1
|
Li Y, Pan AP, Yu AY. Recent Progression of Pathogenesis and Treatment for Diabetic Cataracts. Semin Ophthalmol 2025; 40:275-282. [PMID: 39530428 DOI: 10.1080/08820538.2024.2427789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Background: Cataracts are still the main cause of blindness worldwide. The incidence of cataracts in the diabetic population is 3-5 times higher than in healthy people. With the increasing incidence of diabetes and the development of aging, as well as the higher risk of surgical and postoperative complications of diabetic patients undergoing surgery, it is still necessary to study the occurrence and development mechanism of diabetic cataracts as well as potential therapeutic targets and therapeutic drugs.Methods: A retrospective review of the literature from PubMed (2017-2024).Results: We summarized the the current literature on the molecular mechanism and prevention and treatment of diabetic cataracts.Conclusions: The aqueous humor metabolism changes, oxidative stress, reactive oxygen species generation increase, the conversion of polyol pathway, as well as non-coding RNA expression changes play important roles in diabetic cataract and these processes is closely linked with each other. Inhibitors or drugs target to these processes, such as aldose reductase inhibitors, antioxidants, natural flavonoid compounds, as well as nanotechnology-based therapeutic product, have shown promising prospects in the prevention and treatment of diabetic cataract.
Collapse
Affiliation(s)
- Yike Li
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang P. R. China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, P. R. China
| | - An-Peng Pan
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang P. R. China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, P. R. China
| | - A-Yong Yu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang P. R. China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, P. R. China
| |
Collapse
|
2
|
Zhou MY, Liu BQ, Gao X, Zhang SJ, Jiang Y, Yang T, Sun JB, Zhang X, Liao Y. Sagittaria sagittifolia polysaccharide extract regulates Nrf2 to improve endoplasmic reticulum stress-mediated apoptosis in rat cataracts and HLEB3 cells. Int J Biol Macromol 2025; 300:140270. [PMID: 39863224 DOI: 10.1016/j.ijbiomac.2025.140270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 01/08/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Age-related cataract (ARC) remains the leading cause of blindness worldwide. Sagittaria sagittifolia polysaccharide (SSP) extract, a key component of Sagittaria sagittifolia L., exhibits anti-oxidant and anti-apoptotic effects with potential applications in ARC. This study aimed to explore the therapeutic potential of SSP in ARC and the underlying mechanisms. In sodium selenite-induced cataracts in rats and hydrogen peroxide (H2O2)-induced human lens epithelial B3 (HLEB3) cells, SSP significantly improved lens opacity and pathological changes and alleviated apoptosis and endoplasmic reticulum stress (ERS)-related injury indicators (by inhibiting the intracellular Ca2+ and protein expression of Bcl-2-associated X, cleaved caspase-3, binding immunoglobulin heavy chain protein, protein kinase RNA-like kinase, inositol-requiring enzyme 1α, activating transcription factor 6, C/EBP homology protein, c-Jun N terminal kinase, caspase-12, and calpain-2). In addition, SSP increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1, sarco/endoplasmic reticulum-type calcium transport ATPase 2, and B-cell lymphoma-2. After applying Nrf2 knockdown technology by transferring short interfering RNA in HLEB3 cells, SSP demonstrated its protective role by activating Nrf2 and inhibiting ERS-mediated apoptosis. These findings indicate that SSP may protect against ARC by regulating Nrf2/ERS-mediated apoptosis, providing potential evidence for its use in preventing or delaying ARC.
Collapse
Affiliation(s)
- Man-Yu Zhou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China
| | - Bing-Qing Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China
| | - Xin Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China
| | - Shu-Jing Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China
| | - Yang Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China
| | - Tao Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China
| | - Jian-Bin Sun
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Xi Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China
| | - Yan Liao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China.
| |
Collapse
|
3
|
Jiang H, Liu Y, Yu Y, Yan Y. Sirtuin 1 Suppresses Hydrogen Peroxide-Induced Senescence and Promotes Viability and Migration in Lens Epithelial Cells by Inhibiting Forkhead Box Protein O1/Toll-Like Receptor 4 Pathway. J Biochem Mol Toxicol 2025; 39:e70150. [PMID: 39866090 DOI: 10.1002/jbt.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
Age-related cataracts (ARCs) are associated with increased oxidative stress and cellular senescence. Our objective is to investigate the function of Sirtuin 1 (SIRT1) within ARCs. In ARCs tissues and H2O2-treated lens epithelial cells (LECs), the expression levels of SIRT1 were examined. Senescence-associated β-galactosidase (SA-β-gal) staining was employed to evaluate cellular senescence. The Cell Counting Kit-8 assay was employed to measure viability. A wound healing assay was performed to assess migratory capacity in LECs. Oxidative stress-related indicators were determined by enzyme-linked immunosorbent assay kits. Additionally, the Coxpresdb and GeneCards databases were utilized to identify downstream pathways of SIRT1 in ARCs. The expression levels of protein and mRNA were detected using western blot and real-time quantitative polymerase chain reaction, respectively. The expression of SIRT1 was downregulated in ARCs tissues with an increase in reactive oxygen species. In H2O2-induced LECs, SIRT1 was downregulated and its overexpression inhibited oxidative stress and cellular senescence while promoting viability and migration. Furthermore, FoxO1/TLR4 pathway was screened out as the key pathway of SIRT1, which was activated in H2O2-induced LECs senescence. Overexpression of SIRT1 suppressed FoxO1/TLR4 pathway. Further research demonstrated that the activation of FoxO1/TLR4 pathway reversed the inhibitory role of SIRT1 in oxidative stress-induced cellular senescence and the promotion effect of SIRT1 on viability and migration in H2O2-induced LECs. SIRT1 inhibits oxidative stress-induced cellular senescence and promotes the viability and migration in H2O2-induced LECs via suppressing FoxO1/TLR4 pathway.
