1
|
Lu S, Suo F, Yu W, Wu G. The therapeutic effect of different cumin essential oil fractions against gastric ulcer in rats. J Food Sci 2025; 90:e17572. [PMID: 39690115 DOI: 10.1111/1750-3841.17572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/16/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024]
Abstract
Cumin, a popular spice, is widely used to treat stomach ailments in Central Asia and Xinjiang, China. Cumin essential oil has been found to effectively treat gastric ulcers, but its pharmacodynamic basis remains unclear. In this study, cumin essential oil was directly separated using column chromatography, and its components were identified through multi-dimensional gas chromatography-mass spectrometry. Finally, the cumin essential oil was fractionated into E1, E2, and E3. The effects of these fractions on gastric ulcers were studied using an anhydrous ethanol-induced rat model. The results indicated that the three fractions decreased ulcer index, gastric fluid pH, and pepsin activity to different extents. They lowered the levels of prostaglandin E2, gastrin, and epidermal growth factor in rat serum. According to an analysis of the above indices, E3 fraction had the best anti-ulcer effect. The detection results of the oxidative stress and inflammatory factors showed that all three fractions relieved the ethanol-induced oxidative stress and reduced the release of inflammatory factors to varying degrees. The E3 fraction played the most significant role. The E3 fraction was selected to explore the relevant mechanism, and the results showed that E3 fraction significantly prevented the cleaved caspase-3 and Bax protein levels that were ethanol-induced and resisted apoptosis induced by ethanol injury. The western blot results for detecting the NF-κB-related pathway protein showed that E3 fraction significantly inhibited the activation of p-p65, p-IKKβ, and p-IκBα. The study found that the E3 fraction of cumin essential oil had the most effective anti-ulcer effect by inhibiting NF-κB activation and apoptosis, thus reducing inflammation.
Collapse
Affiliation(s)
- Shuai Lu
- Department of emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
| | - Feiya Suo
- College of Life Science and Technology, Xinjiang University, Urumchi, China
| | - Wenfeng Yu
- Key Laboratory of Molecular Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Department of Human Anatomy, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Human Brain bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Guofeng Wu
- Department of emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Fayazzadeh S, Fakhri S, Abbaszadeh F, Farzaei MH. Role of l -arginine/nitric oxide/cyclic GMP/K ATP channel signaling pathway and opioid receptors in the antinociceptive effect of rutin in mice. Behav Pharmacol 2024; 35:399-407. [PMID: 39230435 DOI: 10.1097/fbp.0000000000000792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The l -arginine ( l -Arg)/nitric oxide/cyclic GMP/potassium channel (K ATP ) pathway and opioid receptors are known to play critical roles in pain perception and the antinociceptive effects of various compounds. While there is evidence suggesting that the analgesic effects of rutin may involve nitric oxide modulation, the direct link between rutin and the l -Arg/nitric oxide/cyclic GMP/K ATP pathway in the context of pain modulation requires further investigation. The antinociceptive effect of rutin was studied in male NMRI mice using the formalin test. To investigate the role of the l -Arg/nitric oxide/cyclic GMP/K ATP pathway and opioid receptors, the mice were pretreated intraperitoneally with different substances. These substances included l -Arg (a precursor of nitric oxide), S-nitroso- N -acetylpenicillamine (SNAP, a nitric oxide donor), N(gamma)-nitro- l -arginine methyl ester (L-NAME, an inhibitor of nitric oxide synthase), sildenafil (an inhibitor of phosphodiesterase enzyme), glibenclamide (a K ATP channel blocker), and naloxone (an opioid receptor antagonist). All pretreatments were administered 20 min before the administration of the most effective dose of rutin. Based on our investigation, it was found that rutin exhibited a dose-dependent antinociceptive effect. The administration of SNAP enhanced the analgesic effects of rutin during both the initial and secondary phases. Moreover, L-NAME, naloxone, and glibenclamide reduced the analgesic effects of rutin in both the primary and secondary phases. In conclusion, rutin holds significant value as a flavonoid with analgesic properties, and its analgesic effect is directly mediated through the nitric oxide/cyclic GMP/K ATP channel pathway.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah
| |
Collapse
|
3
|
de Morais SV, Calado GP, Carvalho RC, Garcia JBS, de Queiroz TM, Cantanhede Filho AJ, Lopes AJO, Cartágenes MDSDS, Domingues GRDS. Impact of Cuminaldehyde and Indomethacin Co-Administration on Inflammatory Responses in MIA-Induced Osteoarthritis in Rats. Pharmaceuticals (Basel) 2024; 17:630. [PMID: 38794200 PMCID: PMC11125240 DOI: 10.3390/ph17050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Osteoarthritis (OA) remains a chronic incurable condition, presenting substantial challenges in treatment. This study explores a novel strategy by investigating the concurrent use of cuminaldehyde, a natural compound, with indomethacin in animal models of MIA-induced OA. Our results demonstrate that the co-administration of cuminaldehyde and indomethacin does indeed produce a superior effect when compared to these compounds individually, significantly enhancing therapeutic outcomes. This effect is evidenced by a marked reduction in pro-inflammatory cytokines IL-6 and IFN-γ, alongside a significant increase in the anti-inflammatory cytokine IL-10, compared to treatments with each compound alone. Radiographic analyses further confirm the preservation of joint integrity and a reduction in osteoarthritic damage, highlighting the association's efficacy in cartilage-reducing damage. These findings suggests that the association of cuminaldehyde and indomethacin not only slows OA progression but also offers enhanced cartilage-reducing damage and fosters the production of protective cytokines. This study underscores the potential benefits of integrating natural products with pharmaceuticals in OA management and stresses the importance of further research to fully understand the mechanisms underlying the observed potentiated effects.
