1
|
Singh B, Singh L, Bhatt ID, Kandpal ND. Tailored NADES solvents for the extraction optimization of benzylisoquinoline alkaloids from Thalictrum foliolosum DC.- A potential phyto-nutraceutical source. Food Chem 2025; 463:141016. [PMID: 39241417 DOI: 10.1016/j.foodchem.2024.141016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
From a perspective focused on phyto-nutraceuticals, alkaloids are considered to be the most significant metabolites, as they exhibit a broad range of pharmacological applications. Therefore, it is essential, to conduct a thorough investigation of the extraction techniques employed and to optimize the overall process. Considering this, we delved into tailor-made natural deep eutectic solvents coupled with ultrasonic-assisted extraction and macroporous resins aided recovery of therapeutics alkaloids from Thalictrum foliolosum DC. The extraction parameters including duty cycle (X1), extraction time (X2), water content (X3), and liquid-to-solid ratio (X4) were optimized through response surface methodology. Under the optimal extraction conditions [duty cycle- 61 %, ultrasonication extraction time- 10.35 min, water content- 30.51 %, and liquid-to-solid ratio- 30 mL/g], the yield of berberine (11.91 ± 0.12 mg/g DW), berbamine (11.85 ± 0.16 mg/g DW), magnoflorine (6.06 ± 0.05 mg/g DW), and palmatine (2.53 ± 0.015 mg/g DW) were found to be near the model prediction. Further, adsorption/desorption characteristics were investigated, and the results highlight AB-8 resin as most effective for the recovery of berberine and palmatine, while, XAD-7HP resin is best suited for berbamine and magnoflorine. FT-IR analysis shows similar spectra among the purified extracts with significantly (p < 0.05) higher antioxidant and anti-glycemic activities. In conclusion, the developed method complies with the criteria of green extraction which can be harnessed as a natural antioxidant in pharmaceutical and nutraceutical industries.
Collapse
Affiliation(s)
- Basant Singh
- Center for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India
| | - Laxman Singh
- Center for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India
| | - Indra D Bhatt
- Center for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India.
| | - Narain D Kandpal
- Department of Chemistry, S. S. J. Campus, Soban Singh Jeena University Almora, India
| |
Collapse
|
2
|
Wang Z, Huo M, Qiao L, Qiao Y, Zhang Y. SYSTCM: A systemic web platform for objective identification of pharmacological effects based on interplay of "traditional Chinese Medicine-components-targets". Comput Biol Med 2024; 179:108878. [PMID: 39043107 DOI: 10.1016/j.compbiomed.2024.108878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
Mechanism analysis is essential for the use and promotion of Traditional Chinese Medicine (TCM). Traditional methods of network analysis relying on expert experience lack an explanatory framework, prompting the application of deep learning and machine learning for objective identification of TCM pharmacological effects. A dataset was used to construct an interacted network graph between 424 molecular descriptors and 465 pharmacological targets to represent the relationship between components and pharmacological effects. Subsequently, the optimal identification model of pharmacological effects (IPE) was established through convolution neural networks of GoogLeNet structure. The AUC values are greater than 0.8, MCC values are greater than 0.7, and ACC values are greater than 0.85 across various test datasets. Subsequently, 18 recognition models of TCM efficacy (RTE) were created using support vector machines (SVM). Integration of pharmacological effects and efficacies led to the development of the systemic web platform for identification of pharmacological effects (SYSTCM). The platform, comprising 70,961 terms, including 636 Traditional Chinese Medicines (TCMs), 8190 components, 40 pharmacological effects, and 18 efficacies. Through the SYSTCM platform, (1) Total 100 components were predicted from TCMs with anti-inflammatory pharmacological effects. (2) The pharmacological effects of complete constituents were predicted from Coptidis Rhizoma (Huang Lian). (3) The principal components, pharmacological effects, and efficacies were elucidated from Salviae Miltiorrhizae radix et rhizome (Dan Shen). SYSTCM addresses subjectivity in pharmacological effect determination, offering a potential avenue for advancing TCM drug development and clinical applications. Access SYSTCM at http://systcm.cn.