Collapse
Affiliation(s)
- Hongda Jiang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuting Liu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yinggui Yu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Yan
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Zhou R, Liu Y, Hu W, Yang J, Lin B, Zhang Z, Chen M, Yi J, Zhu C. Lycium barbarum polysaccharide ameliorates the accumulation of lipid droplets in adipose tissue via an ATF6/SIRT1-dependent mechanism. Acta Biochim Biophys Sin (Shanghai) 2024; 56:844-856. [PMID: 38606478 PMCID: PMC11214951 DOI: 10.3724/abbs.2024046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/03/2024] [Indexed: 04/13/2024] Open
Abstract
Lipid droplets (LDs) are dynamic organelles that store neutral lipids and are closely linked to obesity. Previous studies have suggested that Lycium barbarum polysaccharide (LBP) supplements can ameliorate obesity, but the underlying mechanisms remain unclear. In this study, we hypothesize that LBP alleviates LD accumulation in adipose tissue (AT) by inhibiting fat-specific protein 27 (Fsp27) through an activating transcription factor-6 (ATF6)/small-molecule sirtuin 1 (SIRT1)-dependent mechanism. LD accumulation in AT is induced in high-fat diet (HFD)-fed mice, and differentiation of 3T3-L1 preadipocytes (PAs) is induced. The ability of LBP to alleviate LD accumulation and the possible underlying mechanism are then investigated both in vivo and in vitro. The influences of LBP on the expressions of LD-associated genes ( ATF6 and Fsp27) are also detected. The results show that HFD and PA differentiation markedly increase LD accumulation in ATs and adipocytes, respectively, and these effects are markedly suppressed by LBP supplementation. Furthermore, LBP significantly activates SIRT1 and decreases ATF6 and Fsp27 expressions. Interestingly, the inhibitory effects of LBP are either abolished or exacerbated when ATF6 is overexpressed or silenced, respectively. Furthermore, SIRT1 level is transcriptionally regulated by LBP through opposite actions mediated by ATF6. Collectively, our findings suggest that LBP supplementation alleviates obesity by ameliorating LD accumulation, which might be partially mediated by an ATF6/SIRT1-dependent mechanism.
Collapse
Affiliation(s)
- Rui Zhou
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Yajing Liu
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Weiqian Hu
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Jing Yang
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Bing Lin
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Zhentian Zhang
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Mingyan Chen
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Jingwen Yi
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Cuifeng Zhu
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| |
Collapse
|
5
|
Jiang C, Chen Z, Liao W, Zhang R, Chen G, Ma L, Yu H. The Medicinal Species of the Lycium Genus (Goji Berries) in East Asia: A Review of Its Effect on Cell Signal Transduction Pathways. PLANTS (BASEL, SWITZERLAND) 2024; 13:1531. [PMID: 38891336 PMCID: PMC11174690 DOI: 10.3390/plants13111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
Natural plants contain numerous chemical compounds that are beneficial to human health. The berries from the Lycium genus are widely consumed and are highly nutritious. Moreover, their chemical constituents have attracted attention for their health-promoting properties. In East Asia, there are three varieties of the Lycium genus (Lycium barbarum L., Lycium chinense Miller, and L. ruthenicum Murray) that possess medicinal value and are commonly used for treating chronic diseases and improving metabolic disorders. These varieties are locally referred to as "red Goji berries" or "black Goji berries" due to their distinct colors, and they differ in their chemical compositions, primarily in terms of carotenoid and anthocyanin content. The pharmacological functions of these berries include anti-aging, antioxidant, anti-inflammatory, and anti-exercise fatigue effects. This review aims to analyze previous and recent studies on the active ingredients and pharmacological activities of these Lycium varieties, elucidating their signaling pathways and assessing their impact on the gut microbiota. Furthermore, the potential prospects for using these active ingredients in the treatment of COVID-19 are evaluated. This review explores the potential targets of these Lycium varieties in the treatment of relevant diseases, highlighting their potential value in drug development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lijuan Ma
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (C.J.); (Z.C.); (W.L.); (R.Z.); (G.C.)
| | - Haijie Yu
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (C.J.); (Z.C.); (W.L.); (R.Z.); (G.C.)
| |
Collapse
|
6
|
Liu GM, Shao M, Liu Y. Dichloroacetate ameliorates apoptosis, EMT and oxidative stress in diabetic cataract via inhibiting the IDO1-dependent p38 MAPK pathway. Mol Cell Endocrinol 2024; 586:112174. [PMID: 38301842 DOI: 10.1016/j.mce.2024.112174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
As an oral antidiabetic agent, dichloroacetate (DCA) has been proven to improve diabetes and related complications. However, its functional role in diabetic cataract (DC) remains to be elucidated. This study was to define the role of DCA and its underlying molecular mechanism in DC in vitro and in vivo. In this study, it was shown that DCA dose-dependently ameliorated DC formation and development in DM rats. In addition, DCA significantly increased cell viability, reduced apoptosis, and inhibited EMT and oxidative stress of high glucose (HG)-treated SRA-01/04 cells in a concentration-dependent manner. Besides, it was revealed that Indoleamine 2,3-dioxygenase 1 (IDO1) expression was upregulated in lenses of DM rats and HG-treated SRA-01/04 cells, which was reversed by DCA. In addition, DCA abrogated the activation of the p38 MAPK signaling in the lenses of DM rats and HG-treated SRA-01/04 cells. Further experiments showed that IDO1 upregulation activated the p38 MAPK signaling in HG-challenged SRA-01/04 cells. Moreover, IDO1 overexpression partially reversed DCA-mediated inactivation of p38 MAPK signaling and suppression of HG-induced damage to SRA-01/04 cells. To sum up, our findings showed that DCA prevented DC-related apoptosis, EMT, and oxidative stress via inactivating IDO1-dependent p38 MAPK signaling.
Collapse
Affiliation(s)
- Guang-Ming Liu
- Department of Ophthalmology, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Mengting Shao
- Department of Ophthalmology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yan Liu
- Department of Ophthalmology, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.
| |
Collapse
|
7
|
Chen Y, Ye Z, Chen H, Li Z. Breaking Barriers: Nanomedicine-Based Drug Delivery for Cataract Treatment. Int J Nanomedicine 2024; 19:4021-4040. [PMID: 38736657 PMCID: PMC11086653 DOI: 10.2147/ijn.s463679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024] Open
Abstract
Cataract is a leading cause of blindness globally, and its surgical treatment poses a significant burden on global healthcare. Pharmacologic therapies, including antioxidants and protein aggregation reversal agents, have attracted great attention in the treatment of cataracts in recent years. Due to the anatomical and physiological barriers of the eye, the effectiveness of traditional eye drops for delivering drugs topically to the lens is hindered. The advancements in nanomedicine present novel and promising strategies for addressing challenges in drug delivery to the lens, including the development of nanoparticle formulations that can improve drug penetration into the anterior segment and enable sustained release of medications. This review introduces various cutting-edge drug delivery systems for cataract treatment, highlighting their physicochemical properties and surface engineering for optimal design, thus providing impetus for further innovative research and potential clinical applications of anti-cataract drugs.
