1
|
Ma J, Pang X, Xue W, Wang J, Huo H, Zhao M, Huang Y, Yin Z, Gao Y, Zhao Y, Li J, Zheng J. Sesquiterpene-enriched extract of Chinese agarwood (Aquilaria sinensis) alleviates bile reflux gastritis through suppression of gastric mucosal cell apoptosis via the Wnt/β-catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119037. [PMID: 39510422 DOI: 10.1016/j.jep.2024.119037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese agarwood (Aquilaria sinensis) has been a traditional treatment for digestive disorders in South and East Asia. While sesquiterpenes are recognized as the key active constituents of Chinese agarwood, the efficacy and mechanism of the sesquiterpene-enriched extract of Chinese agarwood (PEE) on bile reflux gastritis (BRG) remain unclear. AIM OF THE STUDY To explore the protective impact of PEE against BRG and unveil its underlying mechanism in suppressing apoptosis of gastric mucosal cells. MATERIALS AND METHODS A taurocholic acid (TCA)-induced BRG mouse model was used to assess PEE's protective effects on gastric mucosa histopathology. Transcriptomic analysis was conducted to identify the key signaling pathways affected by PEE. The impact of PEE on apoptosis modulation and Wnt/β-catenin signaling in GES-1 cells was examined. Additionally, the influence of PEE on the Wnt/β-catenin pathway in BRG mouse gastric mucosa was evaluated. RESULTS PEE substantially improved gastric tissue damage and inflammation in BRG mice. Transcriptomic analysis revealed that PEE modulates genes linked to apoptosis and the Wnt/β-catenin pathway. In TCA-induced GES-1 cells, PEE enhanced cell viability and mitigated apoptosis via the Wnt/β-catenin pathway, a process potentially mediated by IWP-2, an antagonist of this pathway. Similar regulatory effects were noted in the gastric mucosa of BRG mice. CONCLUSION Our research suggests that PEE exerts a protective effect on the gastric tissue through modulating the Wnt/β-catenin pathway to combat apoptosis, which highlights the potential of PEE as a natural remedy for BRG and warrants further investigation into its therapeutic benefits.
Collapse
Affiliation(s)
- Jiale Ma
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xueping Pang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Weigang Xue
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Junjiao Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huixia Huo
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Maoyuan Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yangli Huang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ziyu Yin
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yun Gao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yunfang Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiao Zheng
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
2
|
Kim W, Zia MB, Naik RR, Ho KKHY, Selomulya C. Effects of polyphenols from Tasmannia lanceolata on structural, emulsifying, and antioxidant properties of pea protein. Food Chem 2025; 464:141589. [PMID: 39406142 DOI: 10.1016/j.foodchem.2024.141589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 11/21/2024]
Abstract
The effects of polyphenols from Tasmanian pepper (Tasmannia Lanceolata) leaf and berry on the functional properties of pea protein were investigated in flaxseed oil-in-water emulsions. Phenolic acids and flavonols in Tasmanian pepper leaf with smaller molecular weights led to stronger non-covalent interactions with pea protein, while anthocyanins from Tasmanian pepper berry induced protein aggregation under acidic condition and co-existed with proteins in neutral and alkaline conditions. The total phenolic content was significantly increased with incorporation of polyphenols from Tasmanian pepper leaf (334.94-445.92 μg/mL) and berry (72.89-153.03 μg/mL) to pea protein (4.19-15.59 μg/mL). The oxidative stability of emulsions at pH 3 and 7 was enhanced, reducing TBARS value from 1.54 to 2.68 mg MDA/kg in pea protein to 0.56-0.85 mg MDA/kg after 2 weeks storage. These findings illustrated the distinct interactions between pea protein and different polyphenols from Tasmanian pepper leaf and berry to enhance the antioxidant capacity of pea protein.
Collapse
Affiliation(s)
- Woojeong Kim
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Muhammad Bin Zia
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | | | - Kacie K H Y Ho
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | |
Collapse
|
3
|
Gitonga M, Osano A, Sitati M. Insides into molecular structural elucidation on the pesticidal and herbicidal potency of AD biogas slurry. BIORESOURCE TECHNOLOGY REPORTS 2024; 28:101967. [DOI: 10.1016/j.biteb.2024.101967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
4
|
Bouloumpasi E, Koskeridou A, Irakli M, Karioti A, Tsivelika N, Chatzopoulou P. Bioactive Compounds of Green Phenolic Extracts Obtained via Microwave-Assisted Extraction of Sideritis Species Grown in Greece. Molecules 2024; 29:5612. [PMID: 39683771 DOI: 10.3390/molecules29235612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The purpose of the present study was to compare the polyphenolic compounds extracted from five Sideritis species grown in Greece; S. scardica, S. clandestina, S. raeseri, S. euboea, and S. syriaca, using the Microwave-Assisted Extraction (MAE) process. To maximize the extraction yield (EY), total phenolic compounds (TPC), hypolaetin (HYP) and isoscutellarein (ISC), derivative contents (target phenolics), the response surface methodology was used for S. scardica. A Box-Behnken design was undertaken to study the effect of ethanol concentration (30-100%), extraction temperature (40-100 °C), and extraction time (5-25 min) on the responses. The optimal MAE parameters were 87.9% (v/v) ethanol, 25 min, and 100 °C. Under these conditions, there was a good agreement between experimental and predicted values, indicating the reliability of the predictions for Sideritis extracts. Phenolic compounds were then extracted under these conditions, from the five Sideritis species under investigation. The TPC, total flavonoid content (TFC), antioxidant activity based on DPPH, ABTS, and FRAP assays as well as the phenolic profile of different Sideritis extracts, evaluated via HPLC-DAD-MS, were compared. A similar phenolic profile was observed among the five Sideritis species, with HYP and ISC derivatives showing variations in their contents as a function of Sideritis species. MAE Sideritis extracts could be considered green and natural antioxidants for medicinal, cosmetic, and food purposes, accompanied by sustainable approaches.
Collapse
Affiliation(s)
- Elisavet Bouloumpasi
- Hellenic Agricultural Organization-Dimitra, Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece
| | - Anna Koskeridou
- Laboratory of Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Maria Irakli
- Hellenic Agricultural Organization-Dimitra, Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece
| | - Anastasia Karioti
- Laboratory of Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Nektaria Tsivelika
- Hellenic Agricultural Organization-Dimitra, Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece
| | - Paschalina Chatzopoulou
- Hellenic Agricultural Organization-Dimitra, Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece
| |
Collapse
|
5
|
Althobaiti SA. Boosting impacts of Acacia nilotica against hepatic toxicity induced by gentamicin: biochemical, anti-inflammatory and immunohistochemical study. Toxicol Res (Camb) 2024; 13:tfae141. [PMID: 39233845 PMCID: PMC11368662 DOI: 10.1093/toxres/tfae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
It seems that gentamicin's toxicity to the liver is caused by reactive oxygen species production. The antioxidant and anti-inflammatory properties of Acacia nilotica extract (AN) have been demonstrated in recent studies. This research focused on how AN's extract affected gentamicin-induced liver damage in rats. Twenty-four Wister rats of male type were divided into four groups: first group received saline as a control, second group received AN (5%) for fifteen days, group three received daily intraperitoneal injections of gentamicin (100 mg/kg) for fifteen days, and group four, as mentioned in groups 2 and 3, also received gentamicin injections and AN extraction (5%) for fifteen days. In order to conduct biochemical analysis, serum was extracted. Histopathology, immunohistochemistry analyses for hepatic toxicity were all performed on the collected tissue samples. Serum levels of ALT, AST, total bilirubin, and GGT were all elevated after using gentamicin. The inflammatory cytokines)IL-1, TNF-α and IL-6(, all were increased in gentamycin-injected group. There were showing deformity of bile duct, hepatocellular necrosis and infiltration of inflammatory cells congestion of portal vein, and hepatic sinusoids besides fibrosis of portal area (white arrows), hypertrophy in gentamycin-injected group compared to AN plus gentamycin administered rats. There were upregulation in the immunoreactivity of COX-2, IFNkB and TGF-beta1 (TGF-β1) in gentamycin intoxicated rats. When gentamicin and AN were administered together, hepatic biomarkers, inflammatory cytokines, histological, and immunohistochemical markers were all ameliorated by AN administration.
Collapse
Affiliation(s)
- Saed A Althobaiti
- Department of Biology, Turabah University College, Taif University, P.O. Box 11099, Turabah, Taif, Saudi Arabia
| |
Collapse
|
6
|
Harriden B, Speer K, Sergi D, Gill CIR, Popović-Djordjević J, McKune A, Naumovski N. The phytochemical composition and unexplored potential of Australian native plants for application in physical activity-related muscle recovery and inflammation: a literature review. Food Funct 2024; 15:9718-9733. [PMID: 39279540 DOI: 10.1039/d4fo02067g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Native plants are adaptable in various environmental conditions in part through the production of unique phytochemicals which may have beneficial effects on human health. Native Australian fruits contain higher phytochemical and antioxidant levels than most Western fruits, suggesting potential for greater health benefits arising from their consumption. These beneficial effects, in turn, may be mediated by the inhibition of inflammatory pathways as well as oxidative stress via the regulation of reactive oxygen (ROS) and/or nitrogen (RNS) species levels. Unaccustomed or strenuous exercise causes muscle damage and soreness, that may be driven by increased ROS and inflammation. There is growing interest in the application of polyphenol-rich food supplementation for the alleviation of exercise-induced oxidative stress, for the reduction of exercise-induced inflammation and improvement of muscle recovery. Therefore, the aim of this review was to provide an overview of the phytochemical and bioactive composition of some Australian native plant foods and their potential use for functional food development in the management of muscle recovery and inflammation. Native plant foods and food products could be beneficial for reducing inflammation, though it is important to note that most of the research in this field has been conducted in animal models or in vitro, in addition to there being little data on skeletal muscle inflammation. Further studies, particularly in humans, would be needed to confirm these effects and to determine the appropriate dosages and forms of native foods and food products for consumption to reduce inflammation and enhance muscle recovery.
