1
|
Boucard AS, Kulakauskas S, Alazzaz J, Chaouch S, Mammeri M, Millan-Oropeza A, Machado C, Henry C, Péchoux C, Richly H, Gassel M, Langella P, Polack B, Florent I, Bermúdez-Humarán LG. Isolation of derivatives from the food-grade probiotic Lactobacillus johnsonii CNCM I-4884 with enhanced anti- Giardia activity. Gut Microbes 2025; 17:2474149. [PMID: 40145272 PMCID: PMC11951713 DOI: 10.1080/19490976.2025.2474149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/03/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Giardiasis, a widespread intestinal parasitosis affecting humans and animals, is a growing concern due to the emergence of drug-resistant strains of G. intestinalis. Probiotics offer a promising alternative for preventing and treating giardiasis. Recent studies have shown that the probiotic Lactobacillus johnsonii CNCM I-4884 inhibits G. intestinalis growth both in vitro and in vivo. This protective effect is largely mediated by bile salt hydrolase (BSH) enzymes, which convert conjugated bile acids (BAs) into free forms that are toxic to the parasite. The objective of this study was to use adaptive evolution to develop stress-resistant derivatives of L. johnsonii CNCM I-4884, with the aim of improving its anti-Giardia activity. Twelve derivatives with enhanced resistance to BAs and reduced autolysis were generated. Among them, derivative M11 exhibited the highest in vitro anti-Giardia effect with enhanced BSH activity. Genomic and proteomic analyses of M11 revealed two SNPs and the upregulation of the global stress response by SigB, which likely contributed to its increased BAs resistance and BSH overproduction. Finally, the anti-Giardia efficacy of M11 was validated in a murine model of giardiasis. In conclusion, our results demonstrate that adaptive evolution is an effective strategy to generate robust food-grade bacteria with improved health benefits.
Collapse
Affiliation(s)
- Anne-Sophie Boucard
- Département Adaptation du Vivant, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Saulius Kulakauskas
- Département Adaptation du Vivant, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Jana Alazzaz
- UMR 7245, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités, Paris, France
| | - Soraya Chaouch
- UMR 7245, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités, Paris, France
| | - Mohamed Mammeri
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Aaron Millan-Oropeza
- Plateforme d’Analyse Protéomique Paris Sud-Ouest (PAPPSO), INRAE, MICALIS Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Carine Machado
- Plateforme d’Analyse Protéomique Paris Sud-Ouest (PAPPSO), INRAE, MICALIS Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Céline Henry
- Plateforme d’Analyse Protéomique Paris Sud-Ouest (PAPPSO), INRAE, MICALIS Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Holger Richly
- Boehringer Ingelheim Vetmedica GmbH, Kathrinenhof Research Center, Rohrdorf, Germany
| | - Michael Gassel
- Boehringer Ingelheim Vetmedica GmbH, Kathrinenhof Research Center, Rohrdorf, Germany
| | - Philippe Langella
- Département Adaptation du Vivant, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Bruno Polack
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Isabelle Florent
- UMR 7245, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités, Paris, France
| | - Luis G. Bermúdez-Humarán
- Département Adaptation du Vivant, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
2
|
García-Bustos JJ, Luna Pizarro G, Patolsky RG, Joray MB, Villalba-Vizcaino V, Galeano P, Espitia-Almeida F, Correa Múnera M, Ozturk M, Rópolo AS, Feliziani C, Touz MC, Laiolo J. Antiparasitic activity of Colombian Amazon palm extracts against Giardia lamblia trophozoites: insights into cellular death mechanisms. Front Microbiol 2025; 16:1523880. [PMID: 40177476 PMCID: PMC11961968 DOI: 10.3389/fmicb.2025.1523880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Colombian plants have a long history of use in traditional medicine and ethnopharmacology, particularly for treating stomach pain, digestive issues, diarrhea, and other gastrointestinal disorders. Recent studies have renewed interest in their potential therapeutic properties. Methods This study evaluated the giardicidal activity of 15 crude plant extracts native to the Colombian Amazon against Giardia lamblia (genotype A, strain WB/1267). The MTT colorimetric assay was used to determine the effectiveness of these extracts at a concentration of 500 μg/mL. Extracts showing significant activity were further analyzed to determine their half-maximal inhibitory concentration (IC50). The cell death mechanisms of Attalea butyracea were studied using flow cytometry, confocal microscopy, and transmission electron microscopy (TEM). Results Among the tested extracts, the Attalea butyracea fruit extract (P-2) exhibited the highest activity against WB/1267 (IC50 = 62.10 ± 6.57 μg/mL) and demonstrated giardicidal activity against GS/M (IC50 = 100.90 ± 3.40 μg/mL, genotype B) human infecting strains. These results prompted a detailed investigation into its mechanism of action using the WB/1267 strain as a model. At its IC50 concentration, P-2 primarily exerted its antiproliferative effect by induction of early apoptosis. A notable increase in late apoptosis and necrosis was observed at 2xIC50. Immunofluorescence assay (IFA) and confocal microscopy revealed chromatin condensation in treated trophozoites, while flow cytometry indicated G1/S cell cycle arrest. Furthermore, exposure to P-2 led to oxidative stress, evidenced by a significant increase in reactive oxygen species (ROS). The extract's ability to disrupt various structural components of the parasite was confirmed through IFA and transmission electron microscopy. Interestingly, the P-2 extract effectively synergized with the first-line drug metronidazole against Giardia WB/1267 trophozoites. Discussion These findings underscore the therapeutic potential of Colombian plant extracts in treating giardiasis, particularly highlighting the novel giardicidal activity of Attalea butyracea fruit extract and its promise for further therapeutic development.
