, fiber, and certain fatty acids. Studies have found that these compounds may improve insulin sensitivity, regulate blood sugar levels, and promote weight loss. However, the effects of these compounds can vary depending on the type and amount consumed, as well as individual factors, such as genetics and lifestyle. Nutraceutical substances have multifaceted therapeutic advantages, and they have been reported to have disease-prevention and health-promoting properties. Several clinically used nutraceuticals have been shown to target the pathogenesis of diabetes mellitus, obesity, and metabolic syndrome and their complications and modulate various clinical outcomes favorably. This review aims to highlight and comment on some of the most prominent natural components used as antidiabetics and in managing obesity.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh 281406, India
| | - Arpit Shukla
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh 281406, India
| | - Shiwangi Sharma
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh 281406, India
| |
Collapse
|
6
|
Liu Y, Wang Q, Wu K, Sun Z, Tang Z, Li X, Zhang B. Anthocyanins' effects on diabetes mellitus and islet transplantation. Crit Rev Food Sci Nutr 2023; 63:12102-12125. [PMID: 35822311 DOI: 10.1080/10408398.2022.2098464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The incidence of diabetes mellitus is dramatically increasing every year, causing a huge global burden. Moreover, existing anti-diabetic drugs inevitably bring adverse reactions, and the application of islet transplantation is often limited by the damage caused by oxidative stress after transplantation. Thus, new approaches are needed to combat the growing burden of diabetes mellitus. Anthocyanins are of great nutritional interest and have been documented that have beneficial effects on chronic diseases, including diabetes mellitus. Here, we describe the health effects of anthocyanins on diabetes mellitus and islet transplantation. Epidemiological studies demonstrated that moderate intake of anthocyanins leading to a reduction in risk of diabetes mellitus. Numerous experiments both animal and clinical studies also showed positive effects of anthocyanins on prevention and treatment of diabetes and diabetic complications. These effects of anthocyanins may be related to mechanisms of improving glucose and lipid metabolism and insulin resistance, antioxidant, and anti-inflammatory activities. In addition, damage and function of pancreatic islets after transplantation are also improved by anthocyanins. These findings suggest that daily intake of anthocyanins may not only improve nutritional metabolism in healthy individuals to prevent from diabetes, but also as a supplementary treatment of diabetes mellitus and islet transplantation. Thus, more evidence is needed to better understand the potential health benefits of anthocyanins.
Collapse
Affiliation(s)
- Yang Liu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Qianwen Wang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Kangze Wu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhouyi Sun
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Zhe Tang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Yang ML, Lu C, Fan ZF, Zhao TR, Cheng GG, Wang YD, Cao JX, Liu YP. Hypoglycemic and hypolipidemic effects of Epigynum auritum in high fat diet and streptozotocin-induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114986. [PMID: 35032587 DOI: 10.1016/j.jep.2022.114986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/11/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epigynum auritum is mainly distributed in Southwest China, and has been used as a "dai" folk medicine with promising Besides, the leaves and barks of E. auritum have detoxifying, analgesic and relieving swelling effects. Previous studies evidenced that E. auritum was rich in pregnanes and their glycosides. However, the hypoglycemic and hypolipidemic effects of the extract from E. auritum (EAE) and its molecular mechanism are still not studied. AIM OF THE STUDY The aim of this study is to investigate the hypoglycemic and hypolipidemic effects of EAE on high-fat diet and streptozocin-induced type 2 diabetic rats. MATERIALS AND METHODS The high-fat diet and streptozocin induced type 2 diabetic model was established. The diabetic rats were treated with 70% ethanol extract of E. auritum (100 and 300 mg/kg/d) or metformin (DMBG, 100 mg/kg/d) every day for 4 weeks. Fasting blood glucose was recorded weekly. The phenotypic changes were evaluated by the measurement of biochemical indexes and immunohistochemical. The expressions of signaling-related proteins were explored by western blotting. RESULTS EAE could effectively regulate the metabolism of glucose and lipids in diabetic rats by increasing insulin sensitivity. In addition, EAE ameliorated the oxidative stress damage and further mitigated the liver, kidney, and pancreatic damage. Mechanism research results show that EAE treatment increased the phosphorylation of Akt, AMPK and GSK-3β, up-regulated the expression of GLUT-2, GLUT-4 and PPAR-α, and reduced PPAR-γ and FAS expressions. CONCLUSION EAE exhibited significant hypoglycemic and hypolipidemic effects in HFD/STZ-induced diabetes rats. The mechanism may be related to the effective upregulation of AMPK/Akt/GSK-3β pathway and the decreased expression of PPAR-γ and FAS. It could be a promising natural product with potential value for the development of drugs to prevent or treat type 2 diabetic.
Collapse
Affiliation(s)
- Mei-Lian Yang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Can Lu
- Department of Cardiology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Teco, People's Republic of China
| | - Zhi-Feng Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China; Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming, 650500, People's Republic of China
| | - Tian-Rui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Gui-Guang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Yu-Dan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China; Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming, 650500, People's Republic of China.
| | - Jian-Xin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| | - Ya-Ping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| |
Collapse
|
8
|
An Insight into Anti-Inflammatory Activities and Inflammation Related Diseases of Anthocyanins: A Review of Both In Vivo and In Vitro Investigations. Int J Mol Sci 2021; 22:ijms222011076. [PMID: 34681733 PMCID: PMC8540239 DOI: 10.3390/ijms222011076] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Anthocyanin is a type of flavonoid pigment widely present in fruits and vegetables. It can not only be used as natural pigment, but also has a variety of health functions, for instance, anti-oxidant, anti-inflammatory, anti-tumor, and neuroprotective activities. Persistent proinflammatory status is a major factor in the development, progression, and complications of chronic diseases. Not surprisingly, there are thus many food ingredients that can potentially affect inflammation related diseases and many studies have shown that anthocyanins play an important role in inflammatory pathways. In this paper, the inflammation related diseases (such as, obesity, diabetes, cardiovascular disease, and cancer) of anthocyanins are introduced, and the anti-inflammatory effect of anthocyanins is emphatically introduced. Moreover, the anti-inflammatory mechanism of anthocyanins is elaborated from the aspects of NF-κB, toll like receptor, MAPKs, NO, and ROS and the main efficacy of anthocyanins in inflammation and related diseases is determined. In conclusion, this review aims to get a clear insight into the role of anthocyanins in inflammation related diseases.
Collapse
|
9
|
Shang C, Gu Y, Koyama T. Major triterpenes, cycloeucalenone and 31‐norcyclolaudenone as inhibitors against both α‐glucosidase and α‐amylase in banana peel. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chaojie Shang
- Graduate School of Marine Science and Technology Tokyo University of Marine Science and Technology 4‐5‐7 Konan, Minato‐ku Tokyo108‐8477Japan
| | - Yipeng Gu
- Graduate School of Marine Science and Technology Tokyo University of Marine Science and Technology 4‐5‐7 Konan, Minato‐ku Tokyo108‐8477Japan
| | - Tomoyuki Koyama
- Graduate School of Marine Science and Technology Tokyo University of Marine Science and Technology 4‐5‐7 Konan, Minato‐ku Tokyo108‐8477Japan
| |
Collapse
|