Collapse
Affiliation(s)
- Yilin Chen
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Senior Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Zi Ye
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Senior Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Haixu Chen
- Institute of Geriatrics, National Clinical Research Center for Geriatrics Diseases, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Zhaohui Li
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Senior Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Liu XM, Shi H, Li W. Review on the potential roles of traditional Chinese medicines in the prevention, treatment, and postoperative recovery of age-related cataract. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117786. [PMID: 38253273 DOI: 10.1016/j.jep.2024.117786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/10/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Cataract is the most common cause of blindness worldwide, a visual disorder caused by a clouded lens that seriously affects People's Daily lives. Age-related cataract (ARC) is the most common type of cataract due to long-term combined effects of many factors, and its pathogenesis is varied. At present, the surgery is the main treatment for cataracts, but it is still limited to the prevention, treatment of early cataracts and the postoperative complications care. While, its drug treatments are still in the stage of exploration and research. Traditional Chinese Medicine (TCM), a unique resource in China, is conceived under the guidance of traditional Chinese medicine theory and has little toxicity and side effects, but it has made great progress in the treatment and prevention of ARC. AIM OF THIS REVIEW This review presents an overview of the pathogenesis of ARC in both traditional and modern medicines and summarizes the history and therapeutic effect of TCM on ARC including their formula, crude drugs and active components, and also the other auxiliary methods. METHODS A number of recognized databases like SciFinder, PubMed, Science Direct, Google Scholar, and China National Knowledge Infrastructure (CNKI) were extensively explored by using keywords and phrases such as "cataract", "age-related cataract", "traditional medicine", "ethnopharmacology", "herbs", "medicinal plants", or other relevant terms, and the plants/phytoconstituents that are evaluated in the models of age-related cataract. As well as the current TCM adjuvant therapy used in the clinical treatment were summarized. RESULTS TCM revealed to plays an active role in treating age-related cataract, via multi-pathway and multi-target, and can treat or delay ARC by inhibiting abnormal glucose metabolism, antioxidant damage, inhibiting LEC apoptosis, and so on, which is in concordance with the good effects of the global use of TCM in clinical application. Concerning the early prevention and treatment of cataract and postoperative complications, TCM and auxiliary methods remain to achieve better clinical effects. CONCLUSION ARC belongs to the category of "Yuan Yi Nei Zhang" in TCM theory, showing that there are many causes of ARC including aging, and kidney-yang, spleen, sperm and blood deficiencies. At the same time, the viscera gradually decline, as well as yin or yang progressively become weak, especially in the elder people. So, TCM could be mainly based on liver, kidney, and spleen syndrome differentiation, personalizing diagnosis and treatment, following multiple targets, regulating fundamentally yin and yang, and thus justifying the advantages of Chinese medicine in the prevention and treatment of ARC.
Collapse
Affiliation(s)
- Xiao-Min Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic, China
| | - Hui Shi
- The First Hospital, Jilin University, Changchun, 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic, China.
| |
Collapse
|
9
|
Tang YF, Duan ZH. Clinical efficacy of femtosecond laser-assisted phacoemulsification in diabetic cataract patients. World J Clin Cases 2024; 12:1733-1741. [PMID: 38660074 PMCID: PMC11036478 DOI: 10.12998/wjcc.v12.i10.1733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/25/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Diabetic patients with cataracts encounter specific difficulties during cataract surgery due to alterations in microcirculation, blood supply, metabolism, and the microenvironment. Traditional phacoemulsification may not fully tackle these issues, especially in instances with substantial preoperative astigmatism. The utilization of femtosecond laser-assisted phacoemulsification, in conjunction with Toric intraocular lens (IOL) implantation, offers a potentially more efficient strategy. This research seeks to evaluate the efficacy and possible complications of this approach in diabetic cataract patients.
AIM To investigate the clinical efficacy and complications of femtosecond laser-assisted phacoemulsification combined with Toric IOL implantation in diabetic cataract patients, comparing it with traditional phacoemulsification methods.
METHODS This retrospective study enrolled 120 patients with diabetes cataract from May 2019 to May 2021. The patients were divided into two groups: the control group underwent traditional phacoemulsification and Toric IOL implantation, while the treatment group received Len Sx femtosecond laser-assisted treatment. Outcome measures included naked eye vision, astigmatism, high-level ocular phase difference detection, clinical efficacy, and complication.
RESULTS There were no significant preoperative differences in astigmatism or naked eyesight between the two groups. However, postoperative improvements were observed in both groups, with the treatment group showing greater enhancements in naked eye vision and astigmatism six months after the procedure. High-level corneal phase difference tests also indicated significant differences in favor of the treatment group.
CONCLUSION This study suggests that femtosecond laser-assisted phacoemulsification combined with Toric IOL implantation appears to be more effective in enhancing postoperative vision in diabetic cataract patients compared to traditional methods offering valuable insights for clinical practice.
Collapse
Affiliation(s)
- Yi-Fei Tang
- Department of Glaucoma and Cataracts, Han Yang Eyegood Ophthalmic Hospital, Wuhan 430056, Hubei Province, China
| | - Zhi-Hui Duan
- Department of Glaucoma and Cataracts, Han Yang Eyegood Ophthalmic Hospital, Wuhan 430056, Hubei Province, China
| |
Collapse
|
10
|
Wong KY, Phan CM, Chan YT, Yuen ACY, Zhang H, Zhao D, Chan KY, Do CW, Lam TC, Qiao JH, Wulff D, Hui A, Jones L, Wong MS. A review of using Traditional Chinese Medicine in the management of glaucoma and cataract. Clin Exp Optom 2024; 107:156-170. [PMID: 37879342 DOI: 10.1080/08164622.2023.2246480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/06/2023] [Indexed: 10/27/2023] Open
Abstract
Traditional Chinese Medicine has a long history in ophthalmology in China. Over 250 kinds of Traditional Chinese Medicine have been recorded in ancient books for the management of eye diseases, which may provide an alternative or supplement to current ocular therapies. However, the core holistic philosophy of Traditional Chinese Medicine that makes it attractive can also hinder its understanding from a scientific perspective - in particular, determining true cause and effect. This review focused on how Traditional Chinese Medicine could be applied to two prevalent ocular diseases, glaucoma, and cataract. The literature on preclinical and clinical studies in both English and Chinese on the use of Traditional Chinese Medicine to treat these two diseases was reviewed. The pharmacological effects, safety profile, and drug-herb interaction of selected herbal formulas were also investigated. Finally, key considerations for conducting future Traditional Chinese Medicine studies are discussed.
