1
|
Jacobucci NADO, Pinc MM, Dalmagro M, Ribeiro JKO, Assunção TAD, Klein EJ, da Silva EA, Macruz PD, Jacomassi E, Alberton O, Hoscheid J. Extractive optimization of bioactive compounds in aerial parts of cuphea carthagenensis using Box-Behnken experimental design. Nat Prod Res 2025:1-6. [PMID: 39756010 DOI: 10.1080/14786419.2024.2448845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/11/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Cuphea carthagenensis is known for its potential antioxidant and anti-inflammatory properties, attributed to triterpenes, flavonoids, and tannins. This study aimed to optimise the extraction process for aerial parts of C. carthagenensis using vortex extraction. A Box-Behnken experimental design coupled with response surface methodology was employed to evaluate the effects of three independent variables: sample-to-solvent ratio, velocity, and temperature. The optimised extract underwent phytochemical screening and assessment of its antimicrobial capacity. The highest extraction yields were obtained through maceration (22.84%) and ultrasound-assisted extraction (21.95%). However, the extract by vortex extraction exhibited significantly higher phenolic content (250.17 µgEAG gext-1) and antioxidant capacity. The optimal extraction conditions were identified as a sample-to-solvent ratio of 1:35, 12,000 rpm, and a temperature of 60 °C. The optimised extract was characterised by a predominance of glycosylated flavonoids and demonstrated moderate antibacterial activity, particularly against Streptococcus pyogenes, Staphylococcus epidermidis, and Bacillus subtilis.
Collapse
Affiliation(s)
| | - M M Pinc
- Postgraduate Program in Biotechnology Applied to Agriculture, University of Paraná, Umuarama, Brazil
| | - Mariana Dalmagro
- Postgraduate Program in Biotechnology Applied to Agriculture, University of Paraná, Umuarama, Brazil
| | | | | | - Elissandro Jair Klein
- Graduate Program in Chemical and Biotechnological Processes (PPGQB), Federal University of Technology Paraná, Toledo, Paraná, Brazil
| | - Edson Antônio da Silva
- Postgraduate Program in Chemical Engineering, State University of Western Paraná, Toledo, Paraná, Brazil
| | - Paula Derksen Macruz
- Department of Chemical Engineering, State University of Maringá, Maringá, Paraná, Brazil
| | - Ezilda Jacomassi
- Postgraduate Program in Medicinal Plants and Herbal Medicines in Primary Care, University of Paraná, Umuarama, Brazil
| | - Odair Alberton
- Postgraduate Program in Biotechnology Applied to Agriculture, University of Paraná, Umuarama, Brazil
| | - Jaqueline Hoscheid
- Postgraduate Program in Biotechnology Applied to Agriculture, University of Paraná, Umuarama, Brazil
| |
Collapse
|
2
|
Spiegel M, Prejanò M, Russo N, Marino T. Primary Antioxidant Power and M pro SARS-CoV-2 Non-Covalent Inhibition Capabilities of Miquelianin. Chem Asian J 2024; 19:e202400079. [PMID: 38415945 DOI: 10.1002/asia.202400079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024]
Abstract
The antioxidant power of quercetin-3-O-glucuronide (miquelianin) has been studied, at the density functional level of theory, in both lipid-like and aqueous environments. In the aqueous phase, the computed pKa equilibria allowed the identification of the neutral and charged species present in solution that can react with the ⋅OOH radical. The Hydrogen Atom Transfer (HAT), Single Electron Transfer (SET) and Radical Adduct Formation (RAF) mechanisms were considered, and the individual, total and fraction corrected rate constants were obtained. Potential non-covalent inhibition of Mpro from SARS-CoV-2 by miquelianin has been also evaluated.