Collapse
Affiliation(s)
- Sebastião Vieira de Morais
- Biological and Health Sciences Center, Federal University of Maranhão, São Luís 65085-580, Brazil; (R.C.C.); (J.B.S.G.); (M.d.S.d.S.C.)
| | - Gustavo Pereira Calado
- Programa de Pós-graduação em Ciências Farmacêuticas—PPGCF, Departamento de Farmácia, Universidade de Brasília-UnB Brasília-DF, Brasilia 70910-900, Brazil
| | - Rafael Cardoso Carvalho
- Biological and Health Sciences Center, Federal University of Maranhão, São Luís 65085-580, Brazil; (R.C.C.); (J.B.S.G.); (M.d.S.d.S.C.)
| | - João Batista Santos Garcia
- Biological and Health Sciences Center, Federal University of Maranhão, São Luís 65085-580, Brazil; (R.C.C.); (J.B.S.G.); (M.d.S.d.S.C.)
| | - Thyago Moreira de Queiroz
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55608-680, Brazil;
| | - Antonio José Cantanhede Filho
- Chemistry Postgraduate Program, Federal Institute of Science Education and Technology of Maranhão, São Luís 65030-005, Brazil
| | - Alberto Jorge Oliveira Lopes
- Chemistry Postgraduate Program, Federal Institute of Science Education and Technology of Maranhão, São Luís 65030-005, Brazil
- Bacabal Science Center (CCBa), Federal University of Maranhão, Bacabal 65700-000, Brazil
| | | | | |
Collapse
|
4
|
Hernández-Sánchez LY, González-Trujano ME, Moreno DA, Martínez-Vargas D, Vibrans H, Hernandez-Leon A, Dorazco-González A, Pellicer F, Soto-Hernández M. Antinociceptive effects of Raphanus sativus sprouts involve the opioid and 5-HT 1A serotonin receptors, cAMP/cGMP pathways, and the central activity of sulforaphane. Food Funct 2024; 15:4773-4784. [PMID: 38469873 DOI: 10.1039/d3fo05229j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Raphanus sativus L. cv. Sango, commonly known as red radish, is widely consumed around the world as a vegetable, but its benefit in pain relief is not sufficiently investigated. This study aimed to evaluate the antinociceptive effects of R. sativus and a possible mechanism of action. An aqueous extract of R. sativus sprouts (AERSS) was investigated by parenteral (10, 30, and 100 mg kg-1, i.p.) and enteral (500 mg kg-1, p.o.) administration in the neurogenic and inflammatory phases of the formalin test, where gastric damage was also evaluated as a possible adverse effect. Ketorolac (5 mg kg-1, i.p.) was used as the reference drug. Endogenous opioid and 5-HT1A serotonin receptors, as well as the cAMP/NO-cGMP pathways, were explored in the study of a possible mechanism of action by using their corresponding antagonists: naloxone, 1 mg kg-1, i.p., WAY100635, 1 mg kg-1, i.p., and enzymatic activators or inhibitors, respectively. Sulforaphane (SFN), a known bioactive metabolite, was analyzed using electroencephalography (EEG) to evidence its central involvement. A significant and dose-dependent antinociceptive activity was observed with the AERSS resembling the antinociceptive effect of the reference drug, with an equivalent significant response with a dose of 500 mg kg-1, p.o. without causing gastric damage. The participation of the endogenous opioid and 5-HT1A serotonin receptors at central and peripheral levels was also observed, with a differential participation of cAMP/NO-cGMP. SFN as one metabolite produced significant changes in the EEG analysis, reinforcing its effects on the CNS. Our preclinical evidence supports the benefits of consuming Raphanus sativus cv. Sango sprouts for pain relief.
Collapse
Affiliation(s)
- Laura Yunuen Hernández-Sánchez
- Laboratorio de Neurofarmacología de Productos Naturales. Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calz, México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico.
- Posgrado en Botánica, Colegio de Postgraduados Campus Montecillo. Carretera México-Texcoco Km. 36.5, Montecillo, Texcoco 56230, Estado de México, Mexico.
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales. Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calz, México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico.
| | - Diego A Moreno
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Grupo Calidad, Bioactividad y Seguridad, Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus de Espinardo 25, 30100 Murcia, Spain
| | - David Martínez-Vargas
- Laboratorio de Neurofisiología del Control y la Regulación. Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calz, México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Heike Vibrans
- Posgrado en Botánica, Colegio de Postgraduados Campus Montecillo. Carretera México-Texcoco Km. 36.5, Montecillo, Texcoco 56230, Estado de México, Mexico.
| | - Alberto Hernandez-Leon
- Laboratorio de Neurofarmacología de Productos Naturales. Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calz, México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico.
| | - Alejandro Dorazco-González
- Departamento de Química Inorgánica, Instituto de Química. Circuito exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Francisco Pellicer
- Laboratorio de Neurofarmacología de Productos Naturales. Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calz, México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico.
| | - Marcos Soto-Hernández
- Posgrado en Botánica, Colegio de Postgraduados Campus Montecillo. Carretera México-Texcoco Km. 36.5, Montecillo, Texcoco 56230, Estado de México, Mexico.
| |
Collapse
|
5
|
Jabbari S, Abed DZ, Zakaria ZA, Mohammadi S. Effects of Chaerophyllum macropodum Boiss. leaves essential oil in inflammatory and neuropathic pain: uncovering the possible mechanism of action. Inflammopharmacology 2023; 31:3203-3216. [PMID: 37792093 DOI: 10.1007/s10787-023-01342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND Chaerophyllum macropodum Boiss. (popularly known as "Jafari farangi kohestani") is a predominant medicinal plant traditionally utilized in the treatments of peritoneal inflammation and headache in Persian folk medicine. Here, we have revealed the anti-neuropathic and anti-nociceptive activities of C. macropodum leaves essential oil (CMEO) in addition to uncovering the possible mechanisms of action. METHODS Formalin-induced paw licking model was used to assess the anti-nociceptive activity of CMEO and its major constituent, terpinolene (TP). The anti-nociceptive activity of these compounds was determined by investigating the roles of various non-opioid and NO-cGMP-K+ channels. Additionally, the anti-neuropathic potential of CMEO and TP was determined using cervical spinal cord contusion/CCS technique. RESULTS The CMEO exerted significant anti-nociceptive activity with a remarkable activity seen in the second phase of formalin-induced paw licking model and this activity were remarkably reversed by pre-treatment of naloxone (an opioid antagonist). Pretreatment with several types of NO-cGMP-potassium channel pathway meaningfully reversed the anti-nociceptive potential of CMEO in phase II of formalin model. Moreover, pre-treatment with several antagonists of non-opioid receptors revealed that only the antagonist of TRPV-1, serotonin type 3, 5-HT2, α2 adrenergic, and CB1 receptors (capsaicin, ondansetron, ketanserin, yohimbine, and SR141716A, respectively) reversed CMEO anti-nociception. CMEO and TP also remarkably reversed hyperalgesia and mechanical allodynia in the CCS technique. CONCLUSION The CMEO exerts anti-nociceptive and anti-neuropathic activities via the modulation of NO-cGMP potassium channel pathway, opioid as well as several non-opioid receptor activity. TP might partly contribute to the observed activities of CMEO.