Collapse
Affiliation(s)
- Zewen Wang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengqi Huo
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Liansheng Qiao
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanjiang Qiao
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yanling Zhang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
3
|
Singh R, Manna S, Nandanwar H, Purohit R. Bioactives from medicinal herb against bedaquiline resistant tuberculosis: removing the dark clouds from the horizon. Microbes Infect 2024; 26:105279. [PMID: 38128751 DOI: 10.1016/j.micinf.2023.105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Tuberculosis is a contagious bacterial ailment that primarily affects the lungs and is brought on by the bacterium Mycobacterium tuberculosis (MTB). An antimycobacterial medication called bedaquiline (BQ) is specified to treat multidrug-resistant tuberculosis (MDR-TB). Despite its contemporary use in clinical practice, the mutations (D32 A/G/N/V/P) constrain the potential of BQ by causing transitions in the structural conformation of the atpE subunit-c after binding. In this study, we have taken the benzylisoquinoline alkaloids from thalictrum foliolosum due to its antimicrobial activity reported in prior literature. We used an efficient and optimized structure-based strategy to examine the wild type (WT) and mutated protein upon molecule binding. Our results emphasize the drastic decline in BQ binding affinity of mutant and WT atpE subunit-c complexes compared to thalirugidine (top hit) from thalictrum foliolosum. The decrease in BQ binding free energy is due to electrostatic energy because nearly every atom in a macromolecule harbors a partial charge, and molecules taking part in molecular recognition will interact electrostatically. Similarly, the high potential mean force of thalirugidine than BQ in WT and mutant complexes demonstrated the remarkable ability to eradicate mycobacteria efficiently. Furthermore, the Alamar blue cell viability and ATP determination assay were performed to validate the computational outcomes in search of novel antimycobacterial. Upon closer examination of the ATP determination assay, it became apparent that both BQ and thalirugidine showed similar reductions in ATP levels at their respective MICs, presenting a potential common mechanism of action.
Collapse
Affiliation(s)
- Rahul Singh
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Souvik Manna
- CSIR-Institute of Microbial Technology, Sector-39, Chandigarh, 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hemraj Nandanwar
- CSIR-Institute of Microbial Technology, Sector-39, Chandigarh, 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Chen ZJ, Yang HG, Zhu WP, Xue CM, Zhang HM, Peng YT, Li DH, Hua HM. New aporphine alkaloids with antitumor activities from the roots of Thalictrum omeiense. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-9. [PMID: 38389314 DOI: 10.1080/10286020.2024.2317826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Two new aporphine alkaloids, 6aR-2'-(3-oxobutenyl)-thaliadin (1) and N-methylthalisopynine (2), along with ten known analogs (3-12), were isolated from the roots of Thalictrum omeiense W. T. Wang et S. H. Wang. Their structures were determined by extensive spectroscopic and X-ray crystallographic analyses. Compounds 1-7 and 9-12 were tested for their antiproliferative effects in vitro against two human cancer cell lines (A549 and MCF-7). Among them, compounds 1, 3, and 7 exhibited moderate inhibitory activity against the tested cell lines with IC50 values ranging from 23.73 to 34.97 μM.
Collapse
Affiliation(s)
- Zhao-Jing Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Han-Gao Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Wen-Peng Zhu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Chun-Mei Xue
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Hong-Mei Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Yu-Ting Peng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Da-Hong Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, PR China
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Hui-Ming Hua
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| |
Collapse
|
5
|
Hong T, Pan X, Xu H, Zheng Z, Wen L, Li J, Xia M. Jatrorrhizine inhibits Piezo1 activation and reduces vascular inflammation in endothelial cells. Biomed Pharmacother 2023; 163:114755. [PMID: 37105072 DOI: 10.1016/j.biopha.2023.114755] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Vascular inflammation is a common pathological basis underlying many cardiovascular diseases. As such, the treatment of vascular inflammation has attracted increasing attention. The Piezo1 pathway has long been shown to play an important role in the development of vascular inflammation. Jatrorrhizine (Jat) is an effective component of Rhizoma Coptidis. It is commonly used in the treatment of inflammatory diseases and is a potential drug for the treatment of vascular inflammation. However, its mechanism of action on vascular inflammation remains unclear, as is the effect of Jat on Piezo1. Therefore, we conducted a series of studies on the effect of jatrorrhizine on vascular inflammation in vivo and in vitro. In this study, the effect of Jat treatment on H2O2-induced endothelial cell inflammation was investigated in vitro, and the potential mechanism of Jat was explored. In in vivo experiments, we investigated the effect of jatrorrhizine on vascular inflammation induced by carotid artery ligation and its effect on the Piezo1 signaling pathway. We found that Jat could reduce the severity of carotid intimal hyperplasia and local vascular inflammation in mice. In the H2O2-induced inflammation model, cell proliferation and migration were significantly inhibited, and the expression of pro-inflammatory factors was reduced. Importantly, the addition of Jat to endothelial Piezo1 knockout did not produce further significant inhibition. We believe that the role of Jat in the treatment of vascular inflammation may be related to Piezo1. And we believe that Jat has great potential in the treatment of vascular inflammation and cardiovascular diseases.