Collapse
Affiliation(s)
- Brittany Harriden
- Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia.
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Ngunnawal Country, ACT, 2617, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), Canberra, ACT, 2601, Australia
| | - Kathryn Speer
- Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia.
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Ngunnawal Country, ACT, 2617, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), Canberra, ACT, 2601, Australia
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Jelena Popović-Djordjević
- University of Belgrade - Faculty of Agriculture, Department of Food Technology and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
| | - Andrew McKune
- Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia.
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Ngunnawal Country, ACT, 2617, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), Canberra, ACT, 2601, Australia
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal 4000, South Africa
| | - Nenad Naumovski
- Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia.
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Ngunnawal Country, ACT, 2617, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), Canberra, ACT, 2601, Australia
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 10431, Athens, Greece
| |
Collapse
|
7
|
Dutertre Q, Guy PA, Sutour S, Peitsch MC, Ivanov NV, Glauser G, von Reuss S. Identification of Granatane Alkaloids from Duboisia myoporoides (Solanaceae) using Molecular Networking and Semisynthesis. JOURNAL OF NATURAL PRODUCTS 2024; 87:1914-1920. [PMID: 39038492 PMCID: PMC11348422 DOI: 10.1021/acs.jnatprod.4c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
The Solanaceae plant family contains at least 98 genera and over 2700 species. The Duboisia genus stands out for its ability to produce pyridine and tropane alkaloids, which are relatively poorly characterized at the phytochemical level. In this study, we analyzed dried leaves of Duboisia spp. using supercritical CO2 extraction and ultra-high-pressure liquid chromatography coupled to high-resolution tandem mass spectrometry, followed by feature-based molecular networking. Thirty-one known tropane alkaloids were putatively annotated, and the identity of six (atropine, scopolamine, anisodamine, aposcopolamine, apoatropine, and noratropine) were identified using reference standards. Two new granatane alkaloids connected in the molecular network were highlighted from Duboisia myoporoides, and their α-granatane tropate and α-granatane isovalerate structures were unambiguously established by semisynthesis.
Collapse
Affiliation(s)
- Quentin Dutertre
- Philip
Morris Product SA, Quai
Jeanrenaud 3, Neuchâtel 2000, Switzerland
- Laboratory
of Bioanalytical Chemistry, University of
Neuchâtel, Neuchâtel 2000, Switzerland
| | - Philippe A. Guy
- Philip
Morris Product SA, Quai
Jeanrenaud 3, Neuchâtel 2000, Switzerland
| | - Sylvain Sutour
- Neuchâtel
Platform of Analytical Chemistry (NPAC), University of Neuchâtel, Neuchâtel 2000, Switzerland
| | - Manuel C. Peitsch
- Philip
Morris Product SA, Quai
Jeanrenaud 3, Neuchâtel 2000, Switzerland
| | - Nikolai V. Ivanov
- Philip
Morris Product SA, Quai
Jeanrenaud 3, Neuchâtel 2000, Switzerland
| | - Gaetan Glauser
- Neuchâtel
Platform of Analytical Chemistry (NPAC), University of Neuchâtel, Neuchâtel 2000, Switzerland
| | - Stephan von Reuss
- Laboratory
of Bioanalytical Chemistry, University of
Neuchâtel, Neuchâtel 2000, Switzerland
- Neuchâtel
Platform of Analytical Chemistry (NPAC), University of Neuchâtel, Neuchâtel 2000, Switzerland
| |
Collapse
|
8
|
Firoozbahr M, Palombo EA, Kingshott P, Zaferanloo B. Antibacterial and Antibiofilm Properties of Native Australian Plant Endophytes against Wound-Infecting Bacteria. Microorganisms 2024; 12:1710. [PMID: 39203552 PMCID: PMC11357646 DOI: 10.3390/microorganisms12081710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
The wound management field faces significant challenges due to antimicrobial resistance (AMR) and the complexity of chronic wound care. Effective wound treatment requires antimicrobial dressings to prevent bacterial infections. However, the rise of AMR necessitates new antimicrobial agents for wound dressings, particularly for addressing bacterial pathogens like methicillin-resistant Staphylococcus aureus (MRSA). Endophytic fungi, known for producing diverse bioactive compounds, represent a promising source of such new agents. This study tested thirty-two endophytic fungi from thirteen distinct Australian native plants for their antibacterial activity against S. aureus. Ethyl acetate (EtOAc) extracts from fungal culture filtrates exhibited inhibitory effects against both methicillin-sensitive S. aureus ATCC 25923 (MIC = 78.1 µg/mL) and MRSA M180920 (MIC = 78.1 µg/mL). DNA sequence analysis was employed for fungal identification. The most active sample, EL 19 (Chaetomium globosum), was selected for further analysis, revealing that its EtOAc extracts reduced S. aureus ATCC 25923 biofilm formation by 55% and cell viability by 57% to 68% at 12 × MIC. Furthermore, cytotoxicity studies using the brine shrimp lethality test demonstrated low cytotoxicity up to 6 × MIC (25% mortality rate) with an LC50 value of 639.1 µg/mL. Finally, the most active sample was incorporated into polycaprolactone (PCL) fiber mats via electrospinning, with resultant inhibition of S. aureus species. This research underscores the potential of endophytic fungi from Australian plants as sources of substances effective against common wound pathogens. Further exploration of the responsible compounds and their mechanisms could facilitate the development of wound dressings effective against MRSA and innovative biofilm-resistant electrospun fibers, contributing to the global efforts to combat AMR.
Collapse
Affiliation(s)
- Meysam Firoozbahr
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.F.); (P.K.)
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.F.); (P.K.)
- ARC Training Center for Biofilm Research and Innovation, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.F.); (P.K.)
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Bita Zaferanloo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.F.); (P.K.)
| |
Collapse
|
9
|
Mathew S, Zhou X, Münch G, Raju R. Exploring the Anti-Inflammatory Potential of Australian Native Plants Based on their Ethnopharmacological Knowledge. Chem Biodivers 2024; 21:e202400492. [PMID: 38700281 DOI: 10.1002/cbdv.202400492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Inflammation represents the inherent protective reaction of the human body to various harmful agents and noxious stimuli. Standard anti-inflammatory therapy including nonsteroidal anti-inflammatory drugs are associated with several side effects. In the past decades, people rely on medicinal plants for the treatment of inflammation. The traditional utilization of medicinal plants is regarded as a safe, cost-effective, and broadly accepted approach. In this study, anti-inflammatory activity of plants traditionally utilized by the D'harawal people in Australia has been assessed in vitro. Eighty Australian native plants were screened based on the Dharawal Pharmacopeia for their inhibitory effect on the nitric oxide (NO) production in lipopolysaccharides (LPS) and interferon (IFN)-γ stimulated RAW 264.7 murine macrophages for their anti-inflammatory activity. From the eighty ethanolic extracts screened, seventeen displayed potent NO inhibition with an IC50 recorded below 15 μg/mL. The aim of this review was to utilise the ethnopharmacological knowledge and to correlate the anti-inflammatory activity of the seventeen plants with either their known or unknown phytochemicals reported in the literature. In doing so, we have created a snapshot of Australian native plant candidates that warrant further chemical investigation associated with their anti-inflammatory activity.
Collapse
Affiliation(s)
- Shintu Mathew
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
- Department of Pharmacology, Western Sydney University, Campbelltown Campus, Sydney, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Gerald Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
- Department of Pharmacology, Western Sydney University, Campbelltown Campus, Sydney, Australia
| | - Ritesh Raju
- Department of Pharmacology, Western Sydney University, Campbelltown Campus, Sydney, Australia
| |
Collapse
|
10
|
Aslam S, Aljawdah HM, Murshed M, Serrano GE. Pharmacophore modelling based virtual screening and molecular dynamics identified the novel inhibitors and drug targets against Waddlia chondrophila. Sci Rep 2024; 14:13472. [PMID: 38866811 PMCID: PMC11169463 DOI: 10.1038/s41598-024-63555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
Waddlia chondrophila is a possible cause of fetal death in humans. This Chlamydia-related bacterium is an emergent pathogen that causes human miscarriages and ruminant abortions, which results in financial losses. Despite the years of efforts, the underlying mechanism behind the pathogenesis of W. chondrophila is little known which hindered the development of novel treatment options. In the framework of current study, computational approaches were used to identify novel inhibitors (phytocompounds) and drug targets against W. chondrophila. At first, RNA polymerase sigma factor SigA and 3-deoxy-D-manno-octulosonic acid transferase were identified through subtractive proteomics pipeline. Afterwards, extensive docking and simulation analyses were conducted to optimize potentially novel phytocompounds by assessing their binding affinity to target proteins. A 100ns molecular dynamics simulation well complimented the compound's binding affinity and indicated strong stability of predicted compounds at the docked site. The calculation of binding free energies with MMGBSA corroborated the significant binding affinity between phytocompounds and target protein binding sites. The proposed phytocompounds may be a viable treatment option for patients infected with W. chondrophila; however, further research is required to ensure their safety.