Collapse
Affiliation(s)
- Ka-Ying Wong
- Centre for Eye and Vision Research Limited (CEVR), Hong Kong, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, Water Institute, University of Waterloo, Waterloo, Canada
| | - Chau-Minh Phan
- Centre for Eye and Vision Research Limited (CEVR), Hong Kong, China
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| | - Yat-Tin Chan
- Centre for Eye and Vision Research Limited (CEVR), Hong Kong, China
| | - Ailsa Chui-Ying Yuen
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Huan Zhang
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Danyue Zhao
- Centre for Eye and Vision Research Limited (CEVR), Hong Kong, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ka-Yin Chan
- Centre for Eye and Vision Research Limited (CEVR), Hong Kong, China
| | - Chi-Wai Do
- Centre for Eye and Vision Research Limited (CEVR), Hong Kong, China
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Thomas Chuen Lam
- Centre for Eye and Vision Research Limited (CEVR), Hong Kong, China
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Joanne Han Qiao
- Centre for Eye and Vision Research Limited (CEVR), Hong Kong, China
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| | - David Wulff
- Centre for Eye and Vision Research Limited (CEVR), Hong Kong, China
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| | - Alex Hui
- Centre for Eye and Vision Research Limited (CEVR), Hong Kong, China
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| | - Lyndon Jones
- Centre for Eye and Vision Research Limited (CEVR), Hong Kong, China
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| | - Man-Sau Wong
- Centre for Eye and Vision Research Limited (CEVR), Hong Kong, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
11
|
Fu Y, Wu R, Dong S, Chen J, Zhou N. Metformin protects human lens epithelial cells from high glucose-induced senescence and autophagy inhibition by upregulating SIRT1. Graefes Arch Clin Exp Ophthalmol 2024; 262:477-485. [PMID: 37644328 DOI: 10.1007/s00417-023-06218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/11/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
PURPOSE The aim of this study is to explore whether metformin (MET) protects the human lens epithelial cells (HLECs) from high glucose-induced senescence and to identify the underlying mechanisms. METHODS A cellular senescence model was established by treating HLE-B3 cells with D-glucose and then intervened with MET. Concentrations of high glucose (HG) and MET were detected using CCK-8 and western blot. qRT-PCR, western blot, and senescence-associated β-galactosidase (SA-β-gal) were performed to verify the protective effect of MET on senescent HLE-B3 cells. Additionally, western blot and qRT-PCR were conducted to detect the effects of MET on autophagy-related markers p62 and LC3, as well as SIRT1. RESULTS In vitro, we observed apparent senescence in human lens epithelial cells (HLECs) under high glucose conditions. This was characterized by increased senescence-associated genes p21 and p53. However, the addition of MET significantly reduced the occurrence of HLECs senescence. We also observed that high glucose inhibited both autophagy and SIRT1, which could be restored by MET. Moreover, we verified that the anti-senescence effect of MET was mediated by SIRT1 using SIRT1 activators and inhibitors. CONCLUSION We have demonstrated that autophagy and SIRT1 activity are inhibited in HLE-B3 cells using the HG induced senescence model. Furthermore, our results showed that MET can delay senescence by activating SIRT1 and autophagy. These findings suggest that MET may be a promising candidate for alleviating cataract development and provide a direction for further investigation into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yushan Fu
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Ruitong Wu
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Su Dong
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jianfeng Chen
- Laboratory Animal Center, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Nan Zhou
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
12
|
Li L, Xie J, Zhang Z, Xia B, Li Y, Lin Y, Li M, Wu P, Lin L. Recent advances in medicinal and edible homologous plant polysaccharides: Preparation, structure and prevention and treatment of diabetes. Int J Biol Macromol 2024; 258:128873. [PMID: 38141704 DOI: 10.1016/j.ijbiomac.2023.128873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/27/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Medicinal and edible homologs (MEHs) can be used in medicine and food. The National Health Commission announced that a total of 103 kinds of medicinal and edible homologous plants (MEHPs) would be available by were available in 2023. Diabetes mellitus (DM) has become the third most common chronic metabolic disease that seriously threatens human health worldwide. Polysaccharides, the main component isolated from MEHPs, have significant antidiabetic effects with few side effects. Based on a literature search, this paper summarizes the preparation methods, structural characterization, and antidiabetic functions and mechanisms of MEHPs polysaccharides (MEHPPs). Specifically, MEHPPs mainly regulate PI3K/Akt, AMPK, cAMP/PKA, Nrf2/Keap1, NF-κB, MAPK and other signaling pathways to promote insulin secretion and release, improve glycolipid metabolism, inhibit the inflammatory response, decrease oxidative stress and regulate intestinal flora. Among them, 16 kinds of MEHPPs were found to have obvious anti-diabetic effects. This article reviews the prevention and treatment of diabetes and its complications by MEHPPs and provides a basis for the development of safe and effective MEHPP-derived health products and new drugs to prevent and treat diabetes.
Collapse
Affiliation(s)
- Lan Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Jingchen Xie
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Yan Lin
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Minjie Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Ping Wu
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China.