Collapse
Affiliation(s)
- Maciej Spiegel
- Department of Organic Chemistry and Pharmaceutical Technology, Wroclaw Medical University, Borowska 211A, 50-556, Wroclaw, Poland
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87136, Rende (CS), Italy
| | - Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87136, Rende (CS), Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87136, Rende (CS), Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87136, Rende (CS), Italy
| |
Collapse
|
3
|
Wu Q, Jiao Y, Luo M, Wang J, Li J, Ma Y, Liu C. Detection of Various Traditional Chinese Medicinal Metabolites as Angiotensin-Converting Enzyme Inhibitors: Molecular Docking, Activity Testing, and Surface Plasmon Resonance Approaches. Molecules 2023; 28:7131. [PMID: 37894610 PMCID: PMC10609061 DOI: 10.3390/molecules28207131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Angiotensin-converting enzyme 1 (ACE1) is a peptide involved in fluid and blood pressure management. It regulates blood pressure by converting angiotensin I to angiotensin II, which has vasoconstrictive effects. Previous studies have shown that certain compounds of natural origin can inhibit the activity of angiotensin-converting enzymes and exert blood pressure-regulating effects. Surface Plasmon Resonance (SPR) biosensor technology is the industry standard method for observing biomolecule interactions. In our study, we used molecular simulation methods to investigate the docking energies of various herbal metabolites with ACE1 proteins, tested the real-time binding affinities between various herbal metabolites and sACE1 by SPR, and analyzed the relationship between real-time binding affinity and docking energy. In addition, to further explore the connection between inhibitor activity and real-time binding affinity, several herbal metabolites' in vitro inhibitory activities were tested using an ACE1 activity test kit. The molecular docking simulation technique's results and the real-time affinity tested by the SPR technique were found to be negatively correlated, and the virtual docking technique still has some drawbacks as a tool for forecasting proteins' affinities to the metabolites of Chinese herbal metabolites. There may be a positive correlation between the enzyme inhibitory activity and the real-time affinity detected by the SPR technique, and the results from the SPR technique may provide convincing evidence to prove the interaction between herbal metabolites and ACE1 target proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Changzhen Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
4
|
Oliveira-Alves SC, Andrade F, Sousa J, Bento-Silva A, Duarte B, Caçador I, Salazar M, Mecha E, Serra AT, Bronze MR. Soilless Cultivated Halophyte Plants: Volatile, Nutritional, Phytochemical, and Biological Differences. Antioxidants (Basel) 2023; 12:1161. [PMID: 37371891 PMCID: PMC10295272 DOI: 10.3390/antiox12061161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The use of halophyte plants appears as a potential solution for degraded soil, food safety, freshwater scarcity, and coastal area utilization. These plants have been considered an alternative crop soilless agriculture for sustainable use of natural resources. There are few studies carried out with cultivated halophytes using a soilless cultivation system (SCS) that report their nutraceutical value, as well as their benefits on human health. The objective of this study was to evaluate and correlate the nutritional composition, volatile profile, phytochemical content, and biological activities of seven halophyte species cultivated using a SCS (Disphyma crassifolium L., Crithmum maritimum L., Inula crithmoides L., Mesembryanthemum crystallinum L., Mesembryanthemum nodiflorum L., Salicornia ramosissima J. Woods, and Sarcocornia fruticosa (Mill.) A. J. Scott.). Among these species, results showed that S. fruticosa had a higher content in protein (4.44 g/100 g FW), ash (5.70 g/100 g FW), salt (2.80 g/100 g FW), chloride (4.84 g/100 g FW), minerals (Na, K, Fe, Mg, Mn, Zn, Cu), total phenolics (0.33 mg GAE/g FW), and antioxidant activity (8.17 µmol TEAC/g FW). Regarding the phenolic classes, S. fruticosa and M. nodiflorum were predominant in the flavonoids, while M. crystallinum, C. maritimum, and S. ramosissima were in the phenolic acids. Moreover, S. fruticosa, S. ramosissima, M. nodiflorum, M. crystallinum, and I. crithmoides showed ACE-inhibitory activity, an important target control for hypertension. Concerning the volatile profile, C. maritimum, I. crithmoides, and D. crassifolium were abundant in terpenes and esters, while M. nodiflorum, S. fruticosa, and M. crystallinum were richer in alcohols and aldehydes, and S. ramosissima was richer in aldehydes. Considering the environmental and sustainable roles of cultivated halophytes using a SCS, these results indicate that these species could be considered an alternative to conventional table salt, due to their added nutritional and phytochemical composition, with potential contribution for the antioxidant and anti-hypertensive effects.
Collapse
Affiliation(s)
- Sheila C. Oliveira-Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Fábio Andrade
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
| | - João Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
| | - Andreia Bento-Silva
- Faculdade de Farmácia, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Bernardo Duarte
- MARE—Marine and Environmental Sciences Centre & ARNET–Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Isabel Caçador
- MARE—Marine and Environmental Sciences Centre & ARNET–Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Miguel Salazar
- Riafresh, Sítio do Besouro, CX 547-B, 8005-421 Faro, Portugal;
- MED—Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Elsa Mecha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Faculdade de Farmácia, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
5
|
Sobolewska D, Michalska K, Wróbel-Biedrawa D, Grabowska K, Owczarek-Januszkiewicz A, Olszewska MA, Podolak I. The Genus Cuphea P. Browne as a Source of Biologically Active Phytochemicals for Pharmaceutical Application and Beyond—A Review. Int J Mol Sci 2023; 24:ijms24076614. [PMID: 37047590 PMCID: PMC10095593 DOI: 10.3390/ijms24076614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Cuphea P. Browne (Lythraceae) is a monophyletic taxon comprising some 240–260 species that grow wild in the warm, temperate, and tropical regions of South and Central America and the southern part of North America. They have been valued as traditional medicinal remedies for numerous indications, including treating wounds, parasitic infections, hypertension, digestive disorders, cough, rheumatism, and pain. Modern pharmacological research provides data that support many of these traditional uses. Such a wide array of medicinal applications may be due to the exceptionally rich phytochemical profile of these plants, which includes bioactive compounds classified into various metabolite groups, such as polyphenols, triterpenes, alkaloids, and coumarins. Furthermore, Cuphea seed oils, containing medium-chain fatty acids, are of increasing interest in various industries as potential substitutes for coconut and palm oils. This review aims to summarize the results of phytochemical and pharmacological studies on Cuphea plants, with a particular focus on the therapeutic potential and molecular mechanisms of the action of polyphenolic compounds (especially flavonoids and tannins), which have been the subject of many recently published articles.