Collapse
Affiliation(s)
- Juan Javier García-Bustos
- Programa de Medicina Veterinaria y Zootecnia, Universidad de La Amazonia, Caquetá, Florencia, Colombia
- Universidad del Magdalena, Facultad Ciencias de la Salud, Doctorado en Medicina Tropical SUE-Caribe, Grupo de Investigación en Inmunología y Patologia (GIPAT), Santa Marta, Colombia
| | - Gabriel Luna Pizarro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rocío G. Patolsky
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Belén Joray
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas, Consejo Nacional de Investigaciones Científicas y Técnicas (CIDIE-CONICET-UCC), Universidad Católica de Córdoba, Córdoba, Argentina
| | - Vivian Villalba-Vizcaino
- Universidad del Magdalena, Facultad Ciencias de la Salud, Doctorado en Medicina Tropical SUE-Caribe, Grupo de Investigación en Inmunología y Patologia (GIPAT), Santa Marta, Colombia
| | - Paula Galeano
- Facultad de Ciencias Básicas, Universidad de La Amazonia, Caquetá, Florencia, Colombia
| | - Fabián Espitia-Almeida
- Centro de Investigaciones en Ciencias de la Vida, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia
- Facultad de Ciencias Básicas, Programa de Biología, Universidad del Atlántico, Puerto Colombia, Colombia
| | - Marco Correa Múnera
- Facultad de Ciencias Básicas, Universidad de La Amazonia, Caquetá, Florencia, Colombia
| | - Mehmet Ozturk
- Department of Chemistry, Faculty of Science, Mugla Sitki Koçman University, Mugla, Türkiye
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Andrea S. Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Feliziani
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Carolina Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jerónimo Laiolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba, Córdoba, Argentina
| |
Collapse
|
3
|
Murrieta-Dionicio U, Calzada F, Barbosa E, Valdés M, Reyes-Trejo B, Zuleta-Prada H, Guerra-Ramírez D, Del Río-Portilla F. Antiprotozoal Activity Against Entamoeba hystolitica and Giardia lamblia of Cyclopeptides Isolated from Annona diversifolia Saff. Molecules 2024; 29:5636. [PMID: 39683795 DOI: 10.3390/molecules29235636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Diseases caused by intestinal parasites such as protozoa represent a worldwide problem mainly for developing countries. From morbidity in different groups of people to cases of mortality in children and/or immunocompromised patients. In addition to the above, there is growing resistance to the drugs used in the treatment of these diseases, as well as undesirable side effects in patients. Therefore, there is an interest in the search for new alternatives for the base and/or development of new drugs with antiparasitic activities without harmful effects. In this sense, natural products offer to be a diverse source of compounds with biological activities. In this work, we describe the isolation and elucidation by 1D and 2D NMR spectroscopy of three cyclopeptides obtained from seeds of A. diversifolia Saff.: cherimolacyclopeptide D (1), squamin D (2), and squamin C (3). The fractions enriched in cyclopeptides, as well as a pure compound (1), showed antiprotozoal activity against E. hystolitica Schaudinn and Giardia lamblia Kunstler in vitro assays, with values of IC50 = 3.49 and 5.39 μg mL-1, respectively. The molecular docking study revealed that 1 has a strong interaction with targets used, including aldose reductase and PFOR enzymes. The antiprotozoal activity of cherimolacyclopeptide D is reported for the first time in this study.
Collapse
Affiliation(s)
- Ulises Murrieta-Dionicio
- Laboratorio de Productos Naturales, Área de Química, Departamento de Preparatoria Agrícola, Universidad Autónoma Chapingo, km 38.5 Carretera México-Texcoco, Chapingo 56230, Mexico
| | - Fernando Calzada
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades, 2° Piso CORSE Centro Médico Nacional Siglo XXI, IMSS, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de México 06725, Mexico
| | - Elizabeth Barbosa
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México 11340, Mexico
| | - Miguel Valdés
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades, 2° Piso CORSE Centro Médico Nacional Siglo XXI, IMSS, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de México 06725, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México 11340, Mexico
| | - Benito Reyes-Trejo
- Laboratorio de Productos Naturales, Área de Química, Departamento de Preparatoria Agrícola, Universidad Autónoma Chapingo, km 38.5 Carretera México-Texcoco, Chapingo 56230, Mexico
| | - Holber Zuleta-Prada
- Laboratorio de Productos Naturales, Área de Química, Departamento de Preparatoria Agrícola, Universidad Autónoma Chapingo, km 38.5 Carretera México-Texcoco, Chapingo 56230, Mexico
| | - Diana Guerra-Ramírez
- Laboratorio de Productos Naturales, Área de Química, Departamento de Preparatoria Agrícola, Universidad Autónoma Chapingo, km 38.5 Carretera México-Texcoco, Chapingo 56230, Mexico
| | - Federico Del Río-Portilla
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| |
Collapse
|
4
|
Uc-Cachón AH, Dzul-Beh A, González-Cortázar M, Zamilpa-Álvarez A, Molina-Salinas GM. Investigating the anti-growth, anti-resistance, and anti-virulence activities of Schoepfia schreberi J.F.Gmel. against the superbug Acinetobacter baumannii. Heliyon 2024; 10:e31420. [PMID: 38813144 PMCID: PMC11133943 DOI: 10.1016/j.heliyon.2024.e31420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Schoepfia schreberi has been used in Mayan folk medicine to treat diarrhea and cough. This study aimed to determine the anti-growth, anti-resistance, and/or anti-virulence activities of S. schreberi extracts against Acinetobacter baumannii, a pathogen leader that causes healthcare-associated infections with high rates of drug-resistant including carbapenems, the last line of antibiotics known as superbugs, and analyze their composition using HPLC-DAD. Ethyl acetate (SSB-3) and methanol (SSB-4) bark extracts exhibit antimicrobial and biocidal effects against drug-susceptible and drug-resistant A. baumannii. Chemical analysis revealed that SSB-3 and SSB-4 contained of gallic and ellagic acids derivatives. The anti-resistance activity of the extracts revealed that SSB-3 or SSB-4, combined with imipenem, exhibited potent antibiotic reversal activity against A. baumannii by acting as pump efflux modulators. The extracts also displayed activity against surface motility of A. baumannii and its capacity to survive reactive oxygen species. This study suggests that S. schreberi can be considered a source of antibiotics, even adjuvanted compounds, as anti-resistant or anti-virulence agents against A. baumannii, contributing to ethnopharmacological knowledge and reappraisal of Mayan medicinal flora, and supporting the traditional use of the bark of the medicinal plant S. schreberi for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Andrés Humberto Uc-Cachón