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China.
| |
Collapse
|
13
|
Zingale E, Bonaccorso A, D’Amico AG, Lombardo R, D’Agata V, Rautio J, Pignatello R. Formulating Resveratrol and Melatonin Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) for Ocular Administration Using Design of Experiments. Pharmaceutics 2024; 16:125. [PMID: 38258134 PMCID: PMC10819881 DOI: 10.3390/pharmaceutics16010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Recent studies have demonstrated that Sirtuin-1 (SIRT-1)-activating molecules exert a protective role in degenerative ocular diseases. However, these molecules hardly reach the back of the eye due to poor solubility in aqueous environments and low bioavailability after topical application on the eye's surface. Such hindrances, combined with stability issues, call for the need for innovative delivery strategies. Within this context, the development of self-nanoemulsifying drug delivery systems (SNEDDS) for SIRT-1 delivery can represent a promising approach. The aim of the work was to design and optimize SNEDDS for the ocular delivery of two natural SIRT-1 agonists, resveratrol (RSV) and melatonin (MEL), with potential implications for treating diabetic retinopathy. Pre-formulation studies were performed by a Design of Experiment (DoE) approach to construct the ternary phase diagram. The optimization phase was carried out using Response Surface Methodology (RSM). Four types of SNEDDS consisting of different surfactants (Tween® 80, Tween® 20, Solutol® HS15, and Cremophor® EL) were optimized to achieve the best physico-chemical parameters for ocular application. Stability tests indicated that SNEDDS produced with Tween® 80 was the formulation that best preserved the stability of molecules, and so it was, therefore, selected for further technological studies. The optimized formulation was prepared with Capryol® PGMC, Tween® 80, and Transcutol® P and loaded with RSV or MEL. The SNEDDS were evaluated for other parameters, such as the mean size (found to be ˂50 nm), size homogeneity (PDI < 0.2), emulsion time (around 40 s), transparency, drug content (>90%), mucoadhesion strength, in vitro drug release, pH and osmolarity, stability to dilution, and cloud point. Finally, an in vitro evaluation was performed on a rabbit corneal epithelial cell line (SIRC) to assess their cytocompatibility. The overall results suggest that SNEDDS can be used as promising nanocarriers for the ocular drug delivery of RSV and MEL.
Collapse
Affiliation(s)
- Elide Zingale
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (A.B.); (R.L.)
- NANOMED—Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (A.B.); (R.L.)
- NANOMED—Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Agata Grazia D’Amico
- Department of Drug and Health Sciences, Section of Systems Biology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Rosamaria Lombardo
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (A.B.); (R.L.)
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy;
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland;
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (A.B.); (R.L.)
- NANOMED—Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|
14
|
Lu TH, Chang JW, Jhou BY, Hsu JH, Li TJ, Lee LY, Chen YL, Chang HH, Chen CC, Wu PS, Lin DPC. Preventative Effects of Cordyceps cicadae Mycelial Extracts on the Early-Stage Development of Cataracts in UVB-Induced Mice Cataract Model. Nutrients 2023; 15:3103. [PMID: 37513520 PMCID: PMC10386163 DOI: 10.3390/nu15143103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Cataracts, a prevalent age-related eye condition, pose a significant global health concern, with rising rates due to an aging population and increased digital device usage. In Taiwan, cataract prevalence is particularly high, reaching up to 90% among individuals aged 70 and above. The lens of the eye absorbs short-wave light, which can lead to oxidative stress in lens epithelial cells and contribute to cataract formation. Exposure to ultraviolet (UV) light further exacerbates the risk of cataracts by generating reactive oxygen species. Heat-shock proteins (HSPs), involved in protein maintenance and repair, have been linked to cataract development. Cordyceps cicadae (C. cicadae), a traditional Chinese medicine, has a long history of use and is known for its pharmacological effects. N6-(2-hydroxyethyl) adenosine (HEA), a bioactive compound found in C. cicadae, exhibits anti-inflammatory, immunomodulatory, and neuroprotective properties. Previous studies have shown that C. cicadae mycelial extracts improve dry eye disease and reduce intraocular pressure in animal models. Additionally, C. cicadae possesses antioxidant properties, which are beneficial for combating cataract formation. In this study, we aim to evaluate the preventive efficacy of C. cicadae mycelial extracts in UV-induced cataract development. By investigating the ameliorative effects of C. cicadae on eye diseases and its potential role in ocular health improvement, we hope to uncover new options for cataract prevention and provide insights into the mechanisms of action. The findings of this research could provide a novel approach for nutritional supplements targeting cataract prevention, offering potential benefits in the field of ocular health.
Collapse
Affiliation(s)
- Tsung-Han Lu
- Department of Medical Laboratory and Biotechnology, Chug Shan Medical University, Taichung City 402, Taiwan
| | - Jun-Way Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung City 404, Taiwan
| | - Bo-Yi Jhou
- Grape King Bio Ltd., Taoyuan City 320, Taiwan
| | | | - Tsung-Ju Li
- Grape King Bio Ltd., Taoyuan City 320, Taiwan
| | - Li-Ya Lee
- Grape King Bio Ltd., Taoyuan City 320, Taiwan
| | | | - Han-Hsin Chang
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
- Department of Nutrition, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Chin-Chu Chen
- Grape King Bio Ltd., Taoyuan City 320, Taiwan
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei City 104, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei City 106, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City 320, Taiwan
| | - Pey-Shiuan Wu
- Department of Cosmetic Science, Providence University, Taichung City 433, Taiwan
| | - David Pei-Cheng Lin
- Department of Medical Laboratory and Biotechnology, Chug Shan Medical University, Taichung City 402, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
15
|
Circular RNA circ_0024037 suppresses high glucose-induced lens epithelial cell injury by targeting the miR-199a-5p/TP53INP1 axis. Mol Cell Toxicol 2023. [DOI: 10.1007/s13273-023-00340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
16
|
Niu Y, Zhang G, Sun X, He S, Dou G. Distinct Role of Lycium barbarum L. Polysaccharides in Oxidative Stress-Related Ocular Diseases. Pharmaceuticals (Basel) 2023; 16:215. [PMID: 37259363 PMCID: PMC9966716 DOI: 10.3390/ph16020215] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress is an imbalance between the increased production of reactive species and reduced antioxidant activity, which can cause a variety of disturbances including ocular diseases. Lycium barbarum polysaccharides (LBPs) are complex polysaccharides isolated from the fruit of L. barbarum, showing distinct roles in antioxidants. Moreover, it is relatively safe and non-toxic. In recent years, the antioxidant activities of LBPs have attracted remarkable attention. In order to illustrate its significance and underlying therapeutic value for vision, we comprehensively review the recent progress on the antioxidant mechanisms of LBP and its potential applications in ocular diseases, including diabetic retinopathy, hypertensive neuroretinopathy, age-related macular degeneration, retinitis pigmentosa, retinal ischemia/reperfusion injury, glaucoma, dry eye syndrome, and diabetic cataract.