Collapse
Affiliation(s)
- Sidra Aslam
- Banner Sun Health Research Institute, Sun City, AZ, USA.
| | - Hossam M Aljawdah
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mutee Murshed
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | | |
Collapse
|
11
|
Ali A, Mueed A, Cottrell JJ, Dunshea FR. LC-ESI-QTOF-MS/MS Identification and Characterization of Phenolic Compounds from Leaves of Australian Myrtles and Their Antioxidant Activities. Molecules 2024; 29:2259. [PMID: 38792121 PMCID: PMC11124226 DOI: 10.3390/molecules29102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Phenolic compounds, present in plants, provide substantial health advantages, such as antioxidant and anti-inflammatory properties, which enhance cardiovascular and cognitive well-being. Australia is enriched with a wide range of plants with phytopharmacological potential, which needs to be fully elucidated. In this context, we analyzed leaves of aniseed myrtle (Syzygium anisatum), lemon myrtle (Backhousia citriodora), and cinnamon myrtle (Backhousia myrtifolia) for their complex phytochemical profile and antioxidant potential. LC-ESI-QTOF-MS/MS was applied for screening and characterizing these Australian myrtles' phenolic compounds and the structure-function relation of phenolic compounds. This study identified 145 and quantified/semi-quantified 27 phenolic compounds in these Australian myrtles. Furthermore, phenolic contents (total phenolic content (TPC), total condensed tannins (TCT), and total flavonoids (TFC)) and antioxidant potential of phenolic extracts from the leaves of Australian myrtles were quantified. Aniseed myrtle was quantified with the highest TPC (52.49 ± 3.55 mg GAE/g) and total antioxidant potential than other selected myrtles. Catechin, epicatechin, isovitexin, cinnamic acid, and quercetin were quantified as Australian myrtles' most abundant phenolic compounds. Moreover, chemometric analysis further validated the results. This study provides a new insight into the novel potent bioactive phenolic compounds from Australian myrtles that could be potentially useful for functional, nutraceutical, and therapeutic applications.
Collapse
Affiliation(s)
- Akhtar Ali
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (J.J.C.)
| | - Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road Jiangxi, Nanchang 330047, China;
| | - Jeremy J. Cottrell
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (J.J.C.)
| | - Frank R. Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (J.J.C.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
12
|
Xiao HH. The Role of Oxidative Stress and Natural Products in Maintaining Human Health. Nutrients 2024; 16:1268. [PMID: 38732515 PMCID: PMC11085454 DOI: 10.3390/nu16091268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
Since 1985, when oxidative stress was first defined as the oxidative damage caused to cells and organs, a large number of studies have shown that oxidative stress is a significant risk factor for various diseases, including tumors [...].
Collapse
Affiliation(s)
- Hui-Hui Xiao
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China;
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
13
|
Hoyos BE, Johnson JB, Mani JS, Batley RJ, Trotter T, Bhattarai SP, Naiker M. The Effect of Water Stress on Bioactive Compounds in Australian-Grown Black Sesame. PLANTS (BASEL, SWITZERLAND) 2024; 13:793. [PMID: 38592794 PMCID: PMC10974145 DOI: 10.3390/plants13060793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Sesame is an emerging crop of interest in Australia and has attracted widespread interest due to the health-benefitting properties of its bioactive compounds, including fatty acids, lignans, and polyphenols. This study aimed to investigate the impact of drought stress on these bioactive compounds, using eleven cultivars of black sesame seeds grown in Australia. Specific varieties responded positively to water deficit (WD) conditions, showing increased levels of TPC, FRAP, CUPRAC, and lignans. Varieties 1, 4, 7, and 12 showed significantly increased FRAP values ranging from 158.02 ± 10.43 to 195.22 ± 9.63 mg TE/100 g DW in the WD treatment compared to the well-watered (WW) treatment, whereas varieties 7, 10, 12, 13, and 18 demonstrated the highest CUPRAC values of all varieties (2584.86 ± 99.68-2969.56 ± 159.72 mg TE/100 g) across both WW and WD conditions, with no significant variations between irrigation regimes. Moreover, lignan contents (sesamin and sesamolin) were higher in varieties 1, 2, 5, and 8 grown in WD conditions. Compared to the optimal unsaturated to saturated fatty acid ratio (Σ UFA/Σ SFA ratio) of 0.45, all sesame genotypes showed superior ratios (ranging between 1.86 and 2.34). Moreover, the ω-6/ω-3 PUFA ratio varied from 33.7-65.5, with lower ratios in varieties 2, 4, 5, 8, and 18 under WD conditions. The high levels of phenolic compounds and healthy fats suggest the potential of black sesame to be incorporated into diets as a functional food. Furthermore, the enhanced phytochemistry of these cultivars in WD conditions is promising for widespread adoption. However, larger trial studies to confirm these findings across different geographic locations and seasons are warranted.
Collapse
Affiliation(s)
- Beatriz E. Hoyos
- School of Health, Medical & Applied Sciences, CQUniversity Australia, Bruce Hwy, Rockhampton, QLD 4702, Australia; (B.E.H.); (J.S.M.); (R.J.B.); (T.T.); (S.P.B.)
| | - Joel B. Johnson
- School of Health, Medical & Applied Sciences, CQUniversity Australia, Bruce Hwy, Rockhampton, QLD 4702, Australia; (B.E.H.); (J.S.M.); (R.J.B.); (T.T.); (S.P.B.)
- Institute for Future Farming Systems, CQUniversity Australia, Bundaberg Campus, Bundaberg Central, QLD 4670, Australia
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4067, Australia
| | - Janice S. Mani
- School of Health, Medical & Applied Sciences, CQUniversity Australia, Bruce Hwy, Rockhampton, QLD 4702, Australia; (B.E.H.); (J.S.M.); (R.J.B.); (T.T.); (S.P.B.)
| | - Ryan J. Batley
- School of Health, Medical & Applied Sciences, CQUniversity Australia, Bruce Hwy, Rockhampton, QLD 4702, Australia; (B.E.H.); (J.S.M.); (R.J.B.); (T.T.); (S.P.B.)
| | - Tieneke Trotter
- School of Health, Medical & Applied Sciences, CQUniversity Australia, Bruce Hwy, Rockhampton, QLD 4702, Australia; (B.E.H.); (J.S.M.); (R.J.B.); (T.T.); (S.P.B.)
- Institute for Future Farming Systems, CQUniversity Australia, Bundaberg Campus, Bundaberg Central, QLD 4670, Australia
| | - Surya P. Bhattarai
- School of Health, Medical & Applied Sciences, CQUniversity Australia, Bruce Hwy, Rockhampton, QLD 4702, Australia; (B.E.H.); (J.S.M.); (R.J.B.); (T.T.); (S.P.B.)
- Institute for Future Farming Systems, CQUniversity Australia, Bundaberg Campus, Bundaberg Central, QLD 4670, Australia
| | - Mani Naiker
- School of Health, Medical & Applied Sciences, CQUniversity Australia, Bruce Hwy, Rockhampton, QLD 4702, Australia; (B.E.H.); (J.S.M.); (R.J.B.); (T.T.); (S.P.B.)
- Institute for Future Farming Systems, CQUniversity Australia, Bundaberg Campus, Bundaberg Central, QLD 4670, Australia
| |
Collapse
|
14
|
Koshovyi O, Komisarenko M, Osolodchenko T, Komissarenko A, Mändar R, Kõljalg S, Heinämäki J, Raal A. Eucalypt Extracts Prepared by a No-Waste Method and Their 3D-Printed Dosage Forms Show Antimicrobial and Anti-Inflammatory Activity. PLANTS (BASEL, SWITZERLAND) 2024; 13:754. [PMID: 38592748 PMCID: PMC10976152 DOI: 10.3390/plants13060754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/10/2024]
Abstract
The pharmaceutical industry usually utilizes either hydrophobic or hydrophilic substances extracted from raw plant materials to prepare a final product. However, the waste products from the plant material still contain biologically active components with the opposite solubility. The aim of this study was to enhance the comprehensive usability of plant materials by developing a new no-waste extraction method for eucalypt leaves and by investigating the phytochemical and pharmacological properties of eucalypt extracts and their 3D-printed dosage forms. The present extraction method enabled us to prepare both hydrophobic soft extracts and hydrophilic (aqueous) dry extracts. We identified a total of 28 terpenes in the hydrophobic soft extract. In the hydrophilic dry extract, a total of 57 substances were identified, and 26 of them were successfully isolated. The eucalypt extracts studied showed significant antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Candida albicans, Corynebacterium diphtheriae gravis, and Corynebacterium diphtheriae mitis. The anti-inflammatory activity of the dry extract was studied using a formalin-induced-edema model in mice. The maximum anti-exudative effect of the dry extract was 61.5% at a dose of 20 mg/kg. Composite gels of polyethylene oxide (PEO) and eucalypt extract were developed, and the key process parameters for semi-solid extrusion (SSE) 3D printing of such gels were verified. The SSE 3D-printed preparations of novel synergistically acting eucalypt extracts could have uses in antimicrobial and anti-inflammatory medicinal applications.
Collapse
Affiliation(s)
- Oleh Koshovyi
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (O.K.); (J.H.)
- Pharmacognosy Department, The National University of Pharmacy, 53 Pushkinska St., 61002 Kharkiv, Ukraine; (M.K.); (A.K.)
| | - Mykola Komisarenko
- Pharmacognosy Department, The National University of Pharmacy, 53 Pushkinska St., 61002 Kharkiv, Ukraine; (M.K.); (A.K.)
| | - Tatyana Osolodchenko
- State Institution “I.Mechnikov Institute of Microbiology and Immunology, National Academy of Medical Sciences of Ukraine”, 14-16, Pushkinskaya St., 61057 Kharkov, Ukraine;
| | - Andrey Komissarenko
- Pharmacognosy Department, The National University of Pharmacy, 53 Pushkinska St., 61002 Kharkiv, Ukraine; (M.K.); (A.K.)
| | - Reet Mändar
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia; (R.M.); (S.K.)
| | - Siiri Kõljalg
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia; (R.M.); (S.K.)