Collapse
Affiliation(s)
- Tianying Hong
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianmei Pan
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, China
| | - Han Xu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhijuan Zheng
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lizhen Wen
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Mingfeng Xia
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
6
|
Traditional Importance, Phytochemistry, Pharmacology, and Toxicological Attributes of the Promising Medicinal Herb Carissa spinarum L. SEPARATIONS 2023. [DOI: 10.3390/separations10030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Carissa spinarum L. (Apocynaceae), commonly known as Garna or Jungli Karonda, has a rich history of use in indigenous traditional medicinal systems owing to its tremendous medicinal and nutritional benefits. The present review aims to discuss the traditional uses, ethnopharmacology, bioactive composition, toxicity analysis, and biotechnological applications of Carissa spinarum L. (CS) to identify the gap between current applications and research conducted on this plant. We collected the literature published before December 2022 on the phytochemical composition, pharmacological properties, and biotechnological applications of CS. Literature in English from scientific databases such as Google Scholar, PubMed, ScienceDirect, Springer, and Wiley, along with books on CS, was analyzed and summarized to prepare this review. The plant taxonomy was verified using the “World Flora Online” database (http://www.worldfloraonline.org/). The in vitro and in vivo pharmacological studies on CS revealed its anthelmintic, anticonvulsant, anti-arthritic, anti-inflammatory, antimicrobial, antioxidant, antidiabetic, hepatoprotective, vasorelaxant, antihypertensive, antitumor, wound-healing, anti-venom, and antipyretic effects. Toxicological studies on CS also indicated the absence of any adverse effects even at high doses after oral administration. Although CS showed remarkable therapeutic activities against several diseases—such as diabetes, cancer, inflammation, and hepatitis B virus—there are several drawbacks in previous reports, including the lack of information on the drug dose, standards, controls, and mechanism of action of the extract or the phytocompounds responsible for its activity. Extensive research with proper in vivo or in vitro model systems is required to validate its reported activities.
Collapse
|
7
|
Assessment of phytochemicals, antioxidants and in-silico molecular dynamic simulation of plant derived potential inhibitory activity of Thalictrum foliolosum DC. and Cordia dichotoma G. Forst. against jaundice. Biomed Pharmacother 2022; 156:113898. [DOI: 10.1016/j.biopha.2022.113898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
|
8
|
Cai H, Shi W, Weicai S, Han W, Wang S. Complete chloroplast genome sequence of Thalictrum viscosum W.T.Wang & S.H.Wang, 1979 (Ranunculaceae). Mitochondrial DNA B Resour 2022; 7:1586-1588. [PMID: 36082046 PMCID: PMC9448377 DOI: 10.1080/23802359.2022.2113751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Thalictrum viscosum W.T.Wang & S.H.Wang, 1979 is a flowering plant species in family Ranunculaceae that is endemic to Yunnan province of China. To facilitate genetic study of T. viscosum, we de novo assembled and annotated the complete chloroplast (cp) genome of T. viscosum for the first time. The total length of the cp genome of T. viscosum was 155,984 bp, with a GC content of 38.4%. The T. viscosum cp genome had a typical quadripartite structure with a large single-copy region of 85,339 bp, a small single-copy region of 17,656 bp, and a pair of inverted repeat regions of 26,495 bp. The cp genome consisted of 133 genes, including 87 protein-coding genes, 38 transfer RNA genes, and eight ribosomal RNA genes. We performed phylogenetic analysis of T. viscosum with the maximum-likelihood phylogenetic tree and indicated that T. viscosum was closely related to T. cirrhosum and T. foeniculaceum.