Collapse
Affiliation(s)
- Danuta Sobolewska
- Department of Pharmacognosy, Medical College, Jagiellonian University, 30-688 Kraków, Poland
| | - Klaudia Michalska
- Department of Phytochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Dagmara Wróbel-Biedrawa
- Department of Pharmacognosy, Medical College, Jagiellonian University, 30-688 Kraków, Poland
| | - Karolina Grabowska
- Department of Pharmacognosy, Medical College, Jagiellonian University, 30-688 Kraków, Poland
| | | | - Monika Anna Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 90-151 Lodz, Poland
| | - Irma Podolak
- Department of Pharmacognosy, Medical College, Jagiellonian University, 30-688 Kraków, Poland
| |
Collapse
|
6
|
Suárez SE, Sun H, Mu T, Añón MC. Bacterial characterization of fermented sweet potato leaves by high‐throughput sequencing and their impact on the nutritional and bioactive composition. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Santiago Emmanuel Suárez
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing China
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) Facultad de Ciencias Exactas, Universidad Nacional de La Plata. CCT, La Plata, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas). CIC (Comisión de Investigaciones Científicas de la Provincia de Buenos Aires) La Plata Argentina
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing China
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing China
| | - María Cristina Añón
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) Facultad de Ciencias Exactas, Universidad Nacional de La Plata. CCT, La Plata, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas). CIC (Comisión de Investigaciones Científicas de la Provincia de Buenos Aires) La Plata Argentina
| |
Collapse
|
7
|
Radović J, Suručić R, Niketić M, Kundaković-Vasović T. Alchemilla viridiflora Rothm.: the potent natural inhibitor of angiotensin I-converting enzyme. Mol Cell Biochem 2022; 477:1893-1903. [PMID: 35348979 DOI: 10.1007/s11010-022-04410-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/10/2022] [Indexed: 12/19/2022]
Abstract
Alchemilla viridiflora Rothm., Rosaceae is a herbaceous plant widespread in central Greece, Bulgaria, North Macedonia and Serbia with Kosovo. Liquid chromatography-mass spectrometry analysis leads to the identification of 20 compounds in methanol extract, mainly ellagitannins and flavonoid glycosides. Given that various plant extracts have traditionally been used to treat hypertension and that some of the analyzed methanol extract constituents have beneficial cardiovascular effects, we hypothesized that some of these effects are achieved by inhibiting angiotensin I-converting enzyme (ACE). The dose-dependent ACE inhibitory activities of A. viridiflora and miquelianin were observed with an IC50 of 2.51 ± 0.00 µg/mL of A. viridiflora extract compared to the IC50 of 5.4139 ± 0.00 µM for miquelianin. The contribution of the single compounds to the tested activity was further analyzed through the in silico experimental approach. Computational docking results showed that tiliroside, ellagic acid pentose and galloyl-hexahydroxydiphenoyl-glucose exhibited even better binding affinity for the ACE active site than miquelianin, for which ACE activity was confirmed by an in vitro assay.
Collapse
Affiliation(s)
- Jelena Radović
- Department of Pharmacognosy, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Relja Suručić
- Department of Pharmacognosy, University of Banja Luka-Faculty of Medicine, Banja Luka, Republic of Srpska
| | | | | |
Collapse
|
8
|
Nunes Alves Paim LF, Dos Santos PR, Patrocinio Toledo CA, Minello L, Lima da Paz JR, Castro Souza V, Salvador M, Moura S. Four almost unexplored species of Brazilian Connarus (Connaraceae): Chemical composition by ESI-QTof-MS/MS-GNPS and a pharmacologic potential. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:286-302. [PMID: 34510611 DOI: 10.1002/pca.3087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Species of Connaraceae are globally used in traditional medicines. However, several of these have not been studied regarding their chemical composition, and some are even at risk of extinction without proper studies. Therefore, the chemical composition and pharmacological potential of Connarus blanchetii Planch., Connarus nodosus Baker, Connarus regnellii G. Schellenb., and Connarus suberosus Planch., which were previously unknown, were analyzed. OBJECTIVE This work aims to investigate the pharmacological potential of these four Connarus species. The chemical composition of different extracts was determined by high-resolution mass spectrometry (HRMS), with subsequent analysis by the GNPS platform and competitive fragmentation modeling (CFM). MATERIALS AND METHODS Leaf extracts (C. blanchetii, C. nodosus, C. regnellii, and C. suberosus) and bark extracts (C. regnellii and C. suberosus) were obtained by decoction, infusion, and maceration. LC/HRMS data were submitted to the GNPS platform and evaluated using CFM in order to confirm the structures. RESULTS The HRMS-GNPS/CFM analysis indicated the presence of 23 compounds that were mainly identified as phenolic derivatives from quercetin and myricetin, of which 21 are unedited in the Connarus genus. Thus, from the analyses performed, we can identify different compounds with pharmacological potential, as well as the most suitable forms of extraction. CONCLUSION Using HRMS-GNPS/CFM, 21 unpublished compounds were identified in the studied species. Therefore, our combination of data analysis techniques can be used to determine their chemical composition.