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida, 97150, Yucatán, Mexico
| | - Angel Dzul-Beh
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida, 97150, Yucatán, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, 11340, Mexico
| | - Manases González-Cortázar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, 62790, Morelos, Mexico
| | - Alejandro Zamilpa-Álvarez
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, 62790, Morelos, Mexico
| | - Gloria María Molina-Salinas
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida, 97150, Yucatán, Mexico
| |
Collapse
|
5
|
Kudamba A, Kasolo JN, Bbosa GS, Lugaajju A, Wabinga H, Kafeero HM, Ssenku JE, Alemu SO, Walusansa A, Niyonzima N, Muwonge H. Review of Herbal Medicinal Plants Used in the Management of Cancers in the East Africa Region from 2019 to 2023. Integr Cancer Ther 2024; 23:15347354241235583. [PMID: 38445504 PMCID: PMC10916491 DOI: 10.1177/15347354241235583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/06/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND In the East African region, herbal plants are essential in the treatment and control of cancer. Given the diverse ecological and cultural makeup of the regional states, it is likely that different ethnic groups will use the same or different plants for the same or different diseases. However, since 2019, this has not been compiled into a single study. PURPOSE The study aimed to compile and record the medicinal plants utilized in East Africa from April 2019 to June 2023 to treat various cancer types. MATERIALS AND METHODS The study examined 13 original studies that included ethnobotanical research conducted in East Africa. They were retrieved from several internet databases, including Google Scholar, Scopus, PubMed/Medline, Science Direct, and Research for Life. The study retrieved databases on plant families and species, plant parts used, preparation methods and routes of administration, and the country where the ethnobotanical field surveys were conducted. Graphs were produced using the GraphPad Prism 8.125 program (GraphPad Software, Inc., San Diego, CA). Tables and figures were used to present the data, which had been condensed into percentages and frequencies. RESULTS A total of 105 different plant species from 45 different plant families were identified, including Asteraceae (14), Euphorbiaceae (12), Musaceae (8), and Apocynaceae (7). Uganda registered the highest proportion (46% of the medicinal plants used). The most commonly mentioned medicinal plant species in cancer management was Prunus africana. Herbs (32%), trees and shrubs (28%), and leaves (45%) constituted the majority of herbal remedies. Most herbal remedies were prepared by boiling (decoction) and taken orally (57%). CONCLUSION East Africa is home to a wide variety of medicinal plant species that local populations and herbalists, or TMP, frequently use in the treatment of various types of cancer. The most frequently used families are Asteraceae and Euphorbiaceae, with the majority of species being found in Uganda. The most frequently utilized plant species is Prunus africana. Studies on the effectiveness of Prunus africana against other malignancies besides prostate cancer are required.
Collapse
Affiliation(s)
- Ali Kudamba
- Makerere University, Kampala, Uganda
- Islamic University in Uganda, Kampala, Uganda
- Islamic University in Uganda, Mbale, Uganda
| | | | | | | | | | | | | | | | - Abdul Walusansa
- Islamic University in Uganda, Kampala, Uganda
- Islamic University in Uganda, Mbale, Uganda
| | | | | |
Collapse
|
6
|
Kudamba A, Kasolo JN, Bbosa GS, Lugaajju A, Wabinga H, Niyonzima N, Ocan M, Damani AM, Kafeero HM, Ssenku JE, Alemu SO, Lubowa M, Walusansa A, Muwonge H. Medicinal plants used in the management of cancers by residents in the Elgon Sub-Region, Uganda. BMC Complement Med Ther 2023; 23:450. [PMID: 38087230 PMCID: PMC10714536 DOI: 10.1186/s12906-023-04273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND In Uganda, medicinal plants have been utilized to treat a variety of ailments, including cancer. However, there is little information available about the medicinal plants used to treat cancer in the Elgon subregion. As a result, the current study documented the plant species used in the management of cancer in the Elgon sub-region. METHODS Data were gathered by observation, self-administered questionnaires, interview guides, and guided field trips. Analyzing descriptive statistics and creating graphs were done using SPSS (version 21.0) and GraphPad Prism® version 9.0.0, respectively. Well-established formulae were used to calculate quantitative indices. The narratives were interpreted using major theories and hypotheses in ethnobotany. RESULTS A total of 50 plant species from 36 families were documented, and herbal knowledge was mainly acquired through inheritance. Fabaceae and Asteraceae comprised more plant species used in herbal preparation. Most plants were collected from forest reserves (63%); herbal therapies were made from herbs (45%); and leaves were primarily decocted (43%). The most frequently used plants were Tylosema fassoglensis, Hydnora abyssinica, Azidarachata indica, Prunus Africana, Kigelia africana, Syzygium cumini, Hydnora africana, Rhoicissus tridentata, Albizia coriaria, and Plectranthus cuanneus. All the most commonly used plants exhibited a high preference ranking (60-86%) and reliability level (74.1-93.9%). Generally, the ICF for all the cancers treated by medicinal plants was close to 1 (0.84-0.95). CONCLUSIONS The ten most commonly utilized plants were favored, dependable, and most important for treating all known cancers. As a result, more investigation is required to determine their phytochemistry, toxicity, and effectiveness in both in vivo and in vitro studies. This could be a cornerstone for the pharmaceutical sector to develop new anticancer medications.
Collapse
Affiliation(s)
- Ali Kudamba
- Department of Physiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda.
- Faculty of Health Sciences, Habib Medical School, Islamic University in Uganda, Kampala, Uganda.