Collapse
Affiliation(s)
- Sajjad Jabbari
- Department of Biology, Faculty of Sciences, Islamic Azad University, Tehran North Branch, Tehran, Iran
| | - Donya Ziafatdoost Abed
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zainul Amiruddin Zakaria
- Borneo Research On Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Saeed Mohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Rahemi M, Mohtadi S, Rajabi Vardanjani H, Khodayar MJ. The role of l -arginine/NO/cGMP/K ATP channel pathway in the local antinociceptive effect of berberine in the rat formalin test. Behav Pharmacol 2023; 34:449-456. [PMID: 36939560 DOI: 10.1097/fbp.0000000000000721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Berberine is an isoquinoline alkaloid naturally produced by several types of plants. Berberine has extensive pharmacological effects, such as anti-diabetic, anti-inflammatory, and antioxidant effects. In the current study, we assess the antinociceptive effects of berberine and its association with the l -arginine ( l -Arg)/NO/cGMP/K ATP channel pathway via intraplantar administration in rats. To examine the antinociceptive properties of berberine, the formalin test was conducted. The number of rat paw flinches was counted for an h. l -Arg (precursor of nitric oxide, 3-30 μ g/paw), l -NAME (NO synthase inhibitor, 10 and 100 μ g/paw), methylene blue (guanylyl cyclase inhibitor, 100 and 200 μ g/paw), and glibenclamide (ATP-sensitive potassium channel blocker, 10 and 30 μ g/paw) were locally injected, respectively, into the right hind paws of rats as a pre-treatment before berberine injection to understand how the l -Arg/NO/cGMP/K ATP pathway plays a role in the antinociceptive effect of berberine. The ipsilateral injection of berberine into the right paw (0.1-10 0 μ g/paw) showed a dose-dependent antinociceptive effect in both the first and second phases of the formalin test, almost similar to morphine (25 μ g/paw). Intraplantar injection of l -Arg (30 µg/paw) increased the antinociceptive effect of berberine in the second phase. In addition, injection of l -NAME, methylene blue, and glibenclamide caused a reduction in the antinociceptive effect of berberine throughout the second phase in a dose-dependent manner. However, the antinociceptive effects of berberine in the first phase of the rat formalin test were not affected by this pathway. As a novel local antinociceptive agent, berberine can exert a peripheral antinociceptive effect via the l -Arg/NO/cGMP/K ATP channel pathway.
Collapse
Affiliation(s)
| | | | | | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
de Morais SV, Mendonça PG, Vasconcelos CC, Lopes PLA, Garcia JBS, Calzerra NTM, de Queiroz TM, Lima STDJRM, Silva GEB, Lopes AJO, Cartágenes MDSDS, Domingues GRDS. Cuminaldehyde Effects in a MIA-Induced Experimental Model Osteoarthritis in Rat Knees. Metabolites 2023; 13:397. [PMID: 36984837 PMCID: PMC10056807 DOI: 10.3390/metabo13030397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease that has a significant global impact. It is associated with aging and characterized by widespread joint destruction. Cuminaldehyde is a biologically active component of essential oils that has shown promise in the treatment of nociceptive and inflammatory diseases. This study investigated the effects of cuminaldehyde on an experimental model of osteoarthritis induced in rat knees. Cuminaldehyde was found to be as effective as indomethacin in reducing pain in all evaluated tests, including forced walking, functional disability of weight distribution on the legs, and spontaneous pain in animals with osteoarthritis. The knees of animals treated with cuminaldehyde had significantly higher radiographic and histopathological scores than those of animals that did not receive the treatment. Cuminaldehyde also modulated the production of pro-inflammatory cytokines. In vitro assays showed that cuminaldehyde preferentially inhibits COX-2 enzyme activity. In silico studies demonstrated that cuminaldehyde has satisfactory energy affinity parameters with opioid receptors and COX-2. These findings suggest that cuminaldehyde's anti-inflammatory activity is multifactorial, acting through multiple pathways. Its nociceptive activity occurs via central and peripheral mechanisms. Cuminaldehyde modulates the immune response of the inflammatory process and may be considered a leading compound for the development of new anti-inflammatory and analgesic drugs.