Collapse
Affiliation(s)
| | - Paulo Roberto Dos Santos
- Laboratory of Biotechnology of Natural and Synthetics Products, University of Caxias do Sul, Brazil
| | | | - Luana Minello
- Laboratory of Oxidative Stress and Antioxidants, Biotechnology Institute, University of Caxias do Sul, Brazil
| | | | - Vinicius Castro Souza
- Departamento de Ciências Biológicas. Escola Superior de Agricultura "Luiz de Queiroz"-ESALQ, University of São Paulo-USP, Brazil
| | - Mirian Salvador
- Laboratory of Oxidative Stress and Antioxidants, Biotechnology Institute, University of Caxias do Sul, Brazil
| | - Sidnei Moura
- Laboratory of Biotechnology of Natural and Synthetics Products, University of Caxias do Sul, Brazil
| |
Collapse
|
9
|
Oliveira-Alves SC, Andrade F, Prazeres I, Silva AB, Capelo J, Duarte B, Caçador I, Coelho J, Serra AT, Bronze MR. Impact of Drying Processes on the Nutritional Composition, Volatile Profile, Phytochemical Content and Bioactivity of Salicornia ramosissima J. Woods. Antioxidants (Basel) 2021; 10:1312. [PMID: 34439560 PMCID: PMC8389250 DOI: 10.3390/antiox10081312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/19/2022] Open
Abstract
Salicornia ramosissima J. Woods is a halophyte plant recognized as a promising natural ingredient and will eventually be recognized a salt substitute (NaCl). However, its shelf-life and applicability in several food matrices requires the use of drying processes, which may have an impact on its nutritional and functional value. The objective of this study was to evaluate the effect of oven and freeze-drying processes on the nutritional composition, volatile profile, phytochemical content, and bioactivity of S. ramosissima using several analytical tools (LC-DAD-ESI-MS/MS and SPME-GC-MS) and bioactivity assays (ORAC, HOSC, and ACE inhibition and antiproliferative effect on HT29 cells). Overall, results show that the drying process changes the chemical composition of the plant. When compared to freeze-drying, the oven-drying process had a lower impact on the nutritional composition but the phytochemical content and antioxidant capacity were significantly reduced. Despite this, oven-dried and freeze-dried samples demonstrated similar antiproliferative (17.56 mg/mL and 17.24 mg/mL, respectively) and antihypertensive (24.56 mg/mL and 18.96 mg/mL, respectively) activities. The volatile composition was also affected when comparing fresh and dried plants and between both drying processes: while for the freeze-dried sample, terpenes corresponded to 57% of the total peak area, a decrease to 17% was observed for the oven-dried sample. The oven-dried S. ramosissima was selected to formulate a ketchup and the product formulated with 2.2% (w/w) of the oven-dried plant showed a good consumer acceptance score. These findings support the use of dried S. ramosissima as a promising functional ingredient that can eventually replace the use of salt.
Collapse
Affiliation(s)
- Sheila C. Oliveira-Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
| | - Fábio Andrade
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
| | - Inês Prazeres
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
| | - Andreia B. Silva
- DCFM, Departamento de Ciências Farmacêuticas e do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Av. das Forças Armadas, 1649-003 Lisboa, Portugal;
- iMed ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Jorge Capelo
- INIAV, Instituto Nacional de Investigação Agrária e Veterinária, Av. da República, 2780-505 Oeiras, Portugal;
| | - Bernardo Duarte
- MARE, Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 749-016 Lisboa, Portugal
| | - Isabel Caçador
- MARE, Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 749-016 Lisboa, Portugal
| | - Júlio Coelho
- Horta da Ria Lda., Rua de São Rui, 3830-362 Gafanha Nazaré, Portugal;
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria R. Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
- iMed ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
10
|
Zhang W, Qi S, Xue X, Al Naggar Y, Wu L, Wang K. Understanding the Gastrointestinal Protective Effects of Polyphenols using Foodomics-Based Approaches. Front Immunol 2021; 12:671150. [PMID: 34276660 PMCID: PMC8283765 DOI: 10.3389/fimmu.2021.671150] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Plant polyphenols are rich sources of natural anti-oxidants and prebiotics. After ingestion, most polyphenols are absorbed in the intestine and interact with the gut microbiota and modulated metabolites produced by bacterial fermentation, such as short-chain fatty acids (SCFAs). Dietary polyphenols immunomodulatory role by regulating intestinal microorganisms, inhibiting the etiology and pathogenesis of various diseases including colon cancer, colorectal cancer, inflammatory bowel disease (IBD) and colitis. Foodomics is a novel high-throughput analysis approach widely applied in food and nutrition studies, incorporating genomics, transcriptomics, proteomics, metabolomics, and integrating multi-omics technologies. In this review, we present an overview of foodomics technologies for identifying active polyphenol components from natural foods, as well as a summary of the gastrointestinal protective effects of polyphenols based on foodomics approaches. Furthermore, we critically assess the limitations in applying foodomics technologies to investigate the protective effect of polyphenols on the gastrointestinal (GI) system. Finally, we outline future directions of foodomics techniques to investigate GI protective effects of polyphenols. Foodomics based on the combination of several analytical platforms and data processing for genomics, transcriptomics, proteomics and metabolomics studies, provides abundant data and a more comprehensive understanding of the interactions between polyphenols and the GI tract at the molecular level. This contribution provides a basis for further exploring the protective mechanisms of polyphenols on the GI system.