- Faculty of Science, Department of Biological Sciences, Islamic University in Uganda, Mbale, Uganda.
| | - Josephine N Kasolo
- Department of Physiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Godfrey S Bbosa
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Allan Lugaajju
- Department of Physiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Henry Wabinga
- Department of Pathology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Moses Ocan
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Ali M Damani
- Department of Physiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Hussein M Kafeero
- Faculty of Health Sciences, Habib Medical School, Islamic University in Uganda, Kampala, Uganda
| | - Jamilu E Ssenku
- Faculty of Science, Department of Biological Sciences, Islamic University in Uganda, Mbale, Uganda
| | - Shaban O Alemu
- Faculty of Science, Department of Biological Sciences, Islamic University in Uganda, Mbale, Uganda
| | - Muhammad Lubowa
- Faculty of Science, Department of Food Science & Nutrition, Islamic University in Uganda, Mbale, Uganda
| | - Abdul Walusansa
- Faculty of Health Sciences, Habib Medical School, Islamic University in Uganda, Kampala, Uganda
- Faculty of Science, Department of Biological Sciences, Islamic University in Uganda, Mbale, Uganda
| | - Haruna Muwonge
- Department of Physiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
7
|
Chalé-Dzul J, León-Deniz LV, Medina-Gómez S, Moo-Puc RE, Mirón-López G, Gómez-López P, Mena-Rejón GJ. Effect of extracts from several sponges of Yucatan Coast on Giardia lamblia and preliminary chemical investigation of the bioactive extract of Haliclona ( Reinera) tubifera. Nat Prod Res 2023; 37:4023-4027. [PMID: 36576083 DOI: 10.1080/14786419.2022.2161540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
In this study, twenty-four organic extracts from six marine sponge species, collected at shallows of Yucatan, Mexico, were evaluated against Giardia lamblia trophozoites and Vero cells. The dichloromethane and hexane extracts of Haliclona tubifera exhibited the highest antigiardiasic activity (IC50 = 1.00 and 2.11 µg/mL, respectively), as well as high selectivity (SI = 41.8 and > 47.4, respectively), while ethyl acetate and methanol extracts of Cinachyrella alloclada, and methanol extract of Suberites aurantiaca showed moderate activity. Contrastingly, the extracts of Halichondria magniculosa and Oceanapia nodosa were considered non actives. Consequently, the dichloromethane extract of H. tubifera were subject to an exploratory chemical study, isolating cholesterol, two benzaldehyde derivatives, three benzoic acid derivatives, cytosine, and thymine.
Collapse
Affiliation(s)
- Juan Chalé-Dzul
- Unidad de Investigación Médica Yucatán, Unidad Médica de Alta Especialidad, Centro Médico "Ignacio García Téllez", IMSS, Mérida, Yucatán, Mexico
| | - Lorena V León-Deniz
- Depto. de Biología Marina, Facultad de Medicina de Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Yucatán, CP, Mexico
| | - Sara Medina-Gómez
- Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Rosa E Moo-Puc
- Unidad de Investigación Médica Yucatán, Unidad Médica de Alta Especialidad, Centro Médico "Ignacio García Téllez", IMSS, Mérida, Yucatán, Mexico
| | | | - Patricia Gómez-López
- Instituto de Ciencias del Mar y Limnología, Unidad Académica de Ecología y Biodiversidad Acuática, Universidad Nacional Autónoma de México, Circuito Exterior S/N Col., Coyoacán, Mexico
| | | |
Collapse
|
8
|
Torres-León C, Rebolledo Ramírez F, Aguirre-Joya JA, Ramírez-Moreno A, Chávez-González ML, Aguillón-Gutierrez DR, Camacho-Guerra L, Ramírez-Guzmán N, Hernández Vélez S, Aguilar CN. Medicinal plants used by rural communities in the arid zone of Viesca and Parras Coahuila in northeast Mexico. Saudi Pharm J 2023; 31:21-28. [PMID: 36685306 PMCID: PMC9845112 DOI: 10.1016/j.jsps.2022.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022] Open
Abstract
This study is the first record of medicinal plants in the southwest of the Coahuila state, an arid zone where extreme dry conditions prevail. One hundred twenty-two residents (in sixteen communities) were interviewed. The residents were questioned with a questionnaire-guided ethnomedical survey protocol about the various plants used. Seventy-seven species of medicinal plants belonging to 36 botanical families were cited. The highest use-value (UV) was calculated for Lippia graveolens Kunth (0.30); Aloe vera (L.) Burm.f. (0.20); Eucalyptus abdita Brooker & Hopper, Chamaemelum nobile (L.) All. (0.16); Mentha spicata L. (0.15) and Salvia officinalis L. (0.10). Informant consensus factor (ICF) about usages of medicinal plants ranges from 0.41 to 0.80; the highest level of agreement was determined between the informants and Respiratory System Diseases (0.80). The highest fidelity level (FL) values (100%) were identified in Flourensia cernua DC., Artisia ludoviciana Nutt., and Parthenium incanum Kunth to Gastro-intestinal System Diseases; Eucalyptus abdita Brooker & Hopper, Bougainvillea berberidifolia Heimerl, and Lippia graveolens Kunth to Respiratory System Diseases (RSD) and Cyclolepis genistoides D.Don and Ephedra antisyphilitica Berland. ex C.A.Mey. to Obstetrics, Gynecology and Urinary tract Diseases. These last two medicinal plant species ("palo azul" and "pitoreal") used by the rural communities in Viesca in the treatment of urinary tract infections and kidney stones have not been reported previously. These findings can provide new research directions for further phytochemical studies. The present study revealed that the residents are rich in ethno-medicinal knowledge and actively use medicinal plants to treat various diseases. New phytochemical and pharmacological research are needed to confirm the therapeutic potential and safety of the identified plants.