Collapse
Affiliation(s)
- Sebastião Vieira de Morais
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís 65085-580, MA, Brazil
| | - Priscylla Gouveia Mendonça
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís 65085-580, MA, Brazil
| | - Cleydlenne Costa Vasconcelos
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís 65085-580, MA, Brazil
| | - Paloma Larissa Arruda Lopes
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís 65085-580, MA, Brazil
| | - João Batista Santos Garcia
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís 65085-580, MA, Brazil
| | - Natalia Tabosa Machado Calzerra
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235—Cidade Universitária, Recife 50670-901, PE, Brazil
| | - Thyago Moreira de Queiroz
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235—Cidade Universitária, Recife 50670-901, PE, Brazil
| | | | - Gyl Eanes Barros Silva
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís 65085-580, MA, Brazil
- Hospital Universitário Presidente Dutra, HUPD, Federal University of Maranhão, R. Barão de Itapari, 227—Centro, São Luís 65020-070, MA, Brazil
| | - Alberto Jorge Oliveira Lopes
- Federal Institute of Science Education and Technology of Maranhão—Campus Monte Castelo, Chemistry Postgraduate Program, Av. Getúlio Vargas, 04—Monte Castelo, São Luís 65030-005, MA, Brazil
| | | | - Gerson Ricardo de Souza Domingues
- State University of Rio de Janeiro School of Medicine, Av. Prof. Manoel de Abreu, 444, Vila Isabel—Rio de Janeiro 20550-170, RJ, Brazil
| |
Collapse
|
8
|
Mohamadi N, Sharifi I, Afgar A, Sharififar F, Sharifi F. Antileishmanial Effects of Bunium Persicum Crude Extract, Essential Oil, and Cuminaldehyde on Leishmania Major: In Silico and In Vitro Properties. Acta Parasitol 2023; 68:103-113. [PMID: 36434380 DOI: 10.1007/s11686-022-00642-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/03/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Cuminaldehyde (CA), an oxidized aldehyde monoterpene, is a major essential oil component in cumin seeds, which has shown different promising medical effects. In this study, we comprehensively evaluated the antileishmanial potential of Bunium persicum (Boiss) B. Fedtsch (Apiaceae) and one of its main essential oil constituents, CA, focus on the mechanisms of action. METHODS We used a molecular docking approach to examine the capability of CA for binding to IL-12P40 and TNF-α. The colorimetric assay was performed to assess the effect of B. persicum crude extract, essential oil, and CA, against Leishmania major promastigotes and intracellular amastigotes. The expression of IFN-γ, IL-12P40, TNF-α, and IL-10 genes was detected using quantitative real-time polymerase chain reaction qPCR. RESULTS Docking analyses in the current study indicated CA binds to IL-12P40 and TNF-α. These products were safe, extremely antileishmanial, and significantly promoted Th1-related cytokines (IFN-γ, IL-12P40, TNF-α), while downregulating the Th2 phenotype (IL-10). CONCLUSION Cumin essential oil and its major component, CA, possessed powerful antileishmanial activity. The primary mechanism of activity involves an immunomodulatory role toward Th1 cytokine response. Therefore, cumin essential oil and CA deserve further explorations as promising medications for treating leishmaniasis.
Collapse
Affiliation(s)
- Neda Mohamadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
9
|
Novel formulation for co-delivery of cinnamon- and cumin-loaded polymeric nanoparticles to enhance their oral bioavailability. 3 Biotech 2023; 13:63. [PMID: 36718410 PMCID: PMC9883368 DOI: 10.1007/s13205-023-03480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Nanobiotechnology has been an encouraging approach to improving the efficacy of hydrophobic bioactive compounds. The biologically active constituents present in herbal extracts are poorly absorbed, resulting in loss of bioavailability and efficacy. Hence, herbal medicine and nanotechnology are combined to overcome these limitations. The surface-to-volume ratio of nanoparticles is high and as the size is small, the functional properties are enhanced. The present study reports the synthesis of cinnamon and cumin (Ci-Cu) dual drug-loaded poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) to overcome the limitations of oral bioavailability and extend the effect of these drugs for alleviating health problems. The solvent evaporation method was adopted for the synthesis, and the as-prepared nanoparticles were characterized by Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The average size of the formed spherical Ci-Cu nanoparticles ranged between 90 and 120 nm. The encapsulation efficiency of the drug was found to be 79% ± 4.5%. XRD analysis demonstrated that cinnamon and cumin were amorphously scattered in the PLGA matrix. The FTIR bands showed no evident changes suggesting the no direct molecular interactions between the drug and the polymer. At pH 6.9, the release studies in vitro exhibited a burst initially followed by a tendency to obtain a slower steady release. The results indicated that the Cu-Ci dual drug-loaded polymeric NPs has drug release at a slower rate. The time taken for 25% release of drug in Ci-Cu-loaded PLGA NPs was twice as compared to cumin-loaded PLGA Nps, and three times compared to cinnamon-loaded PLGA NPs.
Collapse
|
10
|
Vargas-Ruiz R, Montiel-Ruiz RM, Zamilpa A, Gonzalez-Cortazar M, Herrera-Ruiz ML, Molina-Cabrera J, Juárez-Aragón MC, Flores-Murrieta FJ. Bio-guided study of the antinociceptive, anti-inflammatory, and free-radical scavenging capacity of the leaves of Rhus virens Lindh. ex A. Gray and its possible mechanism of antinociception. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115756. [PMID: 36170958 DOI: 10.1016/j.jep.2022.115756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhus genus is commonly known as sumac and widely used in the folk medicine. Rhus virens is a plant commonly used to treat diabetes or pain in the northern territory of Mexico. Even though R. virens is used in the folk medicine there is still a lack of evidence about the pharmacological effect of this species. AIM OF THE STUDY The aim of this study was to determine the antinociceptive, anti-inflammatory and antioxidant effect of R. virens through a bio-guided chemical separation. MATERIALS AND METHODS The aqueous, methanolic, and hexane extract of R. virens were obtained and tested in the formalin test, TPA-induced ear edema, and DPPH, ABTS, and FRAP assay. Also, possible interaction of pain pathways was studied using naloxone, bicuculline, L-NAME, ODQ, and glibenclamide in the formalin test in mice. RESULTS Rhus virens methanolic extract (30 mg/kg, p.o.) produced higher antinociceptive activity in both the early and late phases of the formalin test (35.0 and 52.9%, respectively). Also, pre-administration with naloxone, bicuculline, L-NAME, ODQ and glibenclamide prevented the antinociceptive effect of R. virens in the early phase of the formalin test. Meanwhile, only naloxone and bicuculline prevented the antinociceptive effect on the late phase of the formalin test. Chemical separation of methanolic extract allowed to isolate 1,2,3,4,6-penta-O-galloyl-glucopyranose (PGG), it was tested in the formalin test, producing an antinociceptive effect on the late phase of the formalin test. On the other hand, topical application of the derivatives of R. virens methanolic extract produced an anti-inflammatory effect in the TPA-induced ear edema, being PGG an anti-inflammatory molecule. Lastly, radical scavenging activity was higher in the extracts of higher polarity, comparable to the standard used Camellia sinensis. CONCLUSIONS In conclusion, R. virens produce an antinociceptive, anti-inflammatory and free-radical scavenging activity. The antinociceptive effect could be related to the opioidergic, GABAergic, and NO-GMPc-K + ATP channels pathways. These effects could be partially produced by the presence of PGG.