- Laboratory of Clinical Microbiology, United Laboratories, Tartu University Hospital, L. Puusepa 1a, 50406 Tartu, Estonia
| | - Jyrki Heinämäki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (O.K.); (J.H.)
| | - Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (O.K.); (J.H.)
| |
Collapse
|
15
|
Cao F, Guo C, Wang X, Wang X, Yu L, Zhang H, Zhang J. Genome-wide identification, evolution, and expression analysis of the NAC gene family in chestnut ( Castanea mollissima). Front Genet 2024; 15:1337578. [PMID: 38333622 PMCID: PMC10850246 DOI: 10.3389/fgene.2024.1337578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
The NAC gene family is one of the most important transcription factor families specific to plants, responsible for regulating many biological processes, including development, stress response, and signal transduction. However, it has not yet been characterized in chestnut, an important nut tree species. Here, we identified 115 CmNAC genes in the chestnut genome, which were divided into 16 subgroups based on the phylogenetic analysis. Numerous cis-acting elements related to auxin, gibberellin, and abscisic acid were identified in the promoter region of CmNACs, suggesting that they play an important role in the growth and development of chestnut. The results of the collinear analysis indicated that dispersed duplication and whole-genome-duplication were the main drivers of CmNAC gene expansion. RNA-seq data of developmental stages of chestnut nut, bud, and ovule revealed the expression patterns of CmNAC genes. Additionally, qRT-PCR experiments were used to verify the expression levels of some CmNAC genes. The comprehensive analysis of the above results revealed that some CmNAC members may be related to chestnut bud and nut development, as well as ovule fertility. The systematic analysis of this study will help to increase understanding of the potential functions of the CmNAC genes in chestnut growth and development.
Collapse
Affiliation(s)
- Fei Cao
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Chunlei Guo
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Xiangyu Wang
- The Office of Scientific Research, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Xuan Wang
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Liyang Yu
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Haie Zhang
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Jingzheng Zhang
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
| |
Collapse
|
16
|
Dinata R, Nisa N, Arati C, Rasmita B, Uditraj C, Siddhartha R, Bhanushree B, Saeed-Ahmed L, Manikandan B, Bidanchi RM, Abinash G, Pori B, Khushboo M, Roy VK, Gurusubramanian G. Repurposing immune boosting and anti-viral efficacy of Parkia bioactive entities as multi-target directed therapeutic approach for SARS-CoV-2: exploration of lead drugs by drug likeness, molecular docking and molecular dynamics simulation methods. J Biomol Struct Dyn 2024; 42:43-81. [PMID: 37021347 DOI: 10.1080/07391102.2023.2192797] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023]
Abstract
The COVID-19 pandemic has caused adverse health (severe respiratory, enteric and systemic infections) and environmental impacts that have threatened public health and the economy worldwide. Drug repurposing and small molecule multi-target directed herbal medicine therapeutic approaches are the most appropriate exploration strategies for SARS-CoV-2 drug discovery. This study identified potential multi-target-directed Parkia bioactive entities against SARS-CoV-2 receptors (S-protein, ACE2, TMPRSS2, RBD/ACE2, RdRp, MPro, and PLPro) using ADMET, drug-likeness, molecular docking (AutoDock, FireDock and HDOCK), molecular dynamics simulation and MM-PBSA tools. One thousand Parkia bioactive entities were screened out by virtual screening and forty-five bioactive phytomolecules were selected based on favorable binding affinity and acceptable pharmacokinetic and pharmacodynamics properties. The binding affinity values of Parkia phyto-ligands (AutoDock: -6.00--10.40 kcal/mol; FireDock: -31.00--62.02 kcal/mol; and HDOCK: -150.0--294.93 kcal/mol) were observed to be higher than the reference antiviral drugs (AutoDock: -5.90--9.10 kcal/mol; FireDock: -35.64--59.35 kcal/mol; and HDOCK: -132.82--211.87 kcal/mol), suggesting a potent modulatory action of Parkia bioactive entities against the SARS-CoV-2. Didymin, rutin, epigallocatechin gallate, epicatechin-3-0-gallate, hyperin, ursolic acid, lupeol, stigmasta-5,24(28)-diene-3-ol, ellagic acid, apigenin, stigmasterol, and campesterol strongly bound with the multiple targets of the SARS-CoV-2 receptors, inhibiting viral entry, attachment, binding, replication, transcription, maturation, packaging and spread. Furthermore, ACE2, TMPRSS2, and MPro receptors possess significant molecular dynamic properties, including stability, compactness, flexibility and total binding energy. Residues GLU-589, and LEU-95 of ACE2, GLN-350, HIS-186, and ASP-257 of TMPRSS2, and GLU-14, MET-49, and GLN-189 of MPro receptors contributed to the formation of hydrogen bonds and binding interactions, playing vital roles in inhibiting the activity of the receptors. Promising results were achieved by developing multi-targeted antiviral Parkia bioactive entities as lead and prospective candidates under a small molecule strategy against SARS-CoV-2 pathogenesis. The antiviral activity of Parkia bioactive entities needs to be further validated by pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Roy Dinata
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Nisekhoto Nisa
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Chettri Arati
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | | - Chetia Uditraj
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | | | | | | - Bose Manikandan
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | | - Giri Abinash
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Buragohain Pori
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Maurya Khushboo
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | |
Collapse
|
17
|
Wang YF, Zheng Y, Cha YY, Feng Y, Dai SX, Zhao S, Chen H, Xu M. Essential oil of lemon myrtle (Backhousia citriodora) induces S-phase cell cycle arrest and apoptosis in HepG2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116493. [PMID: 37054823 DOI: 10.1016/j.jep.2023.116493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lemon myrtle (Backhousia citriodora F.Muell.) leaves, whether fresh or dried, are used traditionally in folk medicine to treat wounds, cancers, skin infections, and other infectious conditions. However, the targets and mechanisms related to anti-cancer effect of lemon myrtle are unavailable. In our study, we found that the essential oil of lemon myrtle (LMEO) showed anti-cancer activity in vitro, and we initially explored its mechanism of action. MATERIALS AND METHODS We analyzed the chemical compositions of LMEO by GC-MS. We tested the cytotoxicity of LMEO on various cancer cell lines using the MTT assay. Network pharmacology was used also to analyze the targets of LMEO. Moreover, the mechanisms of LMEO were investigated through scratch assay, flow cytometry analysis, and western blot in the HepG2 liver cancer cell line. RESULTS LMEO showed cytotoxicity on various cancer cell lines with values of IC50 40.90 ± 2.23 (liver cancer HepG2 cell line), 58.60 ± 6.76 (human neuroblastoma SH-SY5Y cell line), 68.91 ± 4.62 (human colon cancer HT-29 cell line) and 57.57 ± 7.61 μg/mL (human non-small cell lung cancer A549 cell line), respectively. The major cytotoxic chemical constituent in LMEO was identified as citrals, which accounted for 74.9% of the content. Network pharmacological analysis suggested that apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1), androgen receptor (AR), cyclin-dependent kinases 1 (CDK1), nuclear factor erythroid 2-related factor 2 (Nrf-2), fatty acid synthase (FASN), epithelial growth factor receptor (EGFR), estrogen receptor 1 (ERα) and cyclin-dependent kinases 4 (CDK4) are potential cytotoxic targets of LMEO. These targets are closely related to cell migration, cycle and apoptosis. Notley, the p53 protein had the highest confidence to co-associate with the eight common targets, which was further confirmed by scratch assay, flow cytometry analysis, and western blot in the HepG2 liver cancer cell line. LMEO significantly inhibited the migration of HepG2 cells in time-dependent and dose-dependent manner. Moreover, LMEO caused a S-phase blocking on HepG2 cells and promoted apoptosis in the meanwhile. Western blot results indicated that p53 protein, Cyclin A2 and Bax proteins were up-regulated, while Cyclin E1 and Bcl-2 proteins were down-regulated. CONCLUSION LMEO showed cytotoxicity in various cancer cell lines in vitro. Pharmacological networks showed LMEO to have multi-component and multi-targeting effects that are related to inhibit migration of HepG2 cells, and affect cell cycle S-phase arrest and apoptosis through modulation of p53 protein.
Collapse
Affiliation(s)
- Yun-Fen Wang
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China
| | - Yang Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yin-Yue Cha
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China
| | - Yang Feng
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China
| | - Shao-Xing Dai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Sanjun Zhao
- School of Life Sciences, Yunnan Normal University, Chenggong, Kunming, 650500, China.
| | - Hao Chen
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China.
| | - Min Xu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China.
| |
Collapse
|
18
|
Kumar P, Mathew S, Gamage R, Bodkin F, Doyle K, Rossetti I, Wagnon I, Zhou X, Raju R, Gyengesi E, Münch G. From the Bush to the Brain: Preclinical Stages of Ethnobotanical Anti-Inflammatory and Neuroprotective Drug Discovery-An Australian Example. Int J Mol Sci 2023; 24:11086. [PMID: 37446262 DOI: 10.3390/ijms241311086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
The Australian rainforest is a rich source of medicinal plants that have evolved in the face of dramatic environmental challenges over a million years due to its prolonged geographical isolation from other continents. The rainforest consists of an inherent richness of plant secondary metabolites that are the most intense in the rainforest. The search for more potent and more bioavailable compounds from other plant sources is ongoing, and our short review will outline the pathways from the discovery of bioactive plants to the structural identification of active compounds, testing for potency, and then neuroprotection in a triculture system, and finally, the validation in an appropriate neuro-inflammatory mouse model, using some examples from our current research. We will focus on neuroinflammation as a potential treatment target for neurodegenerative diseases including multiple sclerosis (MS), Parkinson's (PD), and Alzheimer's disease (AD) for these plant-derived, anti-inflammatory molecules and highlight cytokine suppressive anti-inflammatory drugs (CSAIDs) as a better alternative to conventional nonsteroidal anti-inflammatory drugs (NSAIDs) to treat neuroinflammatory disorders.