Collapse
Affiliation(s)
- Cristian Torres-León
- Reaserch Center and Ethnobiological Garden (CIJE-UAdeC), Universidad Autonoma de Coahuila, 27480, Unidad Torreón, Viesca, Coahuila, Mexico
- Corresponding author.
| | - Fernanda Rebolledo Ramírez
- School of Chemistry, Universidad Autonoma de Coahuila, 25280, Unidad Saltillo, Saltillo, Coahuila, Mexico
| | - Jorge A. Aguirre-Joya
- Reaserch Center and Ethnobiological Garden (CIJE-UAdeC), Universidad Autonoma de Coahuila, 27480, Unidad Torreón, Viesca, Coahuila, Mexico
| | - Agustina Ramírez-Moreno
- Faculty of Biological Sciences, Universidad Autonoma de Coahuila, 27276, Unidad Torreón, Torreon, Coahuila, Mexico
| | - Mónica L. Chávez-González
- School of Chemistry, Universidad Autonoma de Coahuila, 25280, Unidad Saltillo, Saltillo, Coahuila, Mexico
| | - David R. Aguillón-Gutierrez
- Reaserch Center and Ethnobiological Garden (CIJE-UAdeC), Universidad Autonoma de Coahuila, 27480, Unidad Torreón, Viesca, Coahuila, Mexico
| | - Luis Camacho-Guerra
- Reaserch Center and Ethnobiological Garden (CIJE-UAdeC), Universidad Autonoma de Coahuila, 27480, Unidad Torreón, Viesca, Coahuila, Mexico
| | - Nathiely Ramírez-Guzmán
- Center for Interdisciplinary Studies and Research (CEII-UAdeC), Universidad Autónoma de 25280, Unidad Saltillo, Saltillo, Coahuila, Mexico
| | - Salvador Hernández Vélez
- Reaserch Center and Ethnobiological Garden (CIJE-UAdeC), Universidad Autonoma de Coahuila, 27480, Unidad Torreón, Viesca, Coahuila, Mexico
| | - Cristóbal N. Aguilar
- School of Chemistry, Universidad Autonoma de Coahuila, 25280, Unidad Saltillo, Saltillo, Coahuila, Mexico
| |
Collapse
|
9
|
Ticona JC, Bilbao-Ramos P, Amesty Á, Flores N, Dea-Ayuela MA, Bazzocchi IL, Jiménez IA. Flavonoids from Piper Species as Promising Antiprotozoal Agents against Giardia intestinalis. Structure-Activity Relationship and Drug-Likeness Studies. Pharmaceuticals (Basel) 2022; 15:1386. [PMID: 36355559 PMCID: PMC9695682 DOI: 10.3390/ph15111386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2023] Open
Abstract
Diarrhea diseases caused by the intestinal protozoan parasite Giardia intestinalis are a major global health burden. Moreover, there is an ongoing need for novel anti-Giardia drugs due to drawbacks with currently available treatments. This paper reports on the isolation and structural elucidation of six new flavonoids (1-6), along with twenty-three known ones (7-29) from the Piper species. Their structures were established by spectroscopic and spectrometric techniques. Flavonoids were tested for in vitro antiprotozoal activity against Giardia intestinalis trophozoites. In addition, structure-activity relationship (SAR) and in silico ADME studies were performed to understand the pharmacophore and pharmacokinetic properties of these natural compounds. Eight flavonoids from this series exhibited remarkable activity in the micromolar range. Moreover, compound 4 was identified as having a 40-fold greater antiparasitic effect (IC50 61.0 nM) than the clinical reference drug, metronidazole (IC50 2.5 µM). This antiprotozoal potency was coupled with an excellent selectivity index (SI 233) on murine macrophages and in silico drug-likeness. SAR studies revealed that the substitution patterns, type of functional group, and flavonoid skeleton played an essential role in the activity. These findings highlight flavonoid 4 as a promising candidate to develop new drugs for the treatment of Giardia infections.
Collapse
Affiliation(s)
- Juan C. Ticona
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
- Instituto de Investigaciones Fármaco Bioquímicas, Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés, Avenida Saavedra 2224, Miraflores, La Paz, Bolivia
| | - Pablo Bilbao-Ramos
- Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Ángel Amesty
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Ninoska Flores
- Instituto de Investigaciones Fármaco Bioquímicas, Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés, Avenida Saavedra 2224, Miraflores, La Paz, Bolivia
| | - M. Auxiliadora Dea-Ayuela
- Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Departamento de Farmacia, Bioquímica y Biología Molecular, Universidad CEU-Cardenal Herrera, Avda. Seminario s/n, 46113 Moncada, Valencia, Spain
| | - Isabel L. Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Ignacio A. Jiménez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
10
|
Ortiz-Mendoza N, Aguirre-Hernández E, Fragoso-Martínez I, González-Trujano ME, Basurto-Peña FA, Martínez-Gordillo MJ. A Review on the Ethnopharmacology and Phytochemistry of the Neotropical Sages ( Salvia Subgenus Calosphace; Lamiaceae) Emphasizing Mexican Species. Front Pharmacol 2022; 13:867892. [PMID: 35517814 PMCID: PMC9061990 DOI: 10.3389/fphar.2022.867892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Salvia is the most diverse genus within the mint family (Lamiaceae), many of its species are well-known due to their medicinal and culinary uses. Most of the ethnopharmacological and phytochemical studies on Salvia are centred on species from the European and Asian clades. However, studies about the most diverse clade, the Neotropical sages (Salvia subgenus Calosphace; 587 spp.), are relatively scarce. This review aims to compile the information on the traditional medicinal uses, pharmacological and phytochemistry properties of the Neotropical sages. To do so, we carried out a comprehensive review of the articles available in different online databases published from the past to 2022 (i.e., PubMed, Scopus, and Web of Science, among others) and summarized the information in tables. To uncover phylogenetic patterns in the distribution of four different groups of metabolites (mono-, sesqui-, di-, and triterpenes), we generated presence-absence matrices and plotted the tip states over a dated phylogeny of Salvia. We found several studies involving Mexican species of Salvia, but only a few about taxa from other diversity centres. The main traditional uses of the Mexican species of Calosphace are medicinal and ceremonial. In traditional medicine 56 species are used to treat diseases from 17 categories according to the WHO, plus cultural-bound syndromes. Pharmacological studies reveal a wide range of biological properties (e.g., antinociceptive, anti-inflammatory, anxiolytic, cytotoxic, and antidiabetic, etc.) found in extracts and isolated compounds of 38 Neotropical sages. From extracts of these species, at least 109 compounds have been isolated, identified and evaluated pharmacologically; 73 of these compounds are clerodanes, 21 abietanes, six flavonoids, five sesquiterpenoids, and four triterpenoids. The most characteristic metabolites found in the Neotropical sages are the diterpenes, particularly clerodanes (e.g., Amarisolide A, Tilifodiolide), that are found almost exclusively in this group. The Neotropical sages are a promising resource in the production of herbal medication, but studies that corroborate the properties that have been attributed to them in traditional medicine are scarce. Research of these metabolites guided by the phylogenies is recommended, since closely related species tend to share the presence of similar compounds and thus similar medicinal properties.