Collapse
Affiliation(s)
- Rodrigo Vargas-Ruiz
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Miguel Hidalgo, 11340, Ciudad de México, Mexico; Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social. Argentina1, Centro, 62790, Xochitepec, Morelos, Mexico
| | - Rosa Mariana Montiel-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social. Argentina1, Centro, 62790, Xochitepec, Morelos, Mexico.
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social. Argentina1, Centro, 62790, Xochitepec, Morelos, Mexico
| | - Manases Gonzalez-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social. Argentina1, Centro, 62790, Xochitepec, Morelos, Mexico
| | - Maribel Lucila Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social. Argentina1, Centro, 62790, Xochitepec, Morelos, Mexico
| | - Jaqueline Molina-Cabrera
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social. Argentina1, Centro, 62790, Xochitepec, Morelos, Mexico
| | - María Cruz Juárez-Aragón
- Universidad Autónoma de Tamaulipas, Instituto de Ecología Aplicada, División del Golfo 356, Ciudad Victoria, Tamaulipas, 87019, Mexico
| | - Francisco Javier Flores-Murrieta
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Miguel Hidalgo, 11340, Ciudad de México, Mexico.
| |
Collapse
|
11
|
Zuo E, Sun L, Yan J, Chen C, Chen C, Lv X. Rapidly detecting fennel origin of the near-infrared spectroscopy based on extreme learning machine. Sci Rep 2022; 12:13593. [PMID: 35948651 PMCID: PMC9365781 DOI: 10.1038/s41598-022-17810-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Fennel contains many antioxidant and antibacterial substances, and it has very important applications in food flavoring and other fields. The kinds and contents of chemical substances in fennel vary from region to region, which can affect the taste and efficacy of the fennel and its derivatives. Therefore, it is of great significance to accurately classify the origin of the fennel. Recently, origin detection methods based on deep networks have shown promising results. However, the existing methods spend a relatively large time cost, a drawback that is fatal for large amounts of data in practical application scenarios. To overcome this limitation, we explore an origin detection method that guarantees faster detection with classification accuracy. This research is the first to use the machine learning algorithm combined with the Fourier transform-near infrared (FT-NIR) spectroscopy to realize the classification and identification of the origin of the fennel. In this experiment, we used Rubberband baseline correction on the FT-NIR spectral data of fennel (Yumen, Gansu and Turpan, Xinjiang), using principal component analysis (PCA) for data dimensionality reduction, and selecting extreme learning machine (ELM), Convolutional Neural Network (CNN), recurrent neural network (RNN), Transformer, generative adversarial networks (GAN) and back propagation neural network (BPNN) classification model of the company realizes the classification of the sample origin. The experimental results show that the classification accuracy of ELM, RNN, Transformer, GAN and BPNN models are above 96%, and the ELM model using the hardlim as the activation function has the best classification effect, with an average accuracy of 100% and a fast classification speed. The average time of 30 experiments is 0.05 s. This research shows the potential of the machine learning algorithm combined with the FT-NIR spectra in the field of food production area classification, and provides an effective means for realizing rapid detection of the food production area, so as to merchants from selling shoddy products as good ones and seeking illegal profits.
Collapse
Affiliation(s)
- Enguang Zuo
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - Lei Sun
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Research Institute, Urumqi, 830011, China
| | - Junyi Yan
- College of Software, Xinjiang University, Urumqi, 830046, China
| | - Cheng Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China. .,College of Software, Xinjiang University, Urumqi, 830046, China.
| | - Chen Chen
- College of Software, Xinjiang University, Urumqi, 830046, China.
| | - Xiaoyi Lv
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China.,College of Software, Xinjiang University, Urumqi, 830046, China.,Key Laboratory of signal detection and processing, Xinjiang University, Urumqi, 830046, China
| |
Collapse
|
12
|
Ghosh S, Kundu M, Dutta S, Mahalanobish S, Ghosh N, Das J, Sil PC. Enhancement of anti-neoplastic effects of cuminaldehyde against breast cancer via mesoporous silica nanoparticle based targeted drug delivery system. Life Sci 2022; 298:120525. [PMID: 35378139 DOI: 10.1016/j.lfs.2022.120525] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 11/15/2022]
Abstract
AIMS Synthesis of novel drug delivery system for targeted delivery of cuminaldehyde to breast cancer cells and the subsequent analyses of anti-neoplastic potential of the drug. MAIN METHODS 3-carboxy-phenyl boronic acid (PBA) conjugated and polyacrylic acid (PAA) gated mesoporous silica nanoparticles (MSNs) were synthesized for the targeted delivery of cuminaldehyde (CUM) to breast cancer cells. Enhancement of anti-neoplastic effects of cuminaldehyde (4-isopropylbenzaldehyde) by the nanoconjugates was assessed. KEY FINDINGS The anti-cancer effects of non-targeted and targeted drug-nanoconjugates were examined in vitro and in vivo. The targeted drug-nanoconjugates caused cell cycle arrest and induced the intrinsic pathway of apoptosis in MCF-7 cells through mitochondrial damage. In vivo intravenous injection of the targeted drug-nanoconjugates led to effective reduction in growth of 4 T1 induced mammary pad tumor in female BALB/c mice via augmented accumulation of cuminaldehyde. The drug-nanoconjugates did not exhibit any systemic toxicity. SIGNIFICANCE Therefore, MSN-PBA-CUM-PAA represents a potent therapeutic model for breast cancer treatment.