Collapse
Affiliation(s)
- Payaal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Shintu Mathew
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Rashmi Gamage
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Frances Bodkin
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Kerrie Doyle
- Indigenous Health Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ilaria Rossetti
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ingrid Wagnon
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Ritesh Raju
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Erika Gyengesi
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Gerald Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| |
Collapse
|
19
|
Shami A, Alharbi NK, Al-Saeed FA, Alsaegh AA, Al Syaad KM, Abd El-Rahim IHA, Mostafa YS, Ahmed AE. In Silico Subtractive Proteomics and Molecular Docking Approaches for the Identification of Novel Inhibitors against Streptococcus pneumoniae Strain D39. Life (Basel) 2023; 13:life13051128. [PMID: 37240772 DOI: 10.3390/life13051128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/10/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Streptococcus pneumoniae is a notorious Gram-positive pathogen present asymptomatically in the nasophayrnx of humans. According to the World Health Organization (W.H.O), pneumococcus causes approximately one million deaths yearly. Antibiotic resistance in S. pneumoniae is raising considerable concern around the world. There is an immediate need to address the major issues that have arisen as a result of persistent infections caused by S. pneumoniae. In the present study, subtractive proteomics was used in which the entire proteome of the pathogen consisting of 1947 proteins is effectively decreased to a finite number of possible targets. Various kinds of bioinformatics tools and software were applied for the discovery of novel inhibitors. The CD-HIT analysis revealed 1887 non-redundant sequences from the entire proteome. These non-redundant proteins were submitted to the BLASTp against the human proteome and 1423 proteins were screened as non-homologous. Further, databases of essential genes (DEGG) and J browser identified almost 171 essential proteins. Moreover, non-homologous, essential proteins were subjected in KEGG Pathway Database which shortlisted six unique proteins. In addition, the subcellular localization of these unique proteins was checked and cytoplasmic proteins were chosen for the druggability analysis, which resulted in three proteins, namely DNA binding response regulator (SPD_1085), UDP-N-acetylmuramate-L-alanine Ligase (SPD_1349) and RNA polymerase sigma factor (SPD_0958), which can act as a promising potent drug candidate to limit the toxicity caused by S. pneumoniae. The 3D structures of these proteins were predicted by Swiss Model, utilizing the homology modeling approach. Later, molecular docking by PyRx software 0.8 version was used to screen a library of phytochemicals retrieved from PubChem and ZINC databases and already approved drugs from DrugBank database against novel druggable targets to check their binding affinity with receptor proteins. The top two molecules from each receptor protein were selected based on the binding affinity, RMSD value, and the highest conformation. Finally, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) analyses were carried out by utilizing the SWISS ADME and Protox tools. This research supported the discovery of cost-effective drugs against S. pneumoniae. However, more in vivo/in vitro research should be conducted on these targets to investigate their pharmacological efficacy and their function as efficient inhibitors.
Collapse
Affiliation(s)
- Ashwag Shami
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11617, Saudi Arabia
| | - Nada K Alharbi
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11617, Saudi Arabia
| | - Fatimah A Al-Saeed
- Research Centre, Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
- Advanced Material Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Aiman A Alsaegh
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah Al-Mukarramah 24382, Saudi Arabia
| | - Khalid M Al Syaad
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- The Research Center, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Ibrahim H A Abd El-Rahim
- Department of Environmental and Health Research, Umm Al-Qura University, P.O. Box 6287, Makkah Al-Mukarramah 21955, Saudi Arabia
| | - Yasser Sabry Mostafa
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| |
Collapse
|
20
|
Mathew S, Raju R, Zhou X, Bodkin F, Govindaraghavan S, Münch G. A Method and Formula for the Quantitative Analysis of the Total Bioactivity of Natural Products. Int J Mol Sci 2023; 24:ijms24076850. [PMID: 37047821 PMCID: PMC10094874 DOI: 10.3390/ijms24076850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Identification of bioactive natural products from plants starts with the screening of extracts for a desired bioactivity such as antimicrobial, antifungal, anti-cancer, anti-inflammatory, or neuroprotective. When the bioactivity shows sufficient potency, the plant material is subjected to bio-activity-guided fractionation, which involves, e.g., sequential extraction followed by chromatographic separation, including HPLC. The bioactive compounds are then structurally identified by high-resolution mass spectrometry and nuclear magnetic resonance (NMR). One of the questions that come up during the purification process is how much of the bioactivity originally present in the crude extract is preserved during the purification process. If this is the case, it is interesting to investigate if the loss of total bioactivity is caused by the loss of material during purification or by the degradation or evaporation of potent compounds. A further possibility would be the loss of synergy between compounds present in the mixture, which disappears when the compounds are separated. In this publication, a novel formula is introduced that allows researchers to calculate total bioactivity in biological samples using experimental data from our research into the discovery of anti-inflammatory compounds from Backhousia myrtifolia (Grey Myrtle). The results presented show that a raw ethanolic extract retains slightly more bioactivity than the sum of all sequential extracts per gram of starting material and that—despite a large loss of material during HPLC purification—the total bioactivity in all purified fractions is retained, which is indicative of rather an additive than a synergistic principle.
Collapse
Affiliation(s)
- Shintu Mathew
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Ritesh Raju
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Francis Bodkin
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | | | - Gerald Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| |
Collapse
|
21
|
Johnson JB, Walsh KB, Naiker M, Ameer K. The Use of Infrared Spectroscopy for the Quantification of Bioactive Compounds in Food: A Review. Molecules 2023; 28:molecules28073215. [PMID: 37049978 PMCID: PMC10096661 DOI: 10.3390/molecules28073215] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Infrared spectroscopy (wavelengths ranging from 750-25,000 nm) offers a rapid means of assessing the chemical composition of a wide range of sample types, both for qualitative and quantitative analyses. Its use in the food industry has increased significantly over the past five decades and it is now an accepted analytical technique for the routine analysis of certain analytes. Furthermore, it is commonly used for routine screening and quality control purposes in numerous industry settings, albeit not typically for the analysis of bioactive compounds. Using the Scopus database, a systematic search of literature of the five years between 2016 and 2020 identified 45 studies using near-infrared and 17 studies using mid-infrared spectroscopy for the quantification of bioactive compounds in food products. The most common bioactive compounds assessed were polyphenols, anthocyanins, carotenoids and ascorbic acid. Numerous factors affect the accuracy of the developed model, including the analyte class and concentration, matrix type, instrument geometry, wavelength selection and spectral processing/pre-processing methods. Additionally, only a few studies were validated on independently sourced samples. Nevertheless, the results demonstrate some promise of infrared spectroscopy for the rapid estimation of a wide range of bioactive compounds in food matrices.
Collapse
Affiliation(s)
- Joel B Johnson
- School of Health, Medical & Applied Science, Central Queensland University, North Rockhampton, QLD 4701, Australia
| | - Kerry B Walsh
- School of Health, Medical & Applied Science, Central Queensland University, North Rockhampton, QLD 4701, Australia
| | - Mani Naiker
- School of Health, Medical & Applied Science, Central Queensland University, North Rockhampton, QLD 4701, Australia
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
22
|
Ghani MA, Barril C, Bedgood DR, Burrows GE, Prenzler PD. Multi-Dimensional Antioxidant Screening of Selected Australian Native Plants and Putative Annotation of Active Compounds. Molecules 2023; 28:3106. [PMID: 37049870 PMCID: PMC10095623 DOI: 10.3390/molecules28073106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Acacia implexa, Eucalyptus rossii and Exocarpos cupressiformis are native plants of Australia, which were used by the First Peoples for medicinal purposes. In this study, 70% aqueous ethanol crude extracts were prepared from A. implexa bark and leaves, E. rossii leaves and E. cupressiformis leaves, and partitioned via sequential extraction with n-hexane, dichloromethane (DCM), ethyl acetate and ethanol. The crude extracts and fractions were screened for antioxidant activity using a novel, high-throughput lipid-based antioxidant assay, as well as the aqueous ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assay and the Folin-Ciocalteu test for total phenols. In the lipid-based assay, non-polar n-hexane and DCM fractions showed higher antioxidant activity against the formation of peroxides and thiobarbituric acid reactive substances (TBARS) than the other fractions, whereas the non-polar fractions were not effective in aqueous assays. This illustrates that the high potential of the lipid-soluble n-hexane and DCM fractions as antioxidants would have been missed if only aqueous-based assays were used. In addition, the potent antioxidant compounds were putatively annotated using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-qTOF-MS). Gallic acid, (+)-catechin, (-)-epicatechin and tannins were found in most crude extracts.
Collapse
Affiliation(s)
- Md. Ahsan Ghani
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Celia Barril
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Danny R. Bedgood
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Geoffrey E. Burrows
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Paul D. Prenzler
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- The Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| |
Collapse
|
23
|
EFFECTS OF COLD PLASMA ON CHLOROPHYLLS, CAROTENOIDS, ANTHOCYANINS, AND BETALAINS. Food Res Int 2023; 167:112593. [PMID: 37087222 DOI: 10.1016/j.foodres.2023.112593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Plasma is considered by several researchers to be the fourth state of matter. Cold plasma has been highlighted as an alternative to thermal treatments because heat induces less degradation of thermolabile bioactive compounds, such as natural pigments. In this review, we provide a compilation of the current information about the effects of cold plasma on natural pigments, such as the changes caused by plasma to the molecules of chlorophylls, carotenoids, anthocyanins, and betalains. As a result of the literature review, it is noted that can degrade cell membrane and promote damage to pigment storage sites; thereby releasing pigments and increasing their content in the extracellular space. However, the reactive species contained in the cold plasma can cause degradation of the pigments. Cold plasma is a promising technology for extracting pigments; however, case-by-case optimization of the extraction process is required.