Collapse
Affiliation(s)
- Nancy Ortiz-Mendoza
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eva Aguirre-Hernández
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Francisco A. Basurto-Peña
- Jardin Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Martha J. Martínez-Gordillo
- Departamento de Biología Comparada, Herbario de la Facultad de Ciencias, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
11
|
Furanocoumarins from Ruta chalepensis with Amebicide Activity. Molecules 2021; 26:molecules26123684. [PMID: 34208750 PMCID: PMC8233766 DOI: 10.3390/molecules26123684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/06/2021] [Accepted: 06/13/2021] [Indexed: 11/17/2022] Open
Abstract
Entamoeba histolytica (protozoan; family Endomoebidae) is the cause of amoebiasis, a disease related to high morbidity and mortality. Nowadays, this illness is considered a significant public health issue in developing countries. In addition, parasite resistance to conventional medicinal treatment has increased in recent years. Traditional medicine around the world represents a valuable source of alternative treatment for many parasite diseases. In a previous paper, we communicated about the antiprotozoal activity in vitro of the methanolic (MeOH) extract of Ruta chalepensis (Rutaceae) against E. histolytica. The plant is extensively employed in Mexican traditional medicine. The following workup of the MeOH extract of R. chalepensis afforded the furocoumarins rutamarin (1) and chalepin (2), which showed high antiprotozoal activity on Entamoeba histolytica trophozoites employing in vitro tests (IC50 values of 6.52 and 28.95 µg/mL, respectively). Therefore, we offer a full scientific report about the bioguided isolation and the amebicide activity of chalepin and rutamarin.
Collapse
|
12
|
Rivera-Yañez N, Rivera-Yañez CR, Pozo-Molina G, Méndez-Catalá CF, Reyes-Reali J, Mendoza-Ramos MI, Méndez-Cruz AR, Nieto-Yañez O. Effects of Propolis on Infectious Diseases of Medical Relevance. BIOLOGY 2021; 10:428. [PMID: 34065939 PMCID: PMC8151468 DOI: 10.3390/biology10050428] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
Abstract
Infectious diseases are a significant problem affecting the public health and economic stability of societies all over the world. Treatment is available for most of these diseases; however, many pathogens have developed resistance to drugs, necessitating the development of new therapies with chemical agents, which can have serious side effects and high toxicity. In addition, the severity and aggressiveness of emerging and re-emerging diseases, such as pandemics caused by viral agents, have led to the priority of investigating new therapies to complement the treatment of different infectious diseases. Alternative and complementary medicine is widely used throughout the world due to its low cost and easy access and has been shown to provide a wide repertoire of options for the treatment of various conditions. In this work, we address the relevance of the effects of propolis on the causal pathogens of the main infectious diseases with medical relevance; the existing compiled information shows that propolis has effects on Gram-positive and Gram-negative bacteria, fungi, protozoan parasites and helminths, and viruses; however, challenges remain, such as the assessment of their effects in clinical studies for adequate and safe use.
Collapse
Affiliation(s)
- Nelly Rivera-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico; (N.R.-Y.); (G.P.-M.); (J.R.-R.); (M.I.M.-R.); (A.R.M.-C.)
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico;
| | - C. Rebeca Rivera-Yañez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico;
| | - Glustein Pozo-Molina
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico; (N.R.-Y.); (G.P.-M.); (J.R.-R.); (M.I.M.-R.); (A.R.M.-C.)
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico
| | - Claudia F. Méndez-Catalá
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico;
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico
| | - Julia Reyes-Reali
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico; (N.R.-Y.); (G.P.-M.); (J.R.-R.); (M.I.M.-R.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico
| | - María I. Mendoza-Ramos
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico; (N.R.-Y.); (G.P.-M.); (J.R.-R.); (M.I.M.-R.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico
| | - Adolfo R. Méndez-Cruz
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico; (N.R.-Y.); (G.P.-M.); (J.R.-R.); (M.I.M.-R.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico
| | - Oscar Nieto-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico; (N.R.-Y.); (G.P.-M.); (J.R.-R.); (M.I.M.-R.); (A.R.M.-C.)
| |
Collapse
|
13
|
Aulanni'am A, Ora KM, Ariandini NA, Wuragil DK, Permata FS, Riawan W, Beltran MAG. Wound healing properties of Gliricidia sepium leaves from Indonesia and the Philippines in rats ( Rattus norvegicus). Vet World 2021; 14:820-824. [PMID: 33935433 PMCID: PMC8076467 DOI: 10.14202/vetworld.2021.820-824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/04/2021] [Indexed: 01/17/2023] Open
Abstract
Background and Aim: Gliricidia sepium is a medium-sized leguminous plant found widely in tropical to subtropical areas. It has been used as a medicinal ingredient and in rodenticides by local communities in both Indonesia and the Philippines. This study aimed to investigate the wound healing effects of an ointment containing G. sepium leaves on inflammatory cells using a rat model. We also determined its effect on the expression of interleukin (IL) 6 and IL-1β. Materials and Methods: We used 16 Wistar male rats aged approximately 2 months and weighing 150-200 g. They were divided into four treatment groups (T1, positive control; T2, negative control; T3, wounds treated with G. sepium from Indonesia; and T4, wounds treated with G. sepium from the Philippines), and the ointment therapies were applied to wounds for 3 days. Hematoxylin and eosin staining was performed to examine the inflammatory cells microscopically. IL-1β and IL-6 expression were observed immunohistochemically. Results: G. sepium leaves significantly (p<0.05) decreased the number of inflammatory cells, and the expression of IL-1β and IL-6 in the group treated with Indonesian G. sepium leaves was higher than that in the group treated with G. sepium leaves from the Philippines. The leaves contain flavonoids, saponins, and tannins, which act as anti-inflammatory agents to enhance the wound healing process. Conclusion: Our findings suggest that G. sepium leaves from both the Philippines and Indonesia possess wound healing properties.