Collapse
Affiliation(s)
- Wenwen Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suzhen Qi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Santos MC, Soares KD, Beltrame BM, Toson NSB, do Carmo B Pimentel M, Bordignon SAL, Apel MA, Mendez ASL, Henriques AT. Polyphenolic Composition and in Vitro Antihypertensive and Anti-Inflammatory Effects of Cuphea lindmaniana and Cuphea urbaniana. Chem Biodivers 2021; 18:e2100041. [PMID: 34000101 DOI: 10.1002/cbdv.202100041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/17/2021] [Indexed: 11/07/2022]
Abstract
The present study investigates the chemical composition, anti-inflammatory, and antihypertensive activities, in vitro, from extracts of Cuphea lindmaniana and Cuphea urbaniana leaves. The extraction was performed ultrasound-assisted, and UHPLC/MS analysis was in positive mode ionization. The anti-inflammatory activity of the extracts and miquelianin were assayed at concentrations 0.001-10 μg/mL by chemotaxis on rat polymorphonuclear neutrophils. The antihypertensive activity was performed by angiotensin-converting enzyme (ACE) inhibition. From the nineteen proposed compounds, six of them are described for the first time in this genus. The extracts displayed antichemotactic effect with a reduction of 100 % of the neutrophil migration, in vitro, in most concentrations. The ACE-inhibition presented results ranging from 19.58 to 22.82 %. In conclusion, C. lindmaniana and C. urbaniana extracts contain a rich diversity of flavonoids and display in vitro anti-inflammatory and antihypertensive potential. Thus, this study could serve as a scientific baseline for further investigation, on developmental novel products with therapeutic actions.
Collapse
Affiliation(s)
- Marí C Santos
- Department of Pharmacy, Pharmacognosy Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, 90610-000, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| | - Krissie D Soares
- Department of Pharmacy, Pharmacognosy Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, 90610-000, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| | - Betina M Beltrame
- Department of Pharmacy, Pharmacognosy Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, 90610-000, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| | - Natally S B Toson
- Department of Pharmacy, Pharmacognosy Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, 90610-000, Brazil
| | - Maria do Carmo B Pimentel
- Keizo-Asami Immunopathology Laboratory, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Sérgio A L Bordignon
- Department of Environmental Impact Assessment, Unilasalle, Canoas, Rio Grande do Sul, 92010-000, Brazil
| | - Miriam A Apel
- Department of Pharmacy, Pharmacognosy Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, 90610-000, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| | - Andreas S L Mendez
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| | - Amélia T Henriques
- Department of Pharmacy, Pharmacognosy Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, 90610-000, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| |
Collapse
|
12
|
Amrani-Allalou H, Boulekbache-Makhlouf L, Izzo L, Arkoub-Djermoune L, Freidja ML, Mouhoubi K, Madani K, Tenore GC. Phenolic compounds from an Algerian medicinal plant ( Pallenis spinosa): simulated gastrointestinal digestion, characterization, and biological and enzymatic activities. Food Funct 2021; 12:1291-1304. [PMID: 33439206 DOI: 10.1039/d0fo01764g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pallenis spinosa is a medicinal plant which is used in folk medicine as curative or preventive remedies for various diseases. Individual phenolic compounds from the methanolic extracts of its flowers, leaves and stem were determined by the high performance liquid chromatography method (HPLC) and total phenolic contents (TPC) were evaluated by Folin-Ciocalteu assay. The stability and bioactivity (antioxidant activity, micellar cholesterol solubility, α-amylase, and angiotensin converting enzymes (ACE) inhibitory effects) of these extracts in the gastrointestinal environment was determined before and after their protection in hydroxypropylmethylcellulose (HPMC) capsules. HPLC analysis revealed the presence of thirteen phenolic compounds with nine flavonoids and four phenolic acids. Except for kaempferol, the twelve other compounds have not been previously detected in the aerial part of the studied plant. Quantification of phenolics by HPLC and Folin Ciocalteu methods revealed that the highest TPC was detected in the flower extracts (104.31 ± 0.80 and 145.73 ± 0.48 mg EGA per g of extract, respectively). Leaf extracts displayed the best antioxidant capacity against the two tested radicals DPPH and ABTS (IC50 = 1.24 ± 0.03 and 0.94 ± 0.02 mg mL-1, respectively), FRAP assay (IC50 = 0.50 ± 0.02 mg mL-1), α-amylase inhibitory (IC50 = 1.25 ± 0.00 mg mL-1) and angiotensin activity with an inhibitory percent of 30.10 ± 0.12%. The best activity shown by stem extracts was against micellar cholesterol solubility (67.57 ± 0.00%). A strong decrease in TPC and their bioactivity was observed after the gastrointestinal digestion (GID) in non encapsulated extracts. These results showed that P. spinosa is a good source of phenolic compounds and GID affects significantly their composition, content and bioactivity.
Collapse
Affiliation(s)
- Hanane Amrani-Allalou
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria.
| | - Lila Boulekbache-Makhlouf
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria.