Collapse
|
24
|
Ali A, Kiloni SM, Cáceres-Vélez PR, Jusuf PR, Cottrell JJ, Dunshea FR. Phytochemicals, Antioxidant Activities, and Toxicological Screening of Native Australian Fruits Using Zebrafish Embryonic Model. Foods 2022; 11:foods11244038. [PMID: 36553779 PMCID: PMC9777714 DOI: 10.3390/foods11244038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Phytochemicals play a pivotal role in human health and drug discovery. The safety evaluation of plant extracts is a prerequisite to ensure that all phytochemicals are safe before translational development and human exposure. As phytochemicals are natural, they are generally considered safe, although this is not always true. The objective of this study was to investigate and compare the phytochemical composition, antioxidant potential, and safety evaluation of native Australian Muntries (Kunzea pomifera), Kakadu plum (Terminalia ferdinandiana), Davidson plum (Davidsonia) and Quandong peach (Santalum acuminatum) through the in vivo vertebrate zebrafish embryonic model. The highest total phenolic content (TPC; 793.89 ± 22.27 μg GAE/mg) was quantified in Kakadu plum, while the lowest TPC (614.44 ± 31.80 μg GAE/mg) was quantified in Muntries. Developmental alterations, mortality, and morbidity were assessed for toxicological screening of these selected native Australian fruit extracts. In this study, muntries were quantified as having the least LC50 value (169 mg/L) compared to Davidson plum (376 mg/L), Kakadu plum (>480 mg/L), and Quandong peach (>480 mg/L), which indicates that muntries extract was more toxic than other fruit extracts. Importantly, we found that adverse effects were not correlated to the total phenolic content and antioxidant potential of these native Australian fruits and cannot simply be predicted from the in vitro analysis. Conclusively, these selected native Australian fruit extracts are categorized as safe. This study could explore the use of these native Australian fruits in cosmetics, pharmaceuticals, and drug discovery.
Collapse
Affiliation(s)
- Akhtar Ali
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sarah M. Kiloni
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Patricia R. Jusuf
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jeremy J. Cottrell
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank R. Dunshea
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
- Correspondence:
| |
Collapse
|
25
|
Ozgun‐Acar O, Celik‐Turgut G, Guner H, Sezer S, Sen A. Biochemical, pharmacological, and toxicological attributes of caper ( Capparis ovata) flowering buds and berries pickles. Food Sci Nutr 2022; 10:4189-4200. [PMID: 36514771 PMCID: PMC9731540 DOI: 10.1002/fsn3.3012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/16/2022] Open
Abstract
Capparis ovata is a natural plant that grows widely in Turkey and its flowering buds and berry pickle are used in traditional medicine. Thus, the current study was expanded to evaluate the biochemical, pharmacological, and toxicological aspects of the Capparis ovata water extract (COWE). To determine the biochemical properties of COWE, mineral and fatty acid content, elemental analysis, flavonoid/phenolic content, radical-scavenging capacity, and pesticide analysis were performed. Furthermore, to find out whether it had anti-inflammatory properties, reverse transcription-polymerase chain reaction (RT-PCR) and nuclear factor kappa B (NF-κB) luciferase activity tests were conducted. Whole-genome transcriptomic profiling was carried out at a dose level of 500 mg/kg COWE to understand its pharmacological effect. Transaminases in serum were tested, and quantitative polymerase chain reaction (qPCR) was done using a custom design array that included the stress and molecular toxicology pathway to establish its toxicological qualities. As a result of the evaluations, it was observed that COWE has a high mineral and unsaturated fatty acid content, flavonoid/phenolic content, and radical-scavenging ability. It significantly inhibited NF-κB transcriptional activity as well as inflammatory cytokine expression in T-lymphoblast cells. Whole-genome transcriptomic profiling depicted that COWE modulates immune responses by upregulating natural killer cell activation, cellular response to type I interferon, B-cell proliferation and differentiation, and Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathways. Molecular Toxicology Pathfinder RT2 Profiler PCR array analysis revealed that COWE at or lower dose of 500 mg/kg/day did not cause a comparatively adverse effect. According to the findings, COWE is a rich source of nutrients and can be used as an adjunct therapy for various inflammatory diseases.
Collapse
Affiliation(s)
- Ozden Ozgun‐Acar
- Seed Breeding & Genetics Application Research CenterPamukkale UniversityDenizliTurkey
| | - Gurbet Celik‐Turgut
- Organic Agriculture Management, Faculty of Applied SciencesPamukkale UniversityDenizliTurkey
| | - Hüseyin Guner
- Department of Molecular Biology and Genetics, Faculty of Life and Natural SciencesAbdullah Gul UniversityKayseriTurkey
| | - Serdar Sezer
- Institute of Chemical TechnologyMarmara Research Center, TUBITAKKocaeliTurkey
- Department of Pharmacology, Faculty of MedicineSuleyman Demirel UniversityIspartaTurkey
| | - Alaattin Sen
- Department of Molecular Biology and Genetics, Faculty of Life and Natural SciencesAbdullah Gul UniversityKayseriTurkey
- Department of Biology, Faculty of Arts & SciencesPamukkale UniversityDenizliTurkey
| |
Collapse
|
26
|
Johnson JB, Mani JS, Hoyos BE, Naiker M. Phenolic profiles, phytochemical composition and vitamin C content of selected horticultural produce from Central Queensland. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe Central Queensland region of Australia is a large producer of horticultural produce; however, there are limited studies on the phytochemical composition of the produce from this region. Additionally, some crops or cultivars are poorly known in domestic markets; hence are currently only grown for niche markets. There is opportunity to expand production of these crops if they contain higher levels of health-benefiting compounds compared to existing cultivars. Hence this work aimed to elucidate the phytochemical composition of such under-marketed and/or under-utilised crops, including their phenolic acid and flavonoid profiles. The samples included nine cucurbits, two citrus fruits, dragonfruit and Brazilian cherry. The vitamin C (ascorbic acid) content was quantified using high-performance liquid chromatography with diode array detection, while the phenolic profiles were gathered using targeted liquid chromatograph tandem mass spectrometry analysis. Antioxidant activity was quantified using the FRAP and CUPRAC assays, while total phenolic content was measured using the Folin-Ciocalteu assay. The results revealed extensive variation in the levels of health-benefiting compounds between the samples. The phenolic profiles of several species/cultivars are reported for the first time. The highest ascorbic acid content was found in blood orange skin (817 mg/100 g DW), while the highest total phenolic content was found in blood orange skin (1988 mg GAE/100 g). Samples showing high antioxidant capacity included blood orange skin, Brazilian cherry and spaghetti squash. These results may support the prospect of marketing several of the crops/cultivars as functional food crops in domestic or export markets.
Collapse
|
27
|
Mani J, Johnson J, Hosking H, Hoyos BE, Walsh KB, Neilsen P, Naiker M. Bioassay Guided Fractionation Protocol for Determining Novel Active Compounds in Selected Australian Flora. PLANTS (BASEL, SWITZERLAND) 2022; 11:2886. [PMID: 36365337 PMCID: PMC9654191 DOI: 10.3390/plants11212886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
A large variety of unique and distinct flora of Australia have developed exceptional survival methods and phytochemicals and hence may provide a significant avenue for new drug discovery. This study proposes a bioassay guided fractionation protocol that maybe robust and efficient in screening plants with potential bioactive properties and isolating lead novel compounds. Hence, five native Australian plants were selected for this screening process, namely Pittosporum angustifolium (Gumbi gumbi), Terminalia ferdinandiana (Kakadu plum, seeds (KPS), and flesh (KPF)), Cupaniopsis anacardioides (Tuckeroo, seeds (TKS) and flesh (TKF)), Podocarpus elatus (Illawarra plum, seeds (IPS) and flesh (IPF)) and Pleiogynium timoriense (Burdekin plum, seeds (BPS) and flesh (BPF)). The methanolic extracts of the plants samples were analysed for Total phenolic content (TPC) and antioxidant capacity measure by FRAP. The highest values were found in the KPF which were 20,847 ± 2322 mg GAE/100 g TPC and 100,494 ± 9487 mg TXE/100 g antioxidant capacity. Extracts of GGL was deemed to be most potent with complete cell inhibition in HeLa and HT29, and about 95% inhibition in HuH7 cells. Comparative activity was also seen for KPS extract, where more than 80% cell inhibition occurred in all tested cell lines. Dose-dependent studies showed higher SI values (0.72–1.02) in KPS extracts than GGL (0.5–0.73). Microbial assays of the crude extracts were also performed against five bacterial strains commonly associated with causing food poisoning diseases were selected (Gram positive—Staphylococcus aureus and Gram negative—Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa bacteria). KPF extracts were effective in suppressing microbial growth of all tested bacterial strains except for P. aeruginosa, while TKS and TKF were only slightly effective against S. aureus. Due to the potential of the GGL crude extract to completely inhibit the cells compared to KPS, it was further fractionated and tested against the cell lines. HPLC phenolic profiling of the crude extracts were performed, and numerous peak overlaps were evident in the fruit extracts. The KPF extracts demonstrated the strongest peaks which was coherent with the fact that it had the highest TPC and antioxidant capacity values. A high occurrence of t-ferulic acid in the GGL extracts was found which may explain the cytotoxic activity of GGL extracts. Peaks in KPS and KPF extracts were tentatively identified as gallic acid, protocatechuic acid, 4-hydroxybenzoic acid and syringic acid and possibly ellagic acid. HPLC time-based fractionation of the GGL extract (F1–F5) was performed and Dose dependent cytotoxic effects were determined. It was construed that F1, having the highest SI value for HeLa, HT29 and HuH7 (1.60, 1.41 and 1.67, respectively) would be promising for further fractionation and isolation process.
Collapse
Affiliation(s)
- Janice Mani
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia; (J.J.); (H.H.); (B.E.H.); (K.B.W.); (P.N.); (M.N.)
- Institute of Future Farming Systems, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia
| | - Joel Johnson
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia; (J.J.); (H.H.); (B.E.H.); (K.B.W.); (P.N.); (M.N.)
- Institute of Future Farming Systems, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia
| | - Holly Hosking
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia; (J.J.); (H.H.); (B.E.H.); (K.B.W.); (P.N.); (M.N.)
| | - Beatriz E. Hoyos
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia; (J.J.); (H.H.); (B.E.H.); (K.B.W.); (P.N.); (M.N.)
- Institute of Future Farming Systems, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia
| | - Kerry B. Walsh
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia; (J.J.); (H.H.); (B.E.H.); (K.B.W.); (P.N.); (M.N.)