Collapse
Affiliation(s)
- Haohong Cai
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Wenbo Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Song Weicai
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Weiqi Han
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Shuo Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
9
|
Raghuvanshi D, Sharma K, Verma R, Kumar D, Kumar H, Khan A, Valko M, Alomar SY, Alwasel SH, Nepovimova E, Kuca K. Phytochemistry, and pharmacological efficacy of Cordia dichotoma G. Forst. (Lashuda): A therapeutic medicinal plant of Himachal Pradesh. Biomed Pharmacother 2022; 153:113400. [DOI: 10.1016/j.biopha.2022.113400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
|
10
|
Two New Antibacterial Chromeno[3,2-c]Pyridine Alkaloids from Whole Plants of Thalictrum scabrifolium. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Zhu WQ, Wu HY, Sun ZH, Guo Y, Ge TT, Li BJ, Li X, Cui RJ. Current Evidence and Future Directions of Berberine Intervention in Depression. Front Pharmacol 2022; 13:824420. [PMID: 35677435 PMCID: PMC9168319 DOI: 10.3389/fphar.2022.824420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/01/2022] [Indexed: 12/27/2022] Open
Abstract
A major type of serious mood disorder, depression is currently a widespread and easily overlooked psychological illness. With the low side effects of natural products in the treatment of diseases becoming the pursuit of new antidepressants, natural Chinese medicine products have been paid more and more attention for their unique efficacy in improving depression. In a view from the current study, the positive antidepressant effects of berberine are encouraging. There is a lot of work that needs to be done to accurately elucidate the efficacy and mechanism of berberine in depression. In this review, the relevant literature reports on the treatment of depression and anxiety by berberine are updated, and the potential pharmacological mechanism of berberine in relieving depression has also been discussed.
Collapse
Affiliation(s)
- Wen-Qian Zhu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Hui-Ying Wu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Zhi-Hui Sun
- Department of Pharmacy, The Eastern Division of First Hospital of Jilin University, Changchun, China
| | - Yi Guo
- Department of Breast Surgery, The Affiliated Hospital Changchun University of Chinese Medicine, Changchun, China
| | - Tong-Tong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Bing-Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xin Li, ; Ran-Ji Cui,
| | - Ran-Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xin Li, ; Ran-Ji Cui,
| |
Collapse
|
12
|
Shen X, Yan Y, Li X, Ma J, Xie F, Zhou S, Feng Y, Yin T. Isoquinoline alkaloids from Thalictrum glandulosissimum and their network analysis of chemotaxonomic value. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Zhong F, Chen Y, Chen J, Liao H, Li Y, Ma Y. Jatrorrhizine: A Review of Sources, Pharmacology, Pharmacokinetics and Toxicity. Front Pharmacol 2022; 12:783127. [PMID: 35095493 PMCID: PMC8793695 DOI: 10.3389/fphar.2021.783127] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/14/2021] [Indexed: 02/02/2023] Open
Abstract
Jatrorrhizine, an isoquinoline alkaloid, is a bioactive metabolite in common medicinal plants, such as Berberis vernae Schneid., Tinospora sagittata (Oliv.) Gagnep. and Coptis chinensis Franch. These plants have been used for centuries in traditional medicine for their wide-ranging pharmacological properties. This review emphasizes the latest and comprehensive information on the sources, pharmacology, pharmacokinetics and toxicity of jatrorrhizine. Studies on this alkaloid were collected from scientific internet databases, including the Web of Science, PubMed, ScienceDirect, Google Scholar, Elsevier, Springer, Wiley Online Library and Europe PMC and CNKI, using a combination of keywords involving “jatrorrhizine”, “sources”, “pharmacology,” “pharmacokinetics,” and “toxicology”. Jatrorrhizine exhibits anti-diabetic, antimicrobial, antiprotozoal, anticancer, anti-obesity and hypolipidemic properties, along with central nervous system activities and other beneficial activity. Studies of jatrorrhizine have laid the foundation for its application to the treatment of various diseases, but some issues still exist. Further investigations might emphasize 1) specific curative mechanisms of jatrorrhizine and clinical utility, 2) application prospect in the treatment of metabolic disorders, 3) comprehensive investigations of the toxicity mechanisms and 4) interactions of jatrorrhizine with other pharmaceuticals and development of derivatives.