Collapse
Affiliation(s)
- Yali Niu
- College of Life Sciences, Northwestern University, Xi’an 710069, China
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Guoheng Zhang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xiaojia Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Shikun He
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Guorui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
17
|
Hong Y, Wu J, Sun Y, Zhang S, Lu Y, Ji Y. ceRNA network construction and identification of hub genes as novel therapeutic targets for age-related cataracts using bioinformatics. PeerJ 2023; 11:e15054. [PMID: 36987450 PMCID: PMC10040182 DOI: 10.7717/peerj.15054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
Background The aim of this study is to investigate the genetic and epigenetic mechanisms involved in the pathogenesis of age-related cataract (ARC). Methods We obtained the transcriptome datafile of th ree ARC samples and three healthy, age-matched samples and used differential expression analyses to identify the differentially expressed genes (DEGs). The differential lncRNA-associated competing endogenous (ceRNA) network, and the protein-protein network (PPI) were constructed using Cytoscape and STRING. Cluster analyses were performed to identify the underlying molecular mechanisms of the hub genes affecting ARC progression. To verify the immune status of the ARC patients, immune-associated analyses were also conducted. Results The PPI network identified the FOXO1 gene as the hub gene with the highest score, as calculated by the Maximal Clique Centrality (MCC) algorithm. The ceRNA network identified lncRNAs H19, XIST, TTTY14, and MEG3 and hub genes FOXO1, NOTCH3, CDK6, SPRY2, and CA2 as playing key roles in regulating the pathogenesis of ARC. Additionally, the identified hub genes showed no significant correlation with an immune response but were highly correlated with cell metabolism, including cysteine, methionine, and galactose. Discussion The findings of this study may provide clues toward ARC pathogenic mechanisms and may be of significance for future therapeutic research.
Collapse
Affiliation(s)
- Yingying Hong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jiawen Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yang Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Shenghai Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yi Lu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yinghong Ji
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Paensuwan P, Laorob T, Ngoenkam J, Wichai U, Pongcharoen S. Nitro Dihydrocapsaicin, a Non-Pungent Capsaicin Analogue, Inhibits Cellular Senescence of Lens Epithelial Cells via Upregulation of SIRT1. Int J Mol Sci 2022; 23:13960. [PMID: 36430438 PMCID: PMC9695757 DOI: 10.3390/ijms232213960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic cataracts are a common complication that can cause blindness among patients with diabetes mellitus. A novel nitro dihydrocapsaicin (NDHC), a capsaicin analog, was constructed to have a non-pungency effect. The objective of this research was to study the effect of NDHC on human lens epithelial (HLE) cells that lost function from hyperglycemia. HLE cells were pretreated with NDHC before an exposure to high glucose (HG) conditions. The results show that NDHC promoted a deacceleration of cellular senescence in HLE cells. This inhibition of cellular senescence was characterized by a delayed cell growth and lower production of reactive oxygen species (ROS) as well as decreased SA-β-galactosidase activity. Additionally, the expression of Sirt1 protein sharply increased, while the expression of p21 and phospho-p38 proteins decreased. These findings provide evidence that NDHC could exert a pharmacologically protective effect by inhibiting the senescence program of lens cells during diabetic cataracts.
Collapse
Affiliation(s)
- Pussadee Paensuwan
- Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Thanet Laorob
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Uthai Wichai
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sutatip Pongcharoen
- Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
19
|
Lu A, Duan P, Xie J, Gao H, Chen M, Gong Y, Li J, Xu H. Recent progress and research trend of anti-cataract pharmacology therapy: A bibliometric analysis and literature review. Eur J Pharmacol 2022; 934:175299. [PMID: 36181780 DOI: 10.1016/j.ejphar.2022.175299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
Cataract is the leading cause of blindness worldwide. Cataract phacoemulsification combined with intraocular lens implantation causes great burden to global healthcare, especially for low- and middle-income countries. Such burden would be significantly relieved if cataracts can effectively be treated or delayed by non-surgical means. Excitingly, novel drugs have been developed to treat cataracts in recent decades. For example, oxysterols are found to be able to innovatively reverse lens clouding, novel nanotechnology-loaded drugs improve anti-cataract pharmacological effect, and traditional Chinese medicine demonstrates promising therapeutic effects against cataracts. In the present review, we performed bibliometric analysis to provide an overview perspective regarding the research status, hot topics, and academic trends in the field of anti-cataract pharmacology therapy. We further reviewed the curative effects and molecular mechanisms of anti-cataract drugs such as lanosterol, metformin, resveratrol and curcumin, and prospected the possibility of their clinical application in future.
Collapse
Affiliation(s)
- Ao Lu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China; The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Ping Duan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jing Xie
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Hui Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Mengmeng Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Yu Gong
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jiawen Li
- Department of Ophthalmology, University-Town Hospital of Chongqing Medical University, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China.
| |
Collapse
|
20
|
Lycium Genus Polysaccharide: An Overview of its Extraction, Structures, Pharmacological Activities and Biological Applications. SEPARATIONS 2022. [DOI: 10.3390/separations9080197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polysaccharide is considered to be the main active ingredient of the genus Lycium L., which is taken from the dried fruit of the famous Chinese herbal medicine and precious tonic known as wolfberry. Traditional uses include nourishing the liver and kidney and improving eyesight, with widespread use in the clinical practice of traditional Chinese medicine. Many studies have focused on the isolation and identification of the genus Lycium L. polysaccharide and its biological activities. However, the variety of raw materials and the mechanisms of polysaccharides differ. After extraction, the structure and biological activity of the obtained polysaccharides also differ. To date, approximately 58 kinds of polysaccharides have been isolated and purified from the Lycium genus, including water-soluble polysaccharides; homogeneous polysaccharides; pectin polysaccharides; acidic heteropolysaccharides; and arabinogalactans, which are composed of arabinose, glucosamine, galactose, glucose, xylose, mannose, fructose, ribose, galacturonic acid, and glucuronic acid. Pharmacological studies have shown that LBPs exhibit a variety of important biological activities, such as protection of nerves; promotion of reproduction; and anti-inflammatory, hepatoprotective, hypoglycemic, and eyesight-improving activities. The aim this paper is to summarize previous and current references to the isolation process, structural characteristics, and biological activities of the genus Lycium L. polysaccharide. This review will provide a useful reference for further research and application of the genus Lycium L. polysaccharide in the field of functional food and medicine.