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Lynda Arkoub-Djermoune
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria. and Université Mouloud Mammeri de Tizi Ouzou, Faculté des Sciences Biologiques et des Sciences Agronomiques, Algeria
| | - Mohamed Lamine Freidja
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria. and Département de Biochimie et de Microbiologie, Faculté des Sciences, Université Mohamed Boudiaf, 28000 M'sila, Algeria
| | - Khokha Mouhoubi
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria.
| | - Khodir Madani
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria. and Centre de Recherche en Technologie Agro-Alimentaire, Route de Tergua-Ouzemour, 06000, Bejaia, Algeria
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
13
|
Cui T, Jia A, Shi Y, Zhang M, Bai X, Liu X, Sun J, Liu C. Improved stability and transshipment of enzymatic hydrolysate with ACE inhibitory activity‐loaded nanogels based on glycosylated soybean protein isolate via the Maillard reaction. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Tingting Cui
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| | - Airong Jia
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| | - Yaping Shi
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| | - Miansong Zhang
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| | - Xinfeng Bai
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| | - Xue Liu
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| | - Jimin Sun
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| | - Changheng Liu
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| |
Collapse
|
14
|
Rather MA, Gupta K, Mandal M. Inhibition of biofilm and quorum sensing-regulated virulence factors in Pseudomonas aeruginosa by Cuphea carthagenensis (Jacq.) J. F. Macbr. Leaf extract: An in vitro study. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113699. [PMID: 33340600 DOI: 10.1016/j.jep.2020.113699] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMCOLOGICAL RELEVANCE Microbial biofilm formation, a quorum sensing (QS) regulated process, is one of the major causes of nosocomial and chronic infections, foodborne diseases, and associated deaths. Various approaches have been used to eradicate the menace of biofilm. Ethnomedicinal plants as potent antibiofilm agents are gaining a lot of interest in an era where the drug resistance is increasing and the availability of potent antibiotics is no longer promised. In this context, the methanol extract of Cuphea carthagenensis (CCMD), an ethno-medicinal and culinary herb, was evaluated as an antibiofilm and anti-QS agent against Pseudomonas aeruginosa. AIM OF THE STUDY The aim of the study is to evaluate the antibiofilm and anti-QS activity of an ethnomedicinal plant against a strong biofilm forming microorganism, P. aeruginosa. METHODS Antibiofilm activity of CCMD was demonstrated at different concentrations by Tissue Culture Plate, Test Tube method and other microscopic techniques. The effect of CCMD on QS and QS-related virulence factors viz. Pyocyanin, exopolymeric substance matrix (EPS), total protease, elastase, pyoverdin and swimming motility in P. aeruginosa were also evaluated. Antioxidant activity (DPPH & FRAP), total phenolic and flavonoid content were also checked. In order to determine the composition of the extract HPLC analysis was also performed. RESULTS In vitro study demonstrated a significant inhibition of biofilm formation (81.88 ± 2.57%) as well as production of QS-dependent virulence factors in P. aeruginosa. The extract also inhibited violacein production (83.31 ± 2.77%) in Chromobacterium violaceum which correlates with the reduction in QS-mediated virulence factors. The extract showed 64.79% ± 0.83% DPPH scavenging activity and reduction of ferricyanide complex (Fe3+) to the ferrous form (Fe2+) in DPPH and FRAP assay, respectively. Furthermore, the extract showed thermal stability and does not have any growth inhibitory effect on P. aeruginosa. The HPLC analysis demonstrated the presence of ellagic acid, ascorbic acid and hippuric acid in the extract. CONCLUSION This work is the first to demonstrate that C. carthagenensis can attenuate biofilm formation and QS-mediated virulence factors of P. aeruginosa. Further investigation is required to use this ethnomedicinal plant (CCMD) as an important source of antibiofilm agents.
Collapse
Affiliation(s)
- Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India.
| | - Kuldeep Gupta
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India.
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India.
| |
Collapse
|
15
|
Prasansuklab A, Theerasri A, Rangsinth P, Sillapachaiyaporn C, Chuchawankul S, Tencomnao T. Anti-COVID-19 drug candidates: A review on potential biological activities of natural products in the management of new coronavirus infection. J Tradit Complement Med 2020; 11:144-157. [PMID: 33520683 PMCID: PMC7833040 DOI: 10.1016/j.jtcme.2020.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022] Open
Abstract
Background and aim The novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is now become a worldwide pandemic bringing over 71 million confirmed cases, while the specific drugs and vaccines approved for this disease are still limited regarding their effectiveness and adverse events. Since virus incidences are still on rise, infectivity and mortality may also rise in the near future, natural products are highly considered to be valuable sources for the discovery of new antiviral drugs against SARS-CoV-2. This present review aims to comprehensively summarize the up-to-date scientific literatures on biological activities of plant- and mushroom-derived compounds relevant to mechanistic targets involved in SARS-CoV-2 infection and inflammatory-associated pathogenesis, including viral entry, replication and release, and the renin-angiotensin-aldosterone system (RAAS). Experimental procedure Data were retrieved from a literature search available on PubMed, Scopus and Google Scholar databases and collected until the end of May 2020. The findings from in vitro cell and non-cell based studies were considered, while the results of in silico studies were excluded. Results and conclusion Based on the previous findings in SARS-CoV studies, except in silico molecular docking analysis, herein, we provide a total of 150 natural compounds as potential candidates for development of new anti-COVID-19 drugs with higher efficacy and lower toxicity than the existing therapeutic agents. Several natural compounds have showed their promising actions on multiple therapeutic targets, which should be further explored. Among them, quercetin, one of the most abundant of plant flavonoids, is proposed as a lead candidate with its ability on the virus side to inhibit SARS-CoV spike protein-angiotensin-converting enzyme 2 (ACE2) interaction, viral protease and helicase activities, as well as on the host cell side to inhibit ACE activity and increase intracellular zinc level. Relevant and up-to-date publications in natural products with anti-COVID-19 potential. Emphasis on the potential of anti-COVID-19 plant/mushroom-based medicine. Twenty four proposed natural compounds for the anti-COVID-19 drug candidates. Quercetin emerged as the most promising compound acting on multiple therapeutic targets.