Collapse
Affiliation(s)
| | - Krismal Marchel Ora
- Bachelor of Veterinary Student, Faculty of Veterinary Medicine, Brawijaya University, Indonesia
| | - Nisa Ain Ariandini
- Bachelor of Veterinary Student, Faculty of Veterinary Medicine, Brawijaya University, Indonesia
| | - Dyah Kinasih Wuragil
- Laboratory of Veterinary Biochemistry, Faculty of Veterinary Medicine, Brawijaya University, Indonesia
| | - Fajar Shodiq Permata
- Laboratory of Veterinary Histology, Faculty of Veterinary Medicine, Brawijaya University, Indonesia
| | - Wibi Riawan
- Department of Molecular and Biochemistry, Faculty of Medicine, Brawijaya University, Indonesia
| | - Ma Asuncion Guiang Beltran
- Department of Microbiology and Veterinary Public Health, College of Veterinary Medicine, Tarlac Agricultural University, The Philippines
| |
Collapse
|
14
|
Antihyperglycemic and Lipid Profile Effects of Salvia amarissima Ortega on Streptozocin-Induced Type 2 Diabetic Mice. Molecules 2021; 26:molecules26040947. [PMID: 33670091 PMCID: PMC7916882 DOI: 10.3390/molecules26040947] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/13/2022] Open
Abstract
Salvia amarissima Ortega was evaluated to determinate its antihyperglycemic and lipid profile properties. Petroleum ether extract of fresh aerial parts of S. amarissima (PEfAPSa) and a secondary fraction (F6Sa) were evaluated to determine their antihyperglycemic activity in streptozo-cin-induced diabetic (STID) mice, in oral tolerance tests of sucrose, starch, and glucose (OSTT, OStTT, and OGTT, respectively), in terms of glycated hemoglobin (HbA1c), triglycerides (TG), and high-density lipoprotein (HDL). In acute assays at doses of 50 mg/kg body weight (b.w.), PEfAPSa and F6Sa showed a reduction in hyperglycemia in STID mice, at the first and fifth hour after of treatment, respectively, and were comparable with acarbose. In the sub-chronic test, PEfAPSa and F6Sa showed a reduction of glycemia since the first week, and the effect was greater than that of the acarbose control group. In relation to HbA1c, the treatments prevented the increase in HbA1c. In the case of TG and HDL, PEfAPSa and F6Sa showed a reduction in TG and an HDL increase from the second week. OSTT and OStTT showed that PEfAPSa and F6Sa significantly lowered the postprandial peak at 1 h after loading but only in sucrose or starch such as acarbose. The results suggest that S. amarissima activity may be mediated by the inhibition of disaccharide hydrolysis, which may be associated with an α-glucosidase inhibitory effect.
Collapse
|
15
|
Velázquez-Domínguez JA, Hernández-Ramírez VI, Calzada F, Varela-Rodríguez L, Pichardo-Hernández DL, Bautista E, Herrera-Martínez M, Castellanos-Mijangos RD, Matus-Meza AS, Chávez-Munguía B, Talamás-Rohana P. Linearolactone and Kaempferol Disrupt the Actin Cytoskeleton in Entamoeba histolytica: Inhibition of Amoebic Liver Abscess Development. JOURNAL OF NATURAL PRODUCTS 2020; 83:3671-3680. [PMID: 33231455 DOI: 10.1021/acs.jnatprod.0c00892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Linearolactone (1) and kaempferol (2) have amebicidal activity in in vitro studies. The type of cell death induced by 1 and 2 and their effects on the virulence of E. histolytica were analyzed by transmission and confocal electron microscopy, reactive oxygen species (ROS) production, and apoptosis, detected by flow cytometry with dichlorofluorescein 2',7'-diacetate and annexin-V binding, respectively, and confirmed by TUNEL. The interaction of 1 and 2 with actin was analyzed by docking, and the in vivo amoebicidal activity was established with the Mesocricetus auratus model; amebic liver abscess (ALA) development was evaluated by magnetic resonance (MR) and validated post mortem. In vitro, compounds 1 and 2 caused chromatin condensation, intracellular ROS, and loss of actin structures. Coupling analysis showed that they bind to the allosteric and catalytic sites of actin with binding energies of -11.30 and -8.45 kcal/mol, respectively. Treatments with 1 and 2 induced a decrease in ALA formation without toxic effects on the liver and kidney. Thus, compound 1, but not 2, was able to induce apoptosis-like effects in E. histolytica trophozoites by intracellular production of ROS that affected the actin cytoskeleton structuration. In vivo, compound 1 was more active than compound 2 to reduce the development of ALA.