Collapse
Affiliation(s)
- Furong Zhong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hailang Liao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yirou Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuntong Ma
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Li YK, Xiong W, Hu QF, Zhang LF, Cai BB, Li Y, Wang HS, Cai HC, Liu MX. Three New Quinoline Alkaloids from the Whole Plant of Thalictrum atriplex and Their Bioactivities. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Shuvalov VY, Samsonenko AL, Rozhkova YS, Morozov VV, Shklyaev YV, Fisyuk AS. Synthesis of 3‐Aminopyrido[2,1‐
a
]isoquinolin‐4‐one Derivatives
via
Condensation of Azlactones with 1‐Alkyl‐3,4‐dihydroisoquinolines. ChemistrySelect 2021. [DOI: 10.1002/slct.202103028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Vladislav Yu. Shuvalov
- Laboratory of New Organic Materials Omsk State Technical University 11 Mira Ave. 644050 Omsk Russian Federation
| | - Anna L. Samsonenko
- Department Department of Organic Chemistry Omsk F. M. Dostoevsky State University 55a Mira Ave. 644077 Omsk Russian Federation
| | - Yuliya S. Rozhkova
- Institute of Technical Chemistry UB RAS 3 Akademika Korolyeva St. 614013 Perm Russian Federation
| | - Vyacheslav V. Morozov
- Institute of Technical Chemistry UB RAS 3 Akademika Korolyeva St. 614013 Perm Russian Federation
| | - Yurii V. Shklyaev
- Institute of Technical Chemistry UB RAS 3 Akademika Korolyeva St. 614013 Perm Russian Federation
| | - Alexander S. Fisyuk
- Department Department of Organic Chemistry Omsk F. M. Dostoevsky State University 55a Mira Ave. 644077 Omsk Russian Federation
| |
Collapse
|
16
|
Rolta R, Yadav R, Salaria D, Trivedi S, Imran M, Sourirajan A, Baumler DJ, Dev K. In silico screening of hundred phytocompounds of ten medicinal plants as potential inhibitors of nucleocapsid phosphoprotein of COVID-19: an approach to prevent virus assembly. J Biomol Struct Dyn 2021; 39:7017-7034. [PMID: 32851912 DOI: 10.21203/rs.3.rs-30484/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Currently, there is no specific treatment to cure COVID-19. Many medicinal plants have antiviral, antioxidant, antibacterial, antifungal, anticancer, wound healing etc. Therefore, the aim of the current study was to screen for potent inhibitors of N-terminal domain (NTD) of nucleocapsid phosphoprotein of SARS-CoV-2. The structure of NTD of RNA binding domain of nucleocapsid phosphoprotein of SARS coronavirus 2 was retrieved from the Protein Data Bank (PDB 6VYO) and the structures of 100 different phytocompounds were retrieved from Pubchem. The receptor protein and ligands were prepared using Schrodinger's Protein Preparation Wizard. Molecular docking was done by using the Schrodinger's maestro 12.0 software. Drug likeness and toxicity of active phytocompounds was predicted by using Swiss adme, admetSAR and protox II online servers. Molecular dynamic simulation of the best three protein- ligand complexes (alizarin, aloe-emodin and anthrarufin) was performed to study the interaction stability. We have identified three potential active sites (named as A, B, C) on receptor protein for efficient binding of the phytocompounds. We found that, among 100 phytocompounds, emodin, aloe-emodin, anthrarufin, alizarine, and dantron of Rheum emodi showed good binding affinity at all the three active sites of RNA binding domain of nucleocapsid phosphoprotein of COVID-19.The binding energies of emodin, aloe-emodin, anthrarufin, alizarine, and dantron were -8.299, -8.508, -8.456, -8.441, and -8.322 Kcal mol-1 respectively (site A), -7.714, -6.433, -6.354, -6.598, and -6.99 Kcal mol-1 respectively (site B), and -8.299, 8.508, 8.538, 8.841, and 8.322 Kcal mol-1 respectively (site C). All the active phytocompounds follows the drug likeness properties, non-carcinogenic, and non-toxic. Theses phytocompounds (alone or in combination) could be developed into effective therapy against COVID-19. From MD simulation data, we found that all three complexes of 6VYO with alizarin, aloe-emodin and anthrarufin were stable up to 50 ns. These phytocompounds can be tested further for in vitro or in vivo and used as a potential drug to cure SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajan Rolta
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| | - Rohitash Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Deeksha Salaria
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| | - Shubham Trivedi
- Department of Bioengineering, Integral University Lucknow, India
| | - Mohammad Imran
- Department of Pharmacology, Shaqra University, Saudi Arabia
| | - Anuradha Sourirajan