Collapse
Affiliation(s)
- Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Atsadang Theerasri
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Panthakarn Rangsinth
- Immunomodulation of Natural Products Research Group, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chanin Sillapachaiyaporn
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siriporn Chuchawankul
- Immunomodulation of Natural Products Research Group, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tewin Tencomnao
- Immunomodulation of Natural Products Research Group, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
16
|
Pakdeechote P, Meephat S, Sakonsinsiri C, Phetcharaburanin J, Bunbupha S, Maneesai P. Syzygium gratum Extract Alleviates Vascular Alterations in Hypertensive Rats. ACTA ACUST UNITED AC 2020; 56:medicina56100509. [PMID: 33007813 PMCID: PMC7600592 DOI: 10.3390/medicina56100509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Background and Objectives: Syzygium gratum (SG) is a local vegetable and widely consumed in Thailand. Previously, a strong antioxidative effect of SG extract has been reported. The effects of SG extract on hypertension have remained unknown. The effect of SG aqueous extract on blood pressure and vascular changes were examined in L-NAME-induced hypertensive rats (LHR), and its potential active constituents were also explored. Materials and Methods: Male Sprague Dawley rats were allocated to control, L-NAME (40 mg/kg/day), L-NAME + SG (100, 300, 500 mg/kg/day), or captopril (5 mg/kg/day) groups. The components of SG extract were analyzed. Results: The analysis of aqueous SG extract was carried out using HPLC-Mass spectroscopy, and phenolic compounds could be identified as predominant components which might be responsible for its antihypertensive effects observed in the LHR model (p < 0.05). Additionally, SG extract also improved vascular responses to acetylcholine and decreased vascular remodeling in LHR (p < 0.05). Enhancements of eNOS expression and plasma nitric oxide metabolite levels, and attenuation of angiotensin converting enzyme (ACE) activity and plasma angiotensin II levels were observed in the LHR group treated with SG. Moreover, SG exhibited strong antioxidant activities by reducing vascular superoxide generation and systemic malondialdehyde in LHRs. Captopril suppressed high blood pressure and alleviated vascular changes and ACE activity in LHRs, similar to those of the SG extract (p < 0.05). Conclusion: Our results suggest that the SG extract exhibited antihypertensive effects, which is relevant to alleviation of vascular dysfunction and vascular remodeling of LHRs. These effects might be mediated by phenolic compounds to inhibit ACE activity and scavenge reactive oxygen species in LHR.
Collapse
Affiliation(s)
- Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (S.M.)
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sariya Meephat
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (S.M.)
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.S.); (J.P.)
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.S.); (J.P.)
| | - Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand;
| | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (S.M.)
- Correspondence: ; Tel.: +66-43348394
| |
Collapse
|
17
|
Xu C, Fang MY, Wang K, Liu J, Tai GP, Zhang ZT, Ruan BF. Discovery and Development of Inflammatory Inhibitors from 2-Phenylchromonone (Flavone) Scaffolds. Curr Top Med Chem 2020; 20:2578-2598. [PMID: 32972343 DOI: 10.2174/1568026620666200924115611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/01/2020] [Accepted: 06/14/2020] [Indexed: 12/19/2022]
Abstract
Flavonoids are compounds based on a 2-phenylchromonone scaffold. Flavonoids can be divided into flavonoids, flavonols, dihydroflavones, anthocyanins, chalcones and diflavones according to the oxidation degree of the central tricarbonyl chain, the connection position of B-ring (2-or 3-position), and whether the tricarbonyl chain forms a ring or not. There are a variety of biological activities about flavonoids, such as anti-inflammatory activity, anti-oxidation and anti-tumor activity, and the antiinflammatory activity is apparent. This paper reviews the anti-inflammatory activities and mechanisms of flavonoids and their derivatives reported in China and abroad from 2011 till date (2011-2020), in order to find a good drug scaffold for the study of anti-inflammatory activities.