Collapse
Affiliation(s)
- Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Mousumi Kundu
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Joydeep Das
- Department of Chemistry, Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
13
|
Zhang J, Hu X, Liu X, He Y. The crystal structure of ( E)-1-ferrocenyl-3-(4-isopropylphenyl)prop-2-en-1-one, C 22H 22FeO. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C22H22FeO, monoclinic, P21 (no. 4), a = 10.204(3) Å, b = 5.7956(16) Å, c = 14.591(4) Å, β = 97.876(10)°, V = 854.7(4) Å3, Z = 2, R
gt
(F) = 0.0676, wR
ref
(F
2) = 0.1647, T = 170 K.
Collapse
Affiliation(s)
- Jingxiao Zhang
- College of Food and Medicine, Luoyang Normal University , Luoyang , China
| | - Xiangjie Hu
- College of Food and Medicine, Luoyang Normal University , Luoyang , China
| | - Xianghui Liu
- College of Food and Medicine, Luoyang Normal University , Luoyang , China
| | - Yifan He
- Institute of Regulatory Science, Beijing Technology and Business University , Beijing , China
| |
Collapse
|
14
|
Ma Y, Wang Z, Wang Y, Zhang S. Molecular insight into the interactions between starch and cuminaldehyde using relaxation and 2D solid-state NMR spectroscopy. Carbohydr Polym 2022; 278:118932. [PMID: 34973750 DOI: 10.1016/j.carbpol.2021.118932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/07/2021] [Accepted: 11/21/2021] [Indexed: 11/19/2022]
Abstract
The interaction between cuminaldehyde and starch mainly governed the effect of further handling on food applications of cuminaldehyde. However, little information is available about the interactions of these components. We utilized relaxation and heteronuclear correlation (HETCOR) solid-state NMR spectroscopy to investigate the interaction between cuminaldehyde and porous starch at molecular level. We found that the interactions occurred mainly through hydrogen bonds. Cuminaldehyde molecules were restricted by starch, which resulted in the limitation of their movements and the longer 1H T1 relaxation time. Furthermore, the well resolved correlated peaks in 2D 1H-13C HETCOR spectrum confirmed the formation of hydrogen bonds. The oxygen atoms at hydroxyl-2,3 of starch were the binding sites, which combined with hydrogens of cuminaldehyde. This present work not only afford a new approach to obtain a molecular understanding of interactions, but also expanded the application of solid-state NMR to investigation of the interaction on functional components.
Collapse
Affiliation(s)
- Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Zhipeng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Yuxia Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Shenggui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
15
|
Gad D, Abo Mansour HE, Saad-Allah KM, Abdallah MS, Ibrahim Elberri A, Mosalam EM. Biostimulants improve the hepatoprotection of Ammi visnaga seed yield extract against carbon tetrachloride induced acute hepatitis in mice through modulation of MAPK. Saudi J Biol Sci 2022. [DOI: 10.1016/j.sjbs.2022.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Korinek M, Handoussa H, Tsai YH, Chen YY, Chen MH, Chiou ZW, Fang Y, Chang FR, Yen CH, Hsieh CF, Chen BH, El-Shazly M, Hwang TL. Anti-Inflammatory and Antimicrobial Volatile Oils: Fennel and Cumin Inhibit Neutrophilic Inflammation via Regulating Calcium and MAPKs. Front Pharmacol 2021; 12:674095. [PMID: 34707494 PMCID: PMC8545060 DOI: 10.3389/fphar.2021.674095] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/31/2021] [Indexed: 12/03/2022] Open
Abstract
Neutrophilic inflammatory diseases, such as chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), or psoriasis, exert a huge burden on the global health system due to the lack of safe and effective treatments. Volatile oils from terrestrial plants showed impressive therapeutic effects against disorders of the skin, digestive system, lungs, liver, metabolism, and nervous system. However, their effect on the immune system and neutrophil function is still elusive. Fennel, cumin, marjoram, lavender, caraway, and anise are the common nutraceuticals that are widely used in the Mediterranean diet. The volatile oils of these herbs were screened for various biological activities, including anti-inflammatory, anti-allergic, antimicrobial, and antiviral effects. Several oils showed anti-inflammatory and antimicrobial potential. Fennel (Foeniculum vulgare) and cumin (Cuminum cyminum) fruits' volatile oils significantly suppressed the activation of human neutrophils, including respiratory burst and the degranulation induced by formyl peptide receptor agonists fMLF/CB and MMK1 in the human neutrophils (IC50, 3.8–17.2 µg/ml). The cytotoxic effect and free-radical scavenging effects (ABTS, DPPH) of these oils did not account for the observed effects. Both fennel and cumin volatile oils significantly shortened calcium influx recovery time and inhibited phosphorylation of mitogen-activated protein kinases (p38, JNK, and ERK) expression. The gas chromatography–mass spectrometry analysis of these oils revealed the presence of estragole and cuminaldehyde as the major components of fennel and cumin volatile oils, respectively. Our findings suggested that cumin and fennel, common in the Mediterranean diet, hold the potential to be applied for the treatment of neutrophilic inflammatory diseases.
