1
|
Gonçalves E, Smaoui S, Brito M, Oliveira JM, Arez AP, Tavares L. Sickle Cell Disease: Current Drug Treatments and Functional Foods with Therapeutic Potential. Curr Issues Mol Biol 2024; 46:5845-5865. [PMID: 38921020 PMCID: PMC11202234 DOI: 10.3390/cimb46060349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Sickle cell anemia (SCA), the most common form of sickle cell disease (SCD), is a genetic blood disorder. Red blood cells break down prematurely, causing anemia and often blocking blood vessels, leading to chronic pain, organ damage, and increased infection risk. SCD arises from a single-nucleotide mutation in the β-globin gene, substituting glutamic acid with valine in the β-globin chain. This review examines treatments evaluated through randomized controlled trials for managing SCD, analyzes the potential of functional foods (dietary components with health benefits) as a complementary strategy, and explores the use of bioactive compounds as functional food ingredients. While randomized trials show promise for certain drugs, functional foods enriched with bioactive compounds also hold therapeutic potential. Further research is needed to confirm clinical efficacy, optimal dosages, and specific effects of these compounds on SCD, potentially offering a cost-effective and accessible approach to managing the disease.
Collapse
Affiliation(s)
- Elisângela Gonçalves
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Institute of Hygiene and Tropical Medicine, (IHMT), NOVA University of Lisbon (UNL) 1349-008 Lisbon, Portugal; (E.G.); (A.P.A.)
| | - Slim Smaoui
- Laboratory of Microbial and Enzymes Biotechnology and Biomolecules (LBMEB), Centre of Biotechnology of Sfax (CBS), University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia;
| | - Miguel Brito
- Health Research Centre of Angola (CISA), Caxito, Angola;
- H&TRC—Health & Technology Research Center, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-092 Lisbon, Portugal
| | - J. M. Oliveira
- School of Design, Management and Production Technologies Northern Aveiro, University of Aveiro, Estrada do Cercal, 449, 3810-193 Oliveira de Azeméis, Portugal;
- EMaRT Group—Emerging Materials, Research, Technology, University of Aveiro, 3810-193 Aveiro, Portugal
- CICECO Aveiro—Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Paula Arez
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Institute of Hygiene and Tropical Medicine, (IHMT), NOVA University of Lisbon (UNL) 1349-008 Lisbon, Portugal; (E.G.); (A.P.A.)
| | - Loleny Tavares
- School of Design, Management and Production Technologies Northern Aveiro, University of Aveiro, Estrada do Cercal, 449, 3810-193 Oliveira de Azeméis, Portugal;
- EMaRT Group—Emerging Materials, Research, Technology, University of Aveiro, 3810-193 Aveiro, Portugal
- CICECO Aveiro—Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Li J, Liao R, Zhang S, Weng H, Liu Y, Tao T, Yu F, Li G, Wu J. Promising remedies for cardiovascular disease: Natural polyphenol ellagic acid and its metabolite urolithins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154867. [PMID: 37257327 DOI: 10.1016/j.phymed.2023.154867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a significant worldwide factor contributing to human fatality and morbidity. With the increase of incidence rates, it is of concern that there is a lack of current therapeutic alternatives because of multiple side effects. Ellagic acid (EA), the natural polyphenol (C14H6O8), is abundant in pomegranates, berries, and nuts. EA and its intestinal microflora metabolite, urolithins, have recently attracted much attention as a potential novel "medicine" because of their wide pharmacological properties. PURPOSE This study aimed to critically analyze available literature to summarize the beneficial effects of EA and urolithins, and highlights their druggability and therapeutic potential in various CVDs. METHODS We systematically studied research and review articles between 1984 and 2022 available on various databases to obtain the data on EA and urolithins with no language restriction. Their cardiovascular protective activities, underlying mechanism, and druggability were highlighted and discussed comprehensively. RESULTS We found that EA and urolithins may exert preventive and curative effects on CVD with negligible side effects and possibly regulate lipid metabolism imbalance, pro-inflammatory factor production, vascular smooth muscle cell proliferation, cardiomyocyte apoptosis, endothelial cell dysfunction, and Ca2+ intake and release. Potentially, this may lead to the prevention and amelioration of atherosclerosis, hypertension, myocardial infarction, cardiac fibrosis, cardiomyopathy, cardiac arrhythmias, and cardiotoxicities in vivo. Several molecules and signaling pathways are associated with their therapeutic actions, including phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, NF-κB, nuclear factor erythroid-2 related factor 2, sirtuin1, miRNA, and extracellular signal-regulated kinase 1/2. CONCLUSION In vitro and in vivo studies shows that EA and urolithins could be used as valid candidates for early prevention and effective therapeutic strategies for various CVDs.
Collapse
Affiliation(s)
- Jingyan Li
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Ruixue Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shijia Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221000, China
| | - Huimin Weng
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuanzhi Liu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tianyi Tao
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Fengxu Yu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| |
Collapse
|