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| | - David J Baumler
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Kamal Dev
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| |
Collapse
|
17
|
Rolta R, Yadav R, Salaria D, Trivedi S, Imran M, Sourirajan A, Baumler DJ, Dev K. In silico screening of hundred phytocompounds of ten medicinal plants as potential inhibitors of nucleocapsid phosphoprotein of COVID-19: an approach to prevent virus assembly. J Biomol Struct Dyn 2021; 39:7017-7034. [PMID: 32851912 PMCID: PMC7484575 DOI: 10.1080/07391102.2020.1804457] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 01/07/2023]
Abstract
Currently, there is no specific treatment to cure COVID-19. Many medicinal plants have antiviral, antioxidant, antibacterial, antifungal, anticancer, wound healing etc. Therefore, the aim of the current study was to screen for potent inhibitors of N-terminal domain (NTD) of nucleocapsid phosphoprotein of SARS-CoV-2. The structure of NTD of RNA binding domain of nucleocapsid phosphoprotein of SARS coronavirus 2 was retrieved from the Protein Data Bank (PDB 6VYO) and the structures of 100 different phytocompounds were retrieved from Pubchem. The receptor protein and ligands were prepared using Schrodinger's Protein Preparation Wizard. Molecular docking was done by using the Schrodinger's maestro 12.0 software. Drug likeness and toxicity of active phytocompounds was predicted by using Swiss adme, admetSAR and protox II online servers. Molecular dynamic simulation of the best three protein- ligand complexes (alizarin, aloe-emodin and anthrarufin) was performed to study the interaction stability. We have identified three potential active sites (named as A, B, C) on receptor protein for efficient binding of the phytocompounds. We found that, among 100 phytocompounds, emodin, aloe-emodin, anthrarufin, alizarine, and dantron of Rheum emodi showed good binding affinity at all the three active sites of RNA binding domain of nucleocapsid phosphoprotein of COVID-19.The binding energies of emodin, aloe-emodin, anthrarufin, alizarine, and dantron were -8.299, -8.508, -8.456, -8.441, and -8.322 Kcal mol-1 respectively (site A), -7.714, -6.433, -6.354, -6.598, and -6.99 Kcal mol-1 respectively (site B), and -8.299, 8.508, 8.538, 8.841, and 8.322 Kcal mol-1 respectively (site C). All the active phytocompounds follows the drug likeness properties, non-carcinogenic, and non-toxic. Theses phytocompounds (alone or in combination) could be developed into effective therapy against COVID-19. From MD simulation data, we found that all three complexes of 6VYO with alizarin, aloe-emodin and anthrarufin were stable up to 50 ns. These phytocompounds can be tested further for in vitro or in vivo and used as a potential drug to cure SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajan Rolta
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| | - Rohitash Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Deeksha Salaria
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| | - Shubham Trivedi
- Department of Bioengineering, Integral University Lucknow, India
| | - Mohammad Imran
- Department of Pharmacology, Shaqra University, Saudi Arabia
| | - Anuradha Sourirajan
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| | - David J. Baumler
- Department of Food Science and Nutrition, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Kamal Dev
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| |
Collapse
|
18
|
Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine. Eur J Med Chem 2021; 226:113839. [PMID: 34536668 DOI: 10.1016/j.ejmech.2021.113839] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/08/2023]
Abstract
Alkaloids are one of the most important classes of plant bioactives. Among these isoquinoline alkaloids possess varied structures and exhibit numerous biological activities. Basically these are biosynthetically produced via phenylpropanoid pathway. However, occasionally some mixed pathways may also occur to provide structural divergence. Among the various biological activities anticancer, antidiabetic, antiinflammatory, and antimicrobial are important. A few notable bioactive isoquinoline alkaloids are antidiabetic berberine, anti-tussive codeine, analgesic morphine, and muscle relaxant papaverine etc. Berberine is one of the most discussed bioactives from this class possessing broad-spectrum pharmacological activities. Present review aims at recent updates of isoquinoline alkaloids with major emphasis on berberine, its detailed chemistry, important biological activities, structure activity relationship and implementation in future research.