- Institute of Future Farming Systems, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia
| | - Paul Neilsen
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia; (J.J.); (H.H.); (B.E.H.); (K.B.W.); (P.N.); (M.N.)
| | - Mani Naiker
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia; (J.J.); (H.H.); (B.E.H.); (K.B.W.); (P.N.); (M.N.)
- Institute of Future Farming Systems, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia
| |
Collapse
|
28
|
Saifullah MD, McCullum R, Vuong QV. Phytochemicals and Bioactivities of Australian Native Lemon Myrtle ( Backhousia citriodora) and Lemon-Scented Tea Tree ( Leptospermum petersonii): A Comprehensive Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2130353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- MD Saifullah
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Ourimbah, Australia
- Department of Agro Product Processing Technology, Faculty of Applied Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Rebecca McCullum
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Ourimbah, Australia
| | - Quan Van Vuong
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Ourimbah, Australia
| |
Collapse
|
29
|
Identification and characterization of anthocyanins and non-anthocyanin phenolics from Australian native fruits and their antioxidant, antidiabetic, and anti-Alzheimer potential. Food Res Int 2022; 162:111951. [DOI: 10.1016/j.foodres.2022.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/03/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022]
|
30
|
Turpin G, Ritmejerytė E, Jamie J, Crayn D, Wangchuk P. Aboriginal medicinal plants of Queensland: ethnopharmacological uses, species diversity, and biodiscovery pathways. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2022; 18:54. [PMID: 35948982 PMCID: PMC9364609 DOI: 10.1186/s13002-022-00552-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Aboriginal peoples have occupied the island continent of Australia for millennia. Over 500 different clan groups or nations with distinctive cultures, beliefs, and languages have learnt to live sustainably and harmoniously with nature. They have developed an intimate and profound relationship with the environment, and their use of native plants in food and medicine is largely determined by the environment they lived in. Over 1511 plant species have been recorded as having been used medicinally in Australia. Most of these medicinal plants were recorded from the Aboriginal communities in Northern Territory, New South Wales, South Australia, and Western Australia. Not much has yet been reported on Aboriginal medicinal plants of Queensland. Therefore, the main aim of this review is to collect the literature on the medicinal plants used by Aboriginal peoples of Queensland and critically assess their ethnopharmacological uses. METHODS The information used in this review was collected from archival material and uploaded into the Tropical Indigenous Ethnobotany Centre (TIEC) database. Archival material included botanist's journals/books and old hard copy books. Scientific names of the medicinal plant species were matched against the 'World Flora Online Plant List', and 'Australian Plant Census' for currently accepted species names to avoid repetition. An oral traditional medical knowledge obtained through interviewing traditional knowledge holders (entered in the TIEC database) has not been captured in this review to protect their knowledge. RESULTS This review identified 135 species of Queensland Aboriginal medicinal plants, which belong to 103 genera from 53 families, with Myrtaceae being the highest represented plant family. While trees represented the biggest habit, leaves were the most commonly used plant parts. Of 62 different diseases treated by the medicinal plants, highest number of plants are used for treating skin sores and infections. Few plants identified through this review can be found in other tropical countries but many of these medicinal plants are native to Australia. Many of these medicinal plants are also used as bush food by Aboriginal peoples. CONCLUSION Through extensive literature review, we found that 135 medicinal plants native to Queensland are used for treating 62 different diseases, especially skin infections. Since these medicinal plants are also used as bush food and are rarely studied using the Western scientific protocols, there is a huge potential for bioprospecting and bush food industry.
Collapse
Affiliation(s)
- Gerry Turpin
- Tropical Indigenous Ethnobotany Centre, Australian Tropical Herbarium, James Cook University, Building E1, Cairns Campus, McGregor Road, Smithfield, QLD, 4878, Australia.
- Queensland Herbarium, Department of Environment and Science, Mount Coot-tha Botanical Gardens, Mount Coot-tha Road, Toowong, QLD, 4066, Australia.
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, Cairns Campus, McGregor Road, Smithfield, QLD, 4878, Australia.
| | - Edita Ritmejerytė
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, Cairns Campus, McGregor Road, Smithfield, QLD, 4878, Australia
| | - Joanne Jamie
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Darren Crayn
- Australian Tropical Herbarium, James Cook University, Building E1, Cairns Campus, McGregor Road, Smithfield, QLD, 4878, Australia
- Centre for Tropical Environmental Sustainability Science, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia
| | - Phurpa Wangchuk
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, Cairns Campus, McGregor Road, Smithfield, QLD, 4878, Australia.
| |
Collapse
|
31
|
Geng Z, Zhou Q, Guo M, Yao Y, Tian L, Lin H. Imaging human serum albumin behavior in process of PVOCs transportation in vivo: Spectroscopy analysis insight. Food Chem 2022; 396:133692. [PMID: 35878446 DOI: 10.1016/j.foodchem.2022.133692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 11/16/2022]
Abstract
Pomelo volatile organic compounds (PVOCs) are used as food additives to provide unique flavors, thus, and the possible effects of VOC binding to albumin should be considered. Headspace solid-phase microextraction with gas chromatography-mass spectrometry was used to fingerprints adsorption of PVOCs on human serum albumin (HSA). Spectral data and molecular modeling were used to establish a binding model between PVOCs and HSA. Twenty-one common components were identified, and dipentene, linalylacetate, and nootkatone were identified as characteristic components. Thermodynamic calculations showed that dipentene and linalylacetate bound to HSA via van der Waals forces and hydrophobic interactions, whereas nootkatone bound to HSA via van der Waals forces alone. Molecular modeling showed that the volatile components were all bound to the hydrophobic pocket of HSA site I. Our results provide a useful basis for quality evaluation of pomelo and explain the mechanism of interaction between PVOCs and HSA.
Collapse
Affiliation(s)
- Zhaoming Geng
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, Zhejiang 311300, China
| | - Qingteng Zhou
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, Zhejiang 311300, China
| | - Ming Guo
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, Zhejiang 311300, China.
| | - Yecen Yao
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, Zhejiang 311300, China
| | - Luwei Tian
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, Zhejiang 311300, China
| | - Haiping Lin
- College of Forestry and Bio-technology, Zhejiang Agriculture & Forestry University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
32
|
Ahmed M, Khan KUR, Ahmad S, Aati HY, Ovatlarnporn C, Rehman MSU, Javed T, Khursheed A, Ghalloo BA, Dilshad R, Anwar M. Comprehensive Phytochemical Profiling, Biological Activities, and Molecular Docking Studies of Pleurospermum candollei: An Insight into Potential for Natural Products Development. Molecules 2022; 27:molecules27134113. [PMID: 35807359 PMCID: PMC9268725 DOI: 10.3390/molecules27134113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
The purpose of this study was to find the biological propensities of the vegetable plant Pleurospermum candollei by investigating its phytochemical profile and biological activities. Phytochemical analysis was done by spectroscopic methods to investigate the amount of total polyphenols, and biological evaluation was done by the different antioxidant, enzyme inhibitory (tyrosinase, α-amylase, and α-glucosidase), thrombolytic, and antibacterial activities. The highest amount of total phenolic and flavonoid contents was observed in methanolic extract (240.69 ± 2.94 mg GAE/g and 167.59 ± 3.47 mg QE/g); the fractions showed comparatively less quantity (57.02 ± 1.31 to 144.02 ± 2.11 mg GAE/g, and 48.21 ± 0.75 to 96.58 ± 2.30 mg QE/g). The effect of these bioactive contents was also related to biological activities. GCMS analysis led to the identification of bioactive compounds with different biological effects from methanolic extract (antioxidant; 55.07%, antimicrobial; 56.41%), while the identified compounds from the n-hexane fraction with antioxidant properties constituted 67.86%, and those with antimicrobial effects constituted 82.95%; however, the synergetic effect of polyphenols may also have contributed to the highest value of biological activities of methanolic extract. Molecular docking was also performed to understand the relationship of identified secondary metabolites with enzyme-inhibitory activities. The thrombolytic activity was also significant (40.18 ± 1.80 to 57.15 ± 1.10 % clot lysis) in comparison with streptokinase (78.5 ± 1.53 to 82.34 ± 1.25% clot lysis). Methanolic extract also showed good activity against Gram-positive strains of bacteria, and the highest activity was observed against Bacillus subtilis. The findings of this study will improve our knowledge of phytochemistry, and biological activities of P. candollei, which seems to be a ray of hope to design formulations of natural products for the improvement of health and prevention of chronic diseases; however, further research may address the development of novel drugs for use in pharmaceuticals.
Collapse
Affiliation(s)
- Maqsood Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.A.); (S.A.); (A.K.); (B.A.G.); (R.D.); (M.A.)
| | - Kashif-ur-Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.A.); (S.A.); (A.K.); (B.A.G.); (R.D.); (M.A.)
- Correspondence: (K.-u.-R.K.); (H.Y.A.)
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.A.); (S.A.); (A.K.); (B.A.G.); (R.D.); (M.A.)
| | - Hanan Y. Aati
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
- Correspondence: (K.-u.-R.K.); (H.Y.A.)