Collapse
Affiliation(s)
| | | | - Fernando Calzada
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades, CMN-Siglo XXI, Av. Cuauhtémoc 330, Col. Doctores, 06720, CDMX, México
| | - Luis Varela-Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, 07360, CDMX, México
| | - Diana L Pichardo-Hernández
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, 07360, CDMX, México
| | - Elihú Bautista
- Unidad de Ciencias Ambientales, IPICYT, Camino a la Presa San José, No. 2055, Lomas 4a. Sección, 78216, San Luis Potosí, S.L.P., México
| | - Mayra Herrera-Martínez
- Instituto de Farmacobiología, Universidad de la Cañada, Carretera Teotitlán San Antonio Nanahuatipán Km 1.7 s/n. Paraje Titlacuatitla, 68540, Teotitlán de Flores Magón, Oax., México
| | - Rodrigo D Castellanos-Mijangos
- Servicio de Imagenología Diagnóstica, Centro Médico ISSEMyM "Arturo Montiel Rojas", Av. Baja Velocidad No. 284, Carretera México-Toluca Km. 57.5, San Jerónimo Chicahualco, 52170, Metepec, Edo. Méx., México
| | - Audifas Salvador Matus-Meza
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Mexico City, CDMX, México
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, 07360, CDMX, México
| | - Patricia Talamás-Rohana
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, 07360, CDMX, México
| |
Collapse
|
16
|
Flavonoids and Terpenoids with PTP-1B Inhibitory Properties from the Infusion of Salvia amarissima Ortega. Molecules 2020; 25:molecules25153530. [PMID: 32752292 PMCID: PMC7435600 DOI: 10.3390/molecules25153530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Abstract
An infusion prepared from the aerial parts of Salvia amarissima Ortega inhibited the enzyme protein tyrosine phosphatase 1B (PTP-1B) (IC50~88 and 33 μg/mL, respectively). Phytochemical analysis of the infusion yielded amarisolide (1), 5,6,4′-trihydroxy-7,3′-dimethoxyflavone (2), 6-hydroxyluteolin (3), rutin (4), rosmarinic acid (5), isoquercitrin (6), pedalitin (7) and a new neo-clerodane type diterpenoid glucoside, named amarisolide G (8a,b). Compound 8a,b is a new natural product, and 2–6 are reported for the first time for the species. All compounds were tested for their inhibitory activity against PTP-1B; their IC50 values ranged from 62.0 to 514.2 μM. The activity was compared to that of ursolic acid (IC50 = 29.14 μM). The most active compound was pedalitin (7). Docking analysis predicted that compound 7 has higher affinity for the allosteric site of the enzyme. Gas chromatography coupled to mass spectrometry analyses of the essential oils prepared from dried and fresh materials revealed that germacrene D (15) and β-selinene (16), followed by β-caryophyllene (13) and spathulenol (17) were their major components. An ultra-high performance liquid chromatography coupled to mass spectrometry method was developed and validated to quantify amarisolide (1) in the ethyl acetate soluble fraction of the infusion of S. amarissima.
Collapse
|
17
|
A Review of the Ephedra genus: Distribution, Ecology, Ethnobotany, Phytochemistry and Pharmacological Properties. Molecules 2020; 25:molecules25143283. [PMID: 32698308 PMCID: PMC7397145 DOI: 10.3390/molecules25143283] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Ephedra is one of the largest genera of the Ephedraceae family, which is distributed in arid and semiarid regions of the world. In the traditional medicine from several countries some species from the genus are commonly used to treat asthma, cold, flu, chills, fever, headache, nasal congestion, and cough. The chemical constituents of Ephedra species have been of research interest for decades due to their contents of ephedrine-type alkaloids and its pharmacological properties. Other chemical constituents such as phenolic and amino acid derivatives also have resulted attractive and have provided evidence-based supporting of the ethnomedical uses of the Ephedra species. In recent years, research has been expanded to explore the endophytic fungal diversity associated to Ephedra species, as well as, the chemical constituents derived from these fungi and their pharmacological bioprospecting. Two additional aspects that illustrate the chemical diversity of Ephedra genus are the chemotaxonomy approaches and the use of ephedrine-type alkaloids as building blocks in organic synthesis. American Ephedra species, especially those that exist in Mexico, are considered to lack ephedrine type alkaloids. In this sense, the phytochemical study of Mexican Ephedra species is a promising area of research to corroborate their ephedrine-type alkaloids content and, in turn, discover new chemical compounds with potential biological activity. Therefore, the present review represents a key compilation of all the relevant information for the Ephedra genus, in particular the American species, the species distribution, their ecological interactions, its ethnobotany, its phytochemistry and their pharmacological activities and toxicities, in order to promote clear directions for future research.
Collapse
|
18
|
An ethnobotanical study of medicinal plants used by the Tengger tribe in Ngadisari village, Indonesia. PLoS One 2020; 15:e0235886. [PMID: 32658902 PMCID: PMC7357767 DOI: 10.1371/journal.pone.0235886] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 06/23/2020] [Indexed: 01/12/2023] Open
Abstract
The people of Tengger, Indonesia have used plants as traditional medicine for a long time. However, this local knowledge has not been well documented until recently. Our study aims to understand the utilization of plants in traditional medicine by the people of Tengger, who inhabit the Ngadisari village, Sukapura District, Probolinggo Regency, Indonesia. We conducted semi-structured and structured interviews with a total of 52 informants that represented 10% of the total family units in the village. The parameters observed in this study include species use value (SUV), family use value (FUV), plant part use (PPU), and the relative frequency of citation that was calculated based on fidelity level (FL). We successfully identified 30 species belonging to 28 genera and 20 families that have been used as a traditional medicine to treat 20 diseases. We clustered all the diseases into seven distinct categories. Among the recorded plant families, Poaceae and Zingiberaceae were the most abundant. Plant species within those families were used to treat internal medical diseases, respiratory-nose, ear, oral/dental, and throat problems. The plant species with the highest SUV was Foeniculum vulgare Mill. (1.01), whereas the Aloaceae family (0.86) had the highest FUV. Acorus calamus L. (80%) had the highest FL percentage. The leaves were identified as the most used plant part and decoction was the dominant mode of a medicinal preparation. Out of the plants and their uses documented in our study, 26.7% of the medicinal plants and 71.8% of the uses were novel. In conclusion, the diversity of medicinal plant uses in the Ngadisari village could contribute to the development of new plant-based drugs and improve the collective revenue of the local society.
Collapse
|