Collapse
|
21
|
Exploring the Protective Effect and Mechanism of Buddlejae Flos on Sodium Selenite-Induced Cataract in Rats by Network Pharmacology, Molecular Docking, and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7776403. [PMID: 35607520 PMCID: PMC9124124 DOI: 10.1155/2022/7776403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/26/2022] [Indexed: 12/18/2022]
Abstract
Objective Buddlejae Flos has a long history of utilization by humans to treat ophthalmic diseases. Although in vitro study revealed that it can be used for treating cataract, the bioactive components and the mechanism of efficacy remained unclear. This study aims to discover the bioactive components and mode of efficacy of Buddlejae Flos in cataract treatment. Methods Several databases were screened for bioactive components and corresponding targets, as well as cataract-related targets. Using the String database, common targets were determined and utilized to construct protein-protein interactions (PPI). The drug-component-target-disease network map was drawn using Cytoscape software. R language was utilized to execute Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway enrichment analysis. Molecular docking was done through Schrödinger Maestro software utilization. Luteolin's (LUT) effect on cataract induced by sodium selenite in rat pups was evaluated. Results Six bioactive components with 38 common targets were identified as being associated with cataract. TP53, AKT1, EGFR, CASP3, TNF, ESR1, INS, IL6, HIF1A, and VEGFA were identified as core targets in PPI analysis, and the binding energy of LUT with AKT was the lowest. LUT has been demonstrated to significantly lower MDA levels, raise glutathione (GSH) levels, and boost the activity of antioxidant enzymes like GST, SOD, GPx, and CAT. After LUT treatment, TNF-a, IL-2, and IL-6 levels were significantly lowered. Bcl-2 mRNA expression levels and p-PI3K and p-AKT protein expression were significantly elevated. In contrast, caspase-3 and Bax mRNA expression levels were significantly decreased. Conclusion This study demonstrates that LUT is a possible bioactive component that may be utilized for cataract treatment. Its mode of action includes oxidative stress suppression, reducing inflammation, and inhibiting apoptosis via regulating the PI3K/AKT single pathway.
Collapse
|
22
|
Huang R, Wu E, Deng X. Potential of Lycium barbarum polysaccharide for the control of glucose and lipid metabolism disorders: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2057529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rongrong Huang
- Department of Pharmacy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Enhui Wu
- Department of Laboratory of Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou China
| | - Xiangliang Deng
- Department of Laboratory of Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou China
- Department of Basic Teaching and Research Section of Traditional Chinese Medicine, School of Chinese Medicine, Guangdong Pharmaceutical University, Yunfu China
| |
Collapse
|
23
|
Liang Z, Luo Z, Li W, Yang M, Wang L, Lin X, Li L. Elevated CO 2 Enhanced the Antioxidant Activity and Downregulated Cell Wall Metabolism of Wolfberry ( Lycium barbarum L.). Antioxidants (Basel) 2021; 11:antiox11010016. [PMID: 35052519 PMCID: PMC8773196 DOI: 10.3390/antiox11010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2022] Open
Abstract
Modified atmosphere packaging (MAP) has been widely known to delay the postharvest fruit senescence; nevertheless, its effect on antioxidant activity and cell wall metabolism of wolfberry fruit is largely unknown. The present study investigated the impact of elevated CO2 on the quality attributes and cell wall degradation of wolfberry fruit during storage. The results showed that 10% CO2 better maintained the physiological quality and conferred the reduction in weight loss, decay index, and color change. Higher 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-1-picrylhydrazil (DPPH) radical scavenging activity, total phenol and flavonoid content, and superoxide dismutase (SOD) and catalase (CAT) activity of wolfberry were detected at elevated CO2 concentrations. Elevated CO2 atmosphere contributed to the maintenance of the cell integrity, the decrease of cell wall degradation (polygalacturonase, pectate lyase, cellulase, and β-glucosidase), and the increase of cellulose and proto pectin content. Overall, we revealed the potential mechanism of elevated CO2 on the antioxidant activity enhancement and cell wall homeostasis of fresh berry fruit.
Collapse
Affiliation(s)
- Ze Liang
- Key Laboratory of Agro-Products Postharvest Handling, Fuli Institute of Food Science, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.L.); (Z.L.); (W.L.); (M.Y.); (L.W.); (X.L.)
| | - Zisheng Luo
- Key Laboratory of Agro-Products Postharvest Handling, Fuli Institute of Food Science, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.L.); (Z.L.); (W.L.); (M.Y.); (L.W.); (X.L.)
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
- Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Wenxuan Li
- Key Laboratory of Agro-Products Postharvest Handling, Fuli Institute of Food Science, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.L.); (Z.L.); (W.L.); (M.Y.); (L.W.); (X.L.)
| | - Mingyi Yang
- Key Laboratory of Agro-Products Postharvest Handling, Fuli Institute of Food Science, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.L.); (Z.L.); (W.L.); (M.Y.); (L.W.); (X.L.)
| | - Lei Wang
- Key Laboratory of Agro-Products Postharvest Handling, Fuli Institute of Food Science, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.L.); (Z.L.); (W.L.); (M.Y.); (L.W.); (X.L.)
| | - Xingyu Lin
- Key Laboratory of Agro-Products Postharvest Handling, Fuli Institute of Food Science, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.L.); (Z.L.); (W.L.); (M.Y.); (L.W.); (X.L.)
| | - Li Li
- Key Laboratory of Agro-Products Postharvest Handling, Fuli Institute of Food Science, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.L.); (Z.L.); (W.L.); (M.Y.); (L.W.); (X.L.)