Collapse
Affiliation(s)
- Chen Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Meng-Yuan Fang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ke Wang
- Center of Tobacco Industry Development, Xuanzhou District, Xuancheng, 242000, China
| | - Jing Liu
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, China,Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Guang-Ping Tai
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, China
| | - Zhao-Ting Zhang
- Center of Tobacco Industry Development, Xuanzhou District, Xuancheng, 242000, China
| | - Ban-Feng Ruan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China,Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, China
| |
Collapse
|
18
|
Santos MC, Soares KD, Beltrame BM, Bordignon SAL, Apel MA, Mendez ASL, Henriques AT. Cuphea spp.: antichemotactic study for a potential anti-inflammatory drug. Nat Prod Res 2020; 35:6058-6061. [PMID: 32911965 DOI: 10.1080/14786419.2020.1817921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cuphea genus (Lythraceae) popularly known in Brazil as "sete-sangrias", it's described as antimicrobial, anti-inflammatory, diuretic and antihypertensive mainly. Investigating the chemotactic ability plays an important role in the identification of new anti-inflammatory agents. Thus, this research aims to assay the antichemotactic activity of hydroethanolic extracts of C. calophylla, C. carthagenensis, C. glutinosa, and C. racemosa as well as the compounds miquelianin and myricitrin. The antichemotactic activity of the hydroethanolic extracts, miquelianin, and myricitrin were assayed at concentrations 0.001 to 10 µg/mL in the lipopolysaccharide-induced chemotaxis on rat polymorphonuclear neutrophils. All the assayed samples displayed antichemotactic activity with reduction of the neutrophil migration in the range of 4.46-100%, and an IC50 value in the range of 0.30-1.24 µg/mL. Thus, this study demonstrates that the extracts hydroethanolic of Cuphea species, miquelianin, and myricitrin display a significant antichemotactic activity. Therefore, in future studies, extracts from Cuphea spp. could be used as anti-inflammatory drugs.
Collapse
Affiliation(s)
- Marí C Santos
- Department of Pharmacy, Pharmacognosy Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Krissie D Soares
- Department of Pharmacy, Pharmacognosy Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Betina M Beltrame
- Department of Pharmacy, Pharmacognosy Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Sérgio A L Bordignon
- Department of Environmental Impact Assessment, Unilasalle, Canoas, Rio Grande do Sul, Brazil
| | - Miriam A Apel
- Department of Pharmacy, Pharmacognosy Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andreas S L Mendez
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Amélia T Henriques
- Department of Pharmacy, Pharmacognosy Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
19
|
Daliri EBM, Ofosu FK, Chelliah R, Kim JH, Kim JR, Yoo D, Oh DH. Untargeted Metabolomics of Fermented Rice Using UHPLC Q-TOF MS/MS Reveals an Abundance of Potential Antihypertensive Compounds. Foods 2020; 9:foods9081007. [PMID: 32726971 PMCID: PMC7466378 DOI: 10.3390/foods9081007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Enzyme treatment and fermentation of cereals are known processes that enhance the release of bound bioactive compounds to make them available for bioactivity. In this study, we tested the angiotensin converting enzyme (ACE) inhibitory ability of destarched rice, Prozyme 2000p treated destarched rice (DP), and fermented DP samples. Prozyme 2000p treatment increased the ACE inhibitory ability from 15 ± 5% to 45 ± 3%. Fermentation of the Prozyme 2000p treated samples with Enterococcus faecium EBD1 significantly increased the ACE inhibitory ability to 75 ± 5%, while captopril showed an ACE inhibition of 92 ± 4%. An untargeted metabolomics approach using Ultra-high-performance liquid tandem chromatography quadrupole time of flight mass spectrometry revealed the abundance of vitamins, phenolic compounds, antioxidant peptides, DPP IV inhibitory peptides, and antihypertensive peptides in the fermented samples which may account for its strong ACE inhibition. Although fermented DP had decreased fatty acid levels, the amount of essential amino acid improved drastically compared to destarched rice. Our results show that fermenting Prozyme-treated destarched rice with Enterococcus faecium EBD1 generates abundant bioactive compounds necessary for developing antihypertensive functional foods.
Collapse
Affiliation(s)
- Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (E.B.-M.D.); (F.K.O.); (R.C.); (J.-R.K.); (D.Y.)
| | - Fred Kwame Ofosu
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (E.B.-M.D.); (F.K.O.); (R.C.); (J.-R.K.); (D.Y.)
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (E.B.-M.D.); (F.K.O.); (R.C.); (J.-R.K.); (D.Y.)
| | - Joong-Hark Kim
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea;
- R&D, Erom, Co., Ltd., Chuncheon 24427, Gangwon-do, Korea
| | - Jong-Rae Kim
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (E.B.-M.D.); (F.K.O.); (R.C.); (J.-R.K.); (D.Y.)
- R&D, Hanmi Natural Nutrition Co., LTD 44-20, Tongil-ro 1888 beon-gil, Munsan, Paju 10808, Gyeonggi, Korea
| | - Daesang Yoo
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (E.B.-M.D.); (F.K.O.); (R.C.); (J.-R.K.); (D.Y.)
- R&D, H-FOOD, 108-66, 390 gil, Jingun Oh Nam-Ro, Nam Yang, Ju-Shi 12041, Gyung Gi-Do, Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (E.B.-M.D.); (F.K.O.); (R.C.); (J.-R.K.); (D.Y.)
- Correspondence:
| |
Collapse
|