Collapse
Affiliation(s)
- Michal Korinek
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Heba Handoussa
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - You-Ying Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Meng-Hua Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Zan-Wei Chiou
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu Fang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Fan Hsieh
- The Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mohamed El-Shazly
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
17
|
Sharif N, Golmakani MT, Hajjari MM, Aghaee E, Ghasemi JB. Antibacterial cuminaldehyde/hydroxypropyl-β-cyclodextrin inclusion complex electrospun fibers mat: Fabrication and characterization. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Cavalcante da Silva G, Macário de Oliveira A, Soares de Freitas AF, Paiva PMG, Napoleão TH. Antinociceptive and Anti-Inflammatory Effects of Saline Extract and Lectin-Rich Fraction from Microgramma vacciniifolia Rhizome in Mice. Chem Biodivers 2021; 18:e2100125. [PMID: 33893724 DOI: 10.1002/cbdv.202100125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/23/2021] [Indexed: 11/07/2022]
Abstract
Previous studies have characterized a saline extract from Microgramma vacciniifolia rhizome and its lectin (MvRL)-rich fraction with low acute toxicity. In the present study, we evaluated these preparations for acute toxicity (1,000 mg/kg) and antinociceptive and anti-inflammatory activities (100-400 mg/kg for the extract and 25-50 mg/kg for the fraction). No signs of toxicity were observed. Both the extract and fraction increased the latency period for nociception in the hot plate assay, decreased writhing induced by acetic acid, and promoted analgesic effects in phases 1 and 2 of the formalin test. The antinociceptive mechanism was attributed to interactions with opioid receptors and K+ ATPase channels. The extract and fraction decreased carrageenan-induced paw edema in 46.15 % and 77.22 %, respectively, at the highest doses evaluated. Furthermore, the fraction was shown to act on the bradykinin pathway. The ability to decrease leukocyte migration after treatment was also verified in the peritonitis and air pouch models. In exudates collected from air pouches, decreased tumor necrosis factor (TNF)-α and increased interleukin (IL)-10 levels were noted. Both the extract and fraction also effectively inhibited the development of granulomatous tissue. In conclusion, the substances investigated in this study can be used for the development of novel therapeutic options for pain and inflammatory processes.
Collapse
Affiliation(s)
- Gabriela Cavalcante da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Alisson Macário de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
19
|
Singh N, Yadav SS, Kumar S, Narashiman B. A review on traditional uses, phytochemistry, pharmacology, and clinical research of dietary spice Cuminum cyminum L. Phytother Res 2021; 35:5007-5030. [PMID: 33893678 DOI: 10.1002/ptr.7133] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/07/2022]
Abstract
Cuminum cyminum L. is a versatile spice belonging to family Apiaceae. Though the plant has pan-tropical distribution but it is indigenous to Egypt, the Mediterranean, and South Asian countries. It exhibits numerous culinary, traditional, and pharmacological attributes. Its traditional uses also validate its immense pharmacological potential. Cuminum cyminum is the hub of numerous bioactives such as alkaloids, flavonoids, terpenoids, and so forth. Cuminaldehyde is the major bioactive, rendered to most of its pharmacological as well as clinical significance. The present study comprised of current knowledge on its taxonomy, nutritional, traditional, phytochemistry, pharmacology (antimicrobial, antioxidant, anti-inflammation, antidiabetic, wound healing, anticancer, etc.), toxicology, and clinical attributes. Besides, the mechanism of action is also well explained. The present study provides a rationale for further bioprospection of this wonder plant. Future studies are needed to fill the research gaps, particularly on relevant phytocompound isolation, their pre-clinical and clinical characterization, evaluation, and structure-activity relationship. Moreover, well-designed and highly appropriate clinical and placebo trials are still needed to demonstrate the trustworthy role of cumin on human health.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | | | - Sanjiv Kumar
- Department of Pharmaceutical Sciences, Ch. Bansi Lal University, Bhiwani, India
| | | |
Collapse
|
20
|
Sheikholeslami MA, Ghafghazi S, Parvardeh S, Koohsari S, Aghajani SH, Pouriran R, Vaezi LA. Analgesic effects of cuminic alcohol (4-isopropylbenzyl alcohol), a monocyclic terpenoid, in animal models of nociceptive and neuropathic pain: Role of opioid receptors, L-arginine/NO/cGMP pathway, and inflammatory cytokines. Eur J Pharmacol 2021; 900:174075. [PMID: 33811835 DOI: 10.1016/j.ejphar.2021.174075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/30/2022]
Abstract
Cuminic alcohol (4-isopropylbenzyl alcohol; 4-IPBA) is a monocyclic terpenoid found in the analgesic medicinal plants Cuminum cyminum and Bunium persicum. The current study assessed the analgesic effects of 4-IPBA in different animal models of pain. Hot plate, formalin, and acetic acid tests were used to evaluate nociceptive pain in mice. The involvement of opioid receptors and the L-arginine/NO/cGMP/K+ channel pathway in 4-IPBA effects were investigated. Allodynia and hyperalgesia were assessed following peripheral neuropathy induced by chronic constriction of the sciatic nerve in rats. The spinal levels of inflammatory cytokines were measured using the ELISA method. The drugs and compounds were administered intraperitoneally. The results showed that 4-IPBA (200 and 400 mg/kg) significantly prolonged the hot plate latency. This effect was antagonized by naloxone (2 mg/kg). 4-IPBA (25-100 mg/kg) also significantly attenuated formalin- and acetic acid-induced nociceptive pain. L-arginine (200 mg/kg), sodium nitroprusside (0.25 mg/kg), and sildenafil (0.5 mg/kg) reversed while L-NAME (30 mg/kg) and methylene blue (20 mg/kg) potentiated the antinociceptive effects of 4-IPBA in the writhing test. Glibenclamide (10 mg/kg) and tetraethylammonium chloride (4 mg/kg) did not have any influence on the 4-IPBA effect. Furthermore, 4-IPBA (6.25-25 mg/kg) significantly relieved mechanical allodynia, cold allodynia, and hyperalgesia in rats. The concentrations of TNF-α and IL-1β in the spinal cord of rats were decreased by 4-IPBA. No evidence of 4-IPBA-induced toxicity was found in behavioral or histopathological examinations. These results demonstrate that 4-IPBA attenuates nociceptive and neuropathic pain through the involvement of opioid receptors, the L-arginine/NO/cGMP pathway, and anti-inflammatory functions.