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
- Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
- Correspondence: ; Tel./Fax: +86-571-8898-1885
| |
Collapse
|
24
|
Yang L, Li DX, Cao BQ, Liu SJ, Xu DH, Zhu XY, Liu YJ. Exercise training ameliorates early diabetic kidney injury by regulating the H 2 S/SIRT1/p53 pathway. FASEB J 2021; 35:e21823. [PMID: 34396581 DOI: 10.1096/fj.202100219r] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 12/29/2022]
Abstract
Exercise training exerts protective effects against diabetic nephropathy. This study aimed to investigate whether exercise training could attenuate diabetic renal injury via regulating endogenous hydrogen sulfide (H2 S) production. First, C57BL/6 mice were allocated into the control, diabetes, exercise, and diabetes + exercise groups. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ). Treadmill exercise continued for four weeks. Second, mice was allocated into the control, diabetes, H2 S and diabetes + H2 S groups. H2 S donor sodium hydrosulfide (NaHS) was intraperitoneally injected once daily for four weeks. STZ-induced diabetic mice exhibited glomerular hypertrophy, tissue fibrosis and increased urine albumin levels, urine protein- and albumin-to-creatinine ratios, which were relieved by exercise training. Diabetic renal injury was associated with apoptotic cell death, as evidenced by the enhanced caspase-3 activity, the increased TdT-mediated dUTP nick-end labeling -positive cells and the reduced expression of anti-apoptotic proteins, all of which were attenuated by exercise training. Exercise training enhanced renal sirtuin 1 (SIRT1) expression in diabetic mice, accompanied by an inhibition of the p53-#ediated pro-apoptotic pathway. Furthermore, exercise training restored the STZ-mediated downregulation of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) and the reduced renal H2 S production. NaHS treatment restored SIRT1 expression, inhibited the p53-mediated pro-apoptotic pathway and attenuated diabetes-associated apoptosis and renal injury. In high glucose-treated MPC5 podocytes, NaHS treatment inhibited the p53-mediated pro-apoptotic pathway and podocyte apoptosis in a SIRT1-dependent manner. Collectively, exercise training upregulated CBS/CSE expression and enhanced the endogenous H2 S production in renal tissues, thereby contributing to the modulation of the SIRT1/p53 apoptosis pathway and improvement of diabetic nephropathy.
Collapse
Affiliation(s)
- Lu Yang
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Dong-Xia Li
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Bu-Qing Cao
- Department of Physiology, Navy Medical University, Shanghai, China.,Department of Laboratory Medicine, Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Shu-Juan Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dan-Hong Xu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, Shanghai, China
| | - Yu-Jian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
25
|
Improvement of Presbyopia Using a Mixture of Traditional Chinese Herbal Medicines, Including Cassiae Semen, Wolfberry, and Dendrobium huoshanense. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9902211. [PMID: 34354761 PMCID: PMC8331274 DOI: 10.1155/2021/9902211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 01/04/2023]
Abstract
Background Presbyopia is a primary cause of a decline in near vision. In this study, we developed a new mixed herbal medicine to retard presbyopic progression and increase the amplitude of accommodation (AA), which is beneficial for near vision. Methods A total of 400 participants between the ages of 45 and 70 years were recruited. We designed the mixed herbal drug to include Cassiae Semen (200 mg), wolfberry (200 mg), and Dendrobium huoshanense (DD) (40 mg) in one capsule. In experiment 1, the recruited subjects were directed to perform a push-up test to measure their AA; this was then converted to the additional diopters of reading glasses. In experiment 2, 240 subjects took three capsules daily for six months and then stopped medical therapy for a six-month follow-up. In experiment 3, 160 subjects were randomly categorized into four groups: a placebo group, low-dose group (LDG) (1 capsule daily), middle-dose group (MDG) (two capsules daily), and high-dose group (HDG) (three capsules daily). The 160 volunteers took different doses for six months and then stopped treatment, accompanied by another six-month follow-up. In experiments 2 and 3, the change in AA, uncorrected far visual acuity (UFVA), and uncorrected near visual acuity (UNVA) were recorded each month for one year. Results In experiment 1, AA was found to decrease with age and a great deal of additional power was needed in older individuals. In experiment 2, the mean AA reached a maximum value of 2.1D (P < 0.05) after six months, while the UNVA improved by about two to three lines of a Jaeger chart in most of the subjects. At nine months, all the means decreased slightly to 2.0 D (P < 0.05). This meant that the mixed herbal medicine could still maintain AA for another three months because the herbal therapy was stopped at the seventh month. In experiment 3, the maximal AA was 2.8D, 2.9D, and 3.2D (P < 0.05) in the LDG, MDG, and HDG after six-month treatments, respectively. Experiment 3 showed that AA gain occurred in a dose-dependent manner; the higher the dose, the greater the AA value. Conclusion Only two studies on the use of herbal drugs for presbyopia have been reported in PubMed. In our study, we found that taking a mixed herbal drug caused an excellent gain in AA. This is the first study to report that the characteristics of the new herbal regimen could retard and even ameliorate presbyopia.
Collapse
|
26
|
Liu Z, Sun F, Liu Z, Wang X, Jin M, Mao J, Wu Q, Yan S, Xu K, Wang K, Hu S. Effect of Sleeve Gastrectomy on Glycometabolism via Forkhead Box O1 (FoxO1)/Lipocalin-2 (LCN2) Pathway. Med Sci Monit 2020; 26:e927458. [PMID: 32845875 PMCID: PMC7780888 DOI: 10.12659/msm.927458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The mechanism by which sleeve gastrectomy (SG) improves glycometabolism has remained unclear so far. Increasing evidence has demonstrated that bone is a regulator of glucose metabolism, and osteoblast-derived forkhead box O1 (FoxO1) and lipocalin-2 (LCN2) are regulators of energy metabolism. The aim of this study was to investigate whether the FOXO1/LCN2 signaling pathway is involved in the anti-diabetic effect of SG. MATERIAL AND METHODS Insulin resistance was induced in Wistar rats, which were then intraperitoneally injected with streptozotocin to induce a type 2 diabetic state. Levels of fasting blood glucose, serum insulin, HbA1c, and LCN2 were analyzed at corresponding time points after SG and sham surgeries. The expressions of FOXO1, LCN2, and the melanocortin 4 receptor (MC4R) in bone and hypothalamus were detected by immunofluorescence. FOXO1 siRNA was applied to downregulate FOXO1 expression in osteoblasts of rats. The influence of FOXO1 gene on expression of LCN2 was investigated in cultured osteoblasts by western blot and PCR. RESULTS Glucose metabolism in the SG group was significantly improved. The LCN2 expression in bone in the SG group was higher than that in the sham group, whereas FOXO1 expression in the SG group was lower than that in the sham group. The binding rate of LCN2 and MC4R in the hypothalamus was also higher in the SG group compared with that in the sham group. The downregulation of FOXO1 expression in osteoblasts was accompanied by upregulation of LCN2 expression. CONCLUSIONS These results suggest that the FOXO1/LCN2 signaling pathway participates in the anti-diabetic effect of SG.
Collapse
Affiliation(s)
- Zhi Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Fuyun Sun
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Zitian Liu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Xiaoyang Wang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Mingxin Jin
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Jiajia Mao
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Qunzheng Wu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Shaohua Yan
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Kai Xu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Kexin Wang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Sanyuan Hu
- Department of General Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|