Collapse
|
19
|
Ali G, Cuny GD. 8-, 9-, and 11-Aryloxy Dimeric Aporphines and Their Pharmacological Activities. Molecules 2021; 26:4521. [PMID: 34361671 PMCID: PMC8347945 DOI: 10.3390/molecules26154521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Aporphines, a major group of aporphinoid alkaloids, exhibit interesting and diverse pharmacological activities. A set of dimeric aporphines with an aryloxy group at C8, C9, and C11 have been isolated from six genera and shown to elicit various biological activities such as antitumor, antimalarial, antimicrobial, antiplatelet aggregation, antifibrotic, immunosuppressive, and vasorelaxant properties. In this review, the nomenclature, chemical structures, botanical sources, pharmacological activities, and synthetic approaches of this set of dimeric alkaloids are presented.
Collapse
Affiliation(s)
- Ghada Ali
- Department of Chemistry, College of Natural Sciences and Mathematics, University of Houston, Houston, TX 77204, USA;
| | - Gregory D. Cuny
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
20
|
Mishra MK, Pandey S, Niranjan A, Misra P. Comparative analysis of phenolic compounds from wild and in vitro propagated plant Thalictrum foliolosum and antioxidant activity of various crude extracts. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01708-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Raghuvanshi D, Dhalaria R, Sharma A, Kumar D, Kumar H, Valis M, Kuča K, Verma R, Puri S. Ethnomedicinal Plants Traditionally Used for the Treatment of Jaundice (Icterus) in Himachal Pradesh in Western Himalaya-A Review. PLANTS 2021; 10:plants10020232. [PMID: 33504029 PMCID: PMC7910824 DOI: 10.3390/plants10020232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
Ethnomedicinal plants have a significant role in the lives of people of rural and tribal areas. Thousands of medicinal plant species are used to treat various diseases, including jaundice, and are considered an important therapeutic resource to minimize these diseases. Jaundice (icterus) is a chronic disease that occurs when the amount of bilirubin in the blood increases. This review describes different ethnomedicinal plants used for curing jaundice by tribal and rural people of Himachal Pradesh. The study reveals 87 ethnomedicinal plant species belonging to 51 different families, which are used for treating jaundice in Himachal Pradesh. These plants are arranged in a systematic way, which includes a description of their common name, botanical name, along with its family, plant parts used, region, and mode of use in tabulated form. Some of the plant extracts have already been explored for their phytochemical and pharmacological significance and proved their potential in the preparation of new medicines or drugs against the treatment of jaundice. This review is an attempt to highlight the indigenous knowledge of medicinal plants, which are specifically used for the treatment of jaundice. The data mentioned in the present review is compiled from various sources like existing literature, books, Google Scholar, and Scopus publications. Among all the observed plant species, most used medicinal plants for the treatment of jaundice include Justicia adhatoda, Emblica officinalis, Ricinus communis, Saccharum officinarum, Terminalia chebula, Berberis aristata, Cuscuta reflexa, and Tinospora cordifolia. Plants that are mostly utilized for the treatment of jaundice need to be scientifically validated by pharmacological analysis and should be subsequently used for the preparation of new drugs, which may prove far more beneficial than the existing one.
Collapse
Affiliation(s)
- Disha Raghuvanshi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (D.R.); (R.D.); (A.S.); (S.P.)
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (D.R.); (R.D.); (A.S.); (S.P.)
| | - Anjali Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (D.R.); (R.D.); (A.S.); (S.P.)
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (D.K.); (H.K.)
| | - Harsh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (D.K.); (H.K.)
| | - Martin Valis
- Department of Neurology of the Medical Faculty of Charles University and University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic;
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
- Correspondence: (K.K.); (R.V.); Tel.: +420-603-289-166 (K.K.)
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (D.R.); (R.D.); (A.S.); (S.P.)
- Correspondence: (K.K.); (R.V.); Tel.: +420-603-289-166 (K.K.)
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (D.R.); (R.D.); (A.S.); (S.P.)
| |
Collapse
|
22
|
Yang GY, Li YK, Hu QF, Wu F, Zhou T, Zhou M, Zhu YN, Cai BB, Liu MX, Li MF. Three New Anti-Rotavirus Chromeno[3,2-c]pyridines from the Whole Plant of Thalictrum scabrifolium. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Kumar R, Sharma N, Rolta R, Lal UR, Sourirajan A, Dev K, Kumar V. Thalictrum foliolosum DC: An unexplored medicinal herb from north western Himalayas with potential against fungal pathogens and scavenger of reactive oxygen species. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|