Collapse
Affiliation(s)
| | - Shiva Ghafghazi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sheida Koohsari
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Saeed Haji Aghajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Pouriran
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Alipour Vaezi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Lee H, Song Y, Park YH, Uddin MS, Park JB. Evaluation of the Effects of Cuminum cyminum on Cellular Viability, Osteogenic Differentiation and Mineralization of Human Bone Marrow-Derived Stem Cells. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:38. [PMID: 33406654 PMCID: PMC7823674 DOI: 10.3390/medicina57010038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
Background and Objectives: Cuminum cyminum L. has long been used in the treatment of various diseases in multiple geographical regions. This study was performed to determine the effects of C. cyminum methanolic extract (CCT) on the cellular viability, alkaline phosphatase activity and mineralization of human mesenchymal stem cells. Materials and Methods: Bone marrow-derived stem cells were cultured in the presence of CCT at concentrations of 0, 0.001, 0.01, 0.1 and 1 μg/mL. Evaluations of cell morphology were performed on days 1, 3, 7 and 14. Cellular viability was evaluated on days 1, 3, 5 and 7. On the 7th and 14th day, alkaline phosphatase activity measurements and Alizarin red S staining were conducted to assess the osteogenic differentiation of stem cells. A real-time polymerase chain reaction was used to determine the expression levels of RUNX2, BSP, OCN, COL2A1 and β-catenin mRNAs. Results: Stem cells in the control group showed fibroblast-like morphology and the addition of CCT at 0.001, 0.01, 0.1 and 1 μg/mL did not generate noticeable changes in morphology compared with the untreated control group. The application of CCT did not produce significant changes in cellular viability or alkaline phosphatase activity compared with controls. Alizarin Red S staining was significantly increased with the application of CCT. Treatment with CCT increased the expressions of RUNX2, BSP and OCN. Conclusions: These results indicate that CCT enhanced the osteogenic differentiation of stem cells derived from bone marrow by regulating the expressions of RUNX2, BSP and OCN. Thus, the use of CCT may be applied to achieve beneficial effects on the mineralization of stem cells.
Collapse
Affiliation(s)
- Hyunjin Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (H.L.); (Y.S.)
| | - Youngmin Song
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (H.L.); (Y.S.)
| | | | - Md. Salah Uddin
- Ethnobotanical Database of Bangladesh, Tejgaon, Dhaka 1208, Bangladesh;
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (H.L.); (Y.S.)
| |
Collapse
|
22
|
Merah O, Sayed-Ahmad B, Talou T, Saad Z, Cerny M, Grivot S, Evon P, Hijazi A. Biochemical Composition of Cumin Seeds, and Biorefining Study. Biomolecules 2020; 10:biom10071054. [PMID: 32679821 PMCID: PMC7407589 DOI: 10.3390/biom10071054] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023] Open
Abstract
A new biorefinery approach has been developed in the present study, and applied on cumin (Cuminum cyminum) seeds as a potential source of phytochemicals of interest. Cumin is a popular spice used widely for its distinctive aroma. It is a rich reserve of both vegetable and essential oils. The biorefinery approach here focused on the evaluation of the influence of four different geographical origins (i.e., Lebanon, France, Algeria and Syria) on oil yield and quality in cumin seed, and on the valorization of remaining by-products by investigating their nutritional content and biological activity for the first time. Vegetable and essential oils were extracted, and their compositions were determined. Nutritional traits were also assessed. The delipidated and hydrodistillated cakes just as aromatic water were characterized for their fiber, sugar, protein, phenol and flavonoid contents. Antibacterial and antioxidant activities were also determined. Cumin seeds showed high contents in both vegetable and essential oils, proteins and sugars regardless their origin. Moreover, this Apiaceae species exhibited high levels of petroselinic fatty acid (an isomer of oleic acid) and sterols. Cakes and aromatic water also presented high levels of proteins, fibers, sugars and phenols. These residues revealed interesting antioxidant and antibacterial activities. These results emphasized the potential use of cumin in a biorefinery concept, with a multi-purpose industrial process. In addition, large differences were observed between the four geographical origins for phytochemical contents and compositions. These findings highlight the perspectives for developing selection programs for nutritional traits and industrial interests. All obtained results validate the health promoting effect of cumin composition as well as its industrial importance along with the residues.
Collapse
Affiliation(s)
- Othmane Merah
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRA, INPT, 31030 Toulouse, France; (B.S.-A.); (T.T.); (M.C.); (S.G.); (P.E.)
- Département Génie Biologique, IUT A, Université Paul Sabatier, 24 rue d’Embaquès, 32000 Auch, France
- Correspondence: ; Tel.: +33-5-3432-3523
| | - Bouchra Sayed-Ahmad
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRA, INPT, 31030 Toulouse, France; (B.S.-A.); (T.T.); (M.C.); (S.G.); (P.E.)
- Research Platform of Environmental Science, Doctoral School of Science and Technology, Lebanese University, Campus Rafic Hariri, BP 5, Hadath-Beirut, P.O. Box 5, Lebanon; (Z.S.); (A.H.)
| | - Thierry Talou
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRA, INPT, 31030 Toulouse, France; (B.S.-A.); (T.T.); (M.C.); (S.G.); (P.E.)
| | - Zeinab Saad
- Research Platform of Environmental Science, Doctoral School of Science and Technology, Lebanese University, Campus Rafic Hariri, BP 5, Hadath-Beirut, P.O. Box 5, Lebanon; (Z.S.); (A.H.)
| | - Muriel Cerny
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRA, INPT, 31030 Toulouse, France; (B.S.-A.); (T.T.); (M.C.); (S.G.); (P.E.)
| | - Sarah Grivot
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRA, INPT, 31030 Toulouse, France; (B.S.-A.); (T.T.); (M.C.); (S.G.); (P.E.)
| | - Philippe Evon
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRA, INPT, 31030 Toulouse, France; (B.S.-A.); (T.T.); (M.C.); (S.G.); (P.E.)
| | - Akram Hijazi
- Research Platform of Environmental Science, Doctoral School of Science and Technology, Lebanese University, Campus Rafic Hariri, BP 5, Hadath-Beirut, P.O. Box 5, Lebanon; (Z.S.); (A.H.)
| |
Collapse
|