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90110, Thailand;
| | - Muhammad Sajid-ur Rehman
- Department of Pharmacognosy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Tariq Javed
- Lahore Pharmacy College (LMDC), Lahore 53400, Pakistan;
| | - Anjum Khursheed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.A.); (S.A.); (A.K.); (B.A.G.); (R.D.); (M.A.)
| | - Bilal Ahmad Ghalloo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.A.); (S.A.); (A.K.); (B.A.G.); (R.D.); (M.A.)
| | - Rizwana Dilshad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.A.); (S.A.); (A.K.); (B.A.G.); (R.D.); (M.A.)
| | - Maryam Anwar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.A.); (S.A.); (A.K.); (B.A.G.); (R.D.); (M.A.)
| |
Collapse
|
33
|
Dissanayake IH, Zak V, Kaur K, Jaye K, Ayati Z, Chang D, Li CG, Bhuyan DJ. Australian native fruits and vegetables: Chemical composition, nutritional profile, bioactivity and potential valorization by industries. Crit Rev Food Sci Nutr 2022; 63:8511-8544. [PMID: 35491610 DOI: 10.1080/10408398.2022.2057913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Australian native plants have adapted themselves to harsh climatic conditions enabling them to produce unique and high levels of secondary metabolites. Native fruits and vegetables have been an integral part of the Indigenous Australian diet and Bush medicine for centuries. They have recently gained popularity owing to their rich dietary fiber, minerals, polyphenolic and antioxidant contents. This review presents a comprehensive summary and critical assessment of the studies performed in the last few decades to understand the phytochemical and nutritional profiles and therapeutic properties of Australian native fruits and vegetables. Furthermore, the potential of these fruits and vegetables as functional food ingredients and in the prevention and treatment of different diseases is discussed. Research on the nutritional and phytochemical profiles and therapeutic activity of Australian vegetables is limited with most studies focused on native fruits. These fruits have demonstrated promising antioxidant, anticancer, anti-inflammatory and antimicrobial activities mostly in in vitro models. More research to a) identify novel bioactive compounds, b) define optimal post-harvest and extraction methods, and c) understand molecular mechanisms of pharmacological activity through preclinical and clinical studies is prudent for the prospective and wider use of Australian native fruits and vegetables by the food, pharmaceutical, and nutraceutical industries.
Collapse
Affiliation(s)
| | - Valeria Zak
- School of Science, Western Sydney University, Campbelltown, NSW, Australia
| | - Kirandeep Kaur
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Kayla Jaye
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Zahra Ayati
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
34
|
Tropical fruits from Australia as potential treatments for metabolic syndrome. Curr Opin Pharmacol 2022; 63:102182. [PMID: 35149297 DOI: 10.1016/j.coph.2022.102182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/16/2022]
Abstract
Australia has a unique and diverse flora, including indigenous fruits, used by Australian Aboriginals for food and medicines for up to 45,000 years as well as recently introduced fruits for commercial production. However, this range of fruits has not led to the development of functional foods, for example for chronic inflammatory diseases such as metabolic syndrome including obesity, hypertension, fatty liver and diabetes. This review examines the potential of tropical and subtropical fruits from Australia to be used as functional foods for metabolic syndrome, including Davidson's plum, Queen Garnet plum, durian, litchi, breadfruit, jackfruit, mangosteen, papaya, jabuticaba, coffee and seaweed. Preclinical studies have defined potential responses of these functional foods in metabolic syndrome but the usefulness in humans with metabolic syndrome requires clinical studies which are scarce in the relevant literature. Overall, these Australian examples show that tropical fruits can provide functional foods to decrease chronic inflammatory diseases.
Collapse
|
35
|
Taroncher M, Vila-Donat P, Tolosa J, Ruiz MJ, Rodríguez-Carrasco Y. Biological activity and toxicity of plant nutraceuticals: an overview. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
36
|
Rodriguez S, Skeet K, Mehmetoglu-Gurbuz T, Goldfarb M, Karri S, Rocha J, Shahinian M, Yazadi A, Poudel S, Subramani R. Phytochemicals as an Alternative or Integrative Option, in Conjunction with Conventional Treatments for Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13225753. [PMID: 34830907 PMCID: PMC8616323 DOI: 10.3390/cancers13225753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is globally ranked as the sixth most diagnosed cancer, and the second most deadly cancer. To worsen matters, there are only limited therapeutic options currently available; therefore, it is necessary to find a reservoir from which new HCC treatments may be acquired. The field of phytomedicine may be the solution to this problem, as it offers an abundance of plant-derived molecules, which show capabilities of being effective against HCC proliferation, invasion, migration, and metastasis. In our review, we collect and analyze current evidence regarding these promising phytochemical effects on HCC, and delve into their potential as future chemotherapies. Additionally, information on the signaling behind these numerous phytochemicals is provided, in an attempt to understand their mechanisms. This review makes accessible the current body of knowledge pertaining to phytochemicals as HCC treatments, in order to serve as a reference and inspiration for further research into this subject. Abstract Hepatocellular carcinoma (HCC) is the most abundant form of liver cancer. It accounts for 75–85% of liver cancer cases and, though it ranks globally as the sixth most common cancer, it ranks second in cancer-related mortality. Deaths from HCC are usually due to metastatic spread of the cancer. Unfortunately, there are many challenges and limitations with the latest HCC therapies and medications, making it difficult for patients to receive life-prolonging care. As there is clearly a high demand for alternative therapy options for HCC, it is prudent to turn to plants for the solution, as their phytochemicals have long been used and revered for their many medicinal purposes. This review explores the promising phytochemical compounds identified from pre-clinical and clinical trials being used either independently or in conjunction with already existing cancer therapy treatments. The phytochemicals discussed in this review were classified into several categories: lipids, polyphenols, alkaloids, polysaccharides, whole extracts, and phytochemical combinations. Almost 80% of the compounds failed to progress into clinical studies due to lack of information regarding the toxicity to normal cells and bioavailability. Although large obstacles remain, phytochemicals can be used either as an alternative or integrative therapy in conjunction with existing HCC chemotherapies. In conclusion, phytochemicals have great potential as treatment options for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sheryl Rodriguez
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
| | - Kristy Skeet
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Tugba Mehmetoglu-Gurbuz
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
| | - Madeline Goldfarb
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (M.G.); (S.K.)
| | - Shri Karri
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (M.G.); (S.K.)
| | - Jackelyn Rocha
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Mark Shahinian
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Abdallah Yazadi
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Seeta Poudel
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
| | - Ramadevi Subramani
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
- Correspondence: ; Tel.: +1-915-215-6851
| |
Collapse
|
37
|
Mahadevi R, Salmen SH, Alfarraj S, Wainwright M, Kavitha R. Screening and characterization of phytochemical content of methanolic extract of Rhizome of Curcuma amada and their antibacterial activity against MRSA. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02061-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
38
|
Xu C, Huang X, Huang Y, Liu X, Wu M, Wang J, Duan X. Naringin induces apoptosis of gastric carcinoma cells via blocking the PI3K/AKT pathway and activating pro‑death autophagy. Mol Med Rep 2021; 24:772. [PMID: 34490484 PMCID: PMC8441985 DOI: 10.3892/mmr.2021.12412] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/19/2021] [Indexed: 01/16/2023] Open
Abstract
Naringin (Nar) is one of the natural glycosides extracted from pomelo and other citrus fruits. It has various pharmacological activities, including anti‑inflammatory, antioxidant, anti‑proliferative and anti‑cancer. However, the underlying mechanisms by which Nar regulates apoptosis and autophagy in gastric cancer remain unclear. Thus, the present study aimed to assess the therapeutic effect of Nar and the underlying mechanisms. SNU‑1 cell proliferation was determined using Cell Counting Kit‑8 assay. Cell morphological changes were observed under a phase‑contrast microscope. The changes in the cell cycle were determined using flow cytometry analysis and the changes in cell apoptosis were determined using flow cytometry, Hoechst 33258 and TUNEL staining. The protein levels pertaining to the PI3K/AKT pathway and cell apoptosis and autophagy were monitored using western blot analysis. The results demonstrated that Nar significantly inhibited SNU‑1 cell growth and induced cell cycle arrest in the G0/G1 phase and cell apoptosis. Further mechanistic studies demonstrated that Nar blocked the PI3K/AKT pathway, activated cell autophagy and stimulated the expression of apoptosis‑associated protein cleaved caspase 3 and Bax, but decreased the expression of Bcl‑2. Preincubating SNU‑1 cells with 3‑methyladenine, a cell‑autophagy inhibitor, significantly alleviated the effects of Nar in promoting cell apoptosis and cleaved caspase 3 expression. It was concluded that Nar promoted SNU‑1 cell apoptosis via blocking the PI3K/AKT signaling pathway and activating cell autophagy.
Collapse
Affiliation(s)
- Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xiaoyan Huang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Yubin Huang
- Clinical Department, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Xiao Liu
- Clinical Department, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Min Wu
- Department of Research, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Jianhua Wang
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xianglong Duan
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
39
|
Johnson JB, Broszczak DA, Mani JS, Anesi J, Naiker M. A cut above the rest: oxidative stress in chronic wounds and the potential role of polyphenols as therapeutics. J Pharm Pharmacol 2021; 74:485-502. [PMID: 33822141 DOI: 10.1093/jpp/rgab038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The pathophysiology of chronic wounds typically involves redox imbalance and inflammation pathway dysregulation, often with concomitant microbial infection. Endogenous antioxidants such as glutathione and tocopherols are notably reduced or absent, indicative of significant oxidative imbalance. However, emerging evidence suggests that polyphenols could be effective agents for the amelioration of this condition. This review aims to summarise the current state of knowledge surrounding redox imbalance in the chronic wound environment and the potential use of polyphenols for the treatment of chronic wounds. KEY FINDINGS Polyphenols provide a multi-faceted approach towards the treatment of chronic wounds. Firstly, their antioxidant activity allows direct neutralisation of harmful free radicals and reactive oxygen species, assisting in restoring redox balance. Upregulation of pro-healing and anti-inflammatory gene pathways and enzymes by specific polyphenols further acts to reduce redox imbalance and promote wound healing actions, such as proliferation, extracellular matrix deposition and tissue remodelling. Finally, many polyphenols possess antimicrobial activity, which can be beneficial for preventing or resolving infection of the wound site. SUMMARY Exploration of this diverse group of natural compounds may yield effective and economical options for the prevention or treatment of chronic wounds.
Collapse
Affiliation(s)
- Joel B Johnson
- School of Health, Medical and Applied Science, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia
| | - Daniel A Broszczak
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.,Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Janice S Mani
- School of Health, Medical and Applied Science, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia
| | - Jack Anesi
- School of Science, Psychology and Sport, Federation University Australia, Ballarat, Victoria, Australia
| | - Mani Naiker
- School of Health, Medical and Applied Science, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia
| |